CSE398: Network Systems Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

Outline

- Recap
 - Scaling a network processor
- Examples of commercial network processors
- Design tradeoffs and consequences
- Summary and homework

Augmented RISC Processor

- Alchemy Semiconductor Inc.
- Au1000 chip
 - Instruction cache
 - Data cache

Instructor: Dr. Liang Cheng

Embedded Processor Plus Coprocessors

- AMCC (Applied Micro Circuits Co.)
- nP7510 chip
 - Six nP cores
- Programming
 - Implicit parallelism
- Coprocessors
 - Meter engine for SNMP's RMON

Instructor: Dr. Liang Cheng

Pipeline of Homogeneous Processors

- Cisco Systems, Inc.
- Parallel eXpress Forwarding (PXF)
 - MAC classify
 - Accounting & ICMP
 - FIB & Netflow
 - MPLS classify
 - Access control
 - CAR
 - MLPPP
 - WRED

Instructor: Dr. Liang Cheng

Pipeline of Heterogeneous Processors

EZchip Co.

- TOPparse: header field extraction and classification
- TOPsearch: table lookup
- TOPresolve: queue management and forwarding
- TOPmodify: packet header and content modification
- Onboard SRAM
- Interface to external DRAM

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 03/30/05

Extensive and Diverse Processors

- Hifn (IBM)
 - Embedded processor complex

Instructor: Dr. Liang Cheng

Homogeneous Parallel Processors plus Controller

- Intel
- IXP1200
 - Embeddd RISC processor (StrongARM)

StrongARM Role (1)

- (a) Single IXP1200
- (b) Multiple IXP1200s

StrongARM Role (2)

Tasks

- Bootstrapping
- Exception handling
- Higher-layer protocol processing
- Interactive debugging
- Diagnostics and logging
- Memory allocation
- User interface and/or interface to the GPP
- Control of packet processors
- Other administrative functions

Instructor: Dr. Liang Cheng

StrongARM Role (3)

- StrongARM characteristics
- Reduced Instruction Set Computer (RISC)
- Thirty-two bit arithmetic
 - Configurable in two modes ?
- Vector floating point provided via a coprocessor
- Byte addressable memory
 - Virtual memory support
 - Single, uniform address space
 - Includes memories and devices
- Built-in serial port
- Facilities for a kernelized operating system

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

03/30/05

Outline

- Recap
- Examples of commercial network processors
- Design tradeoffs and consequences
- Summary and homework

Low Development Cost vs. Performance

- The fundamental economic motivation
- ASIC costs \$1M to develop
- Network processor costs programmer time

Programmability vs. Processing Speed

Programmable hardware is slowerFlexibility costs...

Speed vs. Functionality

- Generic idea
 - Processor with most functionality is slowest
 - Adding functionality to NP lowers its overall "speed"

- Can be evaluated by
 - Packet rate
 - Data rate
 - Burst size
 - CBR, VBR

Instructor: Dr. Liang Cheng

Per-Interface Rates vs. Aggregate Rates

Per-interface rate important if

- Physical connections form bottleneck
- System scales by having faster interfaces
- Aggregate rate important if
 - Fabric forms bottleneck
 - System scales by having more interfaces

Lookaside Coprocessors vs. Flow-Through Coprocessors

- Flow-through pipeline
 - Operates at wire speed
 - Difficult to change
- Lookaside
 - Modular and easy to change
 - Invocation can be bottleneck

Uniform Pipeline vs. Synchronized Pipeline

- Uniform pipeline
 - Operates in lock-step like assembly line
 - Each stage must finish in exactly the same time
- Synchronized pipeline
 - Buffers allow computation at each stage to differ
 - Synchronization expensive

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 03/30/05

Explicit Parallelism vs. Cost and Programmability

- Explicit parallelism
 - Hardware is less complex
 - More difficult to program
- Implicit parallelism
 - Easier to program
 - Slightly lower performance

Parallelism vs. Strict Packet Ordering

Increased parallelism
Improves performance
Results in out-of-order packets
Strict packet ordering
Aids protocols such as TCP

Can nullify use of parallelism

03/30/05

Stateful Classification vs. High-Speed Parallel Classification

- Static classification
 - Keeps no state
 - Is the fastest
- Dynamic classification
 - Keeps state
 - Requires synchronization for updates

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 03/30/05

I/O Performance vs. Pin Count

- Bus width
 - Increase to produce higher throughput
 - Decrease to take fewer pins

Programming Languages

- A three-way tradeoff
- Can have two, but not three of
 - Ease of programming
 - Functionality
 - Performance

Multithreading: Throughput vs. Ease of Programming

- Multiple threads of control can increase throughput
- Planning the operation of threads that exhibit less contention requires more programmer's effort

Traffic Management vs. High-Speed Forwarding

- Traffic management
 - Can manage traffic on multiple, independent flows
 - Requires extra processing
- Blind forwarding
 - Performed at highest speed
 - Does not distinguish among flows

Backward Compatibility vs. Architectural Advances Lookup

- Backward compatibility
 - Keeps same instruction set through multiple versions
 - May not provide maximal performance
- Architectural advances
 - Allows more optimizations
 - Difficult for programmers

Parallelism vs. Pipelining

- Both are fundamental performance techniques
- Usually used in combination: pipeline of parallel processors
 - How long is pipeline?
 - How much parallelism at each stage?

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 03/30/05

Outline

Recap

- Examples
- Design tradeoffs and consequences
- Summary and homework

03/30/05

- Many different architectures
- Many design tradeoffs

