CSE498: Wireless Sensor Network Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

January 19, 2006

- Recap: Introduction to wireless sensor networks
- General network design
- Summary and homework

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Group Project

- Will be decided after the individual projects are decided
- Hands-on components
 - Using ns-2 (or other popular network simulators) to simulate wireless sensor networks
 - Using nesC to program Crossbow wireless sensors

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

In-class Q&A

- When a question is raised
 - A random-number generator
 - I point if you answered it with justifications
 - At least 5 chances in total for each students in the semester
 - The percentage of the correctness of your answers will be considered when your final grade is marginal
- Two major purposes
 - Group-based discussion
 - More efficient in-class learning: learning pattern

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Grading

- In-class Q&A (5%)
- Homework: 10%
- Individual project (30%)
 - Presentation: 10%
 - A survey paper: 20%
- Take-home exam (15%)
- Group Project (30%)
 - Presentation: 10%
 - Demo: 10%
 - Report: 20%

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

WSN Communication Architecture

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Network Layer Schemes

SMECN

- Creates a subgraph of the sensor network that contains the ME path
- Flooding
 - Broadcasts data to all neighbor nodes regardless if they receive it or not
- Gossiping
 - Sends data to one randomly selected neighbor
- SPIN
 - Sends data to sensor nodes only if they are interested (ADV, REQ, DATA)
- SAR
 - Creates multiple trees where the root of each tree is one hop neighbor from the sink; select a tree for data to be routed back to the sink
- LEACH
 - Forms clusters to minimize energy dissipation
 - Scalability vs. robustness
- Directed diffusion
 - Sets up gradients for data to flow from source to sink during interest dissemination

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Data Link Layer

Category	Resource sharing mode	Application domain	Disadvantages
Dedicated assignment or fixed allocation	Pre-determined fixed allocation	Appropriate for continuous traffic and provides bounded delay	Inefficient for bursty traffic
Demand based	According to demand or user request	Useful for variable rate and multimedia traffic	Additional overhead and delay due to reservation process
Random access or contention based	Channel contention when trans- mission packets are available	Suitable for bursty traffic	Inefficient for delay-sensitive traffic

Examples in each category

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

You should now be able to ...

- Describe what a wireless sensor network is;
- List major application domains of wireless sensor networks;
- Discuss the WSN communication architecture and its design factors

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

- Recap: Introduction to wireless sensor networks
- General network design
- Summary and homework

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

- Modeling
- Design
- Deployment
- Performance Evaluation

Modeling

- Various levels of modeling
 - Node-level
 - Process models
 - LAN-level
 - Resource sharing models
 - Network-wide level
 - Switching models

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

- Modeling
- Design
- Deployment
- Performance Evaluation

Node-level Modeling

Pipeline model: a multi-stage switch or ?

- A producer block that sends bytes to a consumer block via a FIFO
 - FIFO suspends the producer or consumer as necessary
- Problem
 - Given processing speeds of stage 2 and stage 3, find out the FIFO size to achieve a certain average overall processing speed or throughput of the stage2 and stage 3

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

An Example of Node-level Modeling Modeling Deployment Performance Evaluation

- The consumer block (stage 3) will consume exactly one byte every 100 ns unless it is suspended waiting for input from the FIFO.
- The producer block (stage 2) produces between 1 and 19 bytes every 1000 ns unless it is suspended waiting to write to the FIFO.
- Determine the size of the FIFO needed to sustain a throughput of 1 byte per 110ns or 110 ns per byte

- Modeling
- Design
- Deployment
- Performance Evaluation

LAN-level Modeling

- Resource sharing models
 - Time-shared
 - Medium-shared
- Performance measures
 - Waiting time
 - Blocking probability
 - Fair resource utilization

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

- Modeling
- Design
- Deployment
- Performance Evaluation

LAN-level Modeling

- What are the factors affecting the performance?
 - The number of users
 - The pattern of usage
 - The amount of resources
- Queuing theory

Network Design Cycle Modeling Pesign Network-wide Level Mocephyment Performance Evaluation

- Circuit switching networks
- Packet switching network
- Performance measures
 - E2E delay
 - Throughput
 - Utilization
 - Blocking probability
 - Losses

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Network-wide Level Mochenoment Company Performance Evaluation

- What are the factors affecting the performance?
 - Topology
 - Routing mechanisms
 - Traffic patterns
 - QoS requirements
 - Network resources

Network Design Cycle

Modeling

- Modeling
- Design
- Deployment
- Performance Evaluation
- Bridge the gap or setup relationship between:
 - What does modeling tell us?
 - What are the user requirements or design goals?

Design

Network Design Cycle A Construction of the state of the s

Performance

Round-trip delay Throughput Reliability

Hosts & Networks

Security Authentication Billing

Functionality

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

- Modeling
- Design
- Deployment
- Performance Evaluation

User Requirements

- Timeliness and interactivity
- Reliability and determinism
- Quality and tweakability
- Adaptability, robustness, and autoconfigurability
- Security and manageability
- Affordability
- Coverage and scalability
- Expandability and migration

Instructor: Dr. Liang Cheng CSE498: Wireless Sensor Network Design

- Modeling
- Design
- Deployment
- Performance Evaluation

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

- Modeling
- Design
- Deployment
- Performance Evaluation

Deployment Phases

- Simulations
 - Analytical models, e.g., queuing models with closed form or numerical solutions
 - Simulation experiments, e.g., discrete-event simulation with statistical results
- Emulations
 - Trace-driven simulation
- Experiments
 - Empirical measurements
 - Instrumented code and network monitoring
- Deployment for evaluations
 - Time required, accuracy, trade-off evaluation, cost, saleability

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

- Modeling
- Design

Deployment

Performance Evaluation

Performance Evaluation Per

- What goals could be achieve in this?
 - System tuning guide
 - Identifying bottleneck(s)
 - Capacity analysis
 - Sensitivity study
 - Configuration planning and trade-offs
 - Detecting problem areas
 - Benchmarking

- Modeling
- Design
 - Deployment

Performance Evaluation

Performance Evaluation Des Performance Evaluation

- How to analyze and interpret results?
 - Results are random
 - Statistical techniques needed to compare results
- When to conduct it?
 - Architecture/system design
 - Detailed design and implementation
 - Operation

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

- Recap: Introduction to wireless sensor networks
- General network design
- Summary and homework

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

You should now be able to ...

- Describe the network design cycle;
- List various levels of network modeling and their performance measures and the factors affecting the performance;
- List different deployment phases;
- Identify goals and time to conduct performance evaluations.

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

 James D. McCabe, Practical Computer Network Analysis and Design, Morgan Kaufmann, 1998

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design

Homework (Due 01/23)

- I.1 For each category of the WSN applications mentioned in the slides #11, identify a NSF/DARPA funded project, list its website, and provide a halfpage summary about the project in your own words.
- 1.2. List three candidate topics for your individual project and the reasons why you are interested in these topics.
- Paper reading homework: Briefly read the SampleSurveyPaper.pdf available at the Blackboard System, which will be used as a template for your individual project survey paper.

Instructor: Dr. Liang Cheng

CSE498: Wireless Sensor Network Design