CSE498: Wireless Sensor Network Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

January 17, 2006

- Course introduction
- Introduction to wireless sensor networks
- Summary and homework

Course Objectives

Be able to

- list various applications of wireless sensor networks
- describe the concepts, protocols, and differences underlying the design, implementation, and use of wireless sensor networks
- propose, implement, and evaluate new ideas for solving wireless sensor network design issues
- Ph.D. research oriented training
 - Present and discuss ideas and results
 - Teamwork
 - Broaden technical background

Instructor: Dr. Liang Cheng CSE498: Wireless Sensor Network Design

- No textbook
 - Papers and materials will be handed out or available at the Blackboard System.
- Prerequisites
 - CSE404 (Computer Networks) or Instructor's permission.

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Tentative Course Schedule

www.cse.lehigh.edu/~cheng/Teaching/CSE49 8-06/schedule.html

Grading

- Homework: 10%
 - Due Monday 11:55 PM. No late hand-in homework will be accepted.
 - Submit your work through the Blackboard course website to "Digital Drop Box".
- Individual project (30%)
 - Presentation: 10%
 - A survey paper: 20%
- Take-home exam (20%)
- Group Project (30%)
 - Presentation: 10%
 - Demo: 10%
 - Report: 20%
- Academic integrity
 - All graded work, except the group project, should be your own!

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Basic Course Information

- Course website
 - http://www.cse.lehigh.edu/~cheng
- Office hours
 - Tuesdays from 4 PM to 6 PM and Thursdays from 5 PM to 6 PM, and by appointment
 - Packard Lab 326
 - Email: cheng@cse.lehigh.edu

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Course introduction

- Introduction to wireless sensor networks
- Summary and homework

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Wireless Sensors

Sensing, computing, communication

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Wireless Sensor Networks (WSN)

- Improvement over traditional sensors
 Traditional WSN
 - Far from phenomena or several sensor positioned

densely deployed inside or close to phenomena

Engineered positions

Randomly deployed

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Wireless Sensor Networks

- Applications
 - Geophysical/structural/habitat monitoring
 - Security surveillance, disaster area or battlefield information collection
 - Health, home and other commercial areas

Uniqueness of WSN

 Different from wireless ad hoc networking

CSE498: Wireless Sensor Network Design

An Important Design Constraint/Goal

- Energy constraint vs. long network lifetime
 - Prolonging network lifetime at the cost of lower throughput or higher transmission delay

WSN Communication Architecture

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Application Layer

Sensor management protocol

- Software to perform administrative tasks
 - Rules related to data aggregation and clustering
 - Time synchronization
 - Topology management
 - Moving sensor nodes, turning off sensor nodes
 - Key distribution
 - Sensor network reprogramming

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Transport Layer

- Challenges
 - TCP in wireless environment => TCP splitting
 - Attribute-based naming

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Network Layer Schemes

- SMECN
 - Creates a subgraph of the sensor network that contains the ME path
- Flooding
 - Broadcasts data to all neighbor nodes regardless if they receive it or not
- Gossiping
 - Sends data to one randomly selected neighbor
- SPIN
 - Sends data to sensor nodes only if they are interested (ADV, REQ, DATA)
- SAR
 - Creates multiple trees where the root of each tree is one hop neighbor from the sink; select a tree for data to be routed back to the sink
- LEACH
 - Forms clusters to minimize energy dissipation
- Directed diffusion
 - Sets up gradients for data to flow from source to sink during interest dissemination
- • • •

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Data Link Layer

Category	Resource sharing mode	Application domain	Disadvantages
Dedicated assignment or fixed allocation	Pre-determined fixed allocation	Appropriate for continuous traffic and provides bounded delay	Inefficient for bursty traffic
Demand based	According to demand or user request	Useful for variable rate and multimedia traffic	Additional overhead and delay due to reservation process
Random access or contention based	Channel contention when trans- mission packets are available	Suitable for bursty traffic	Inefficient for delay-sensitive traffic

Examples in each category

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

- Course introduction
- Introduction to wireless sensor networks
- Summary and homework
 - Refer to Blackboard

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

