Modeling the Energy Consumption of Blockchain Consensus Algorithms

July 30, 2018

Ryan Cole
Liang Cheng

CSE Department
Lehigh University

Acknowledgment
Huan Yang
Background

Blockchain for Internet of Things Applications
- Smart cities / communities
- Smart transportation systems

Advantages
- Distributed trust via data immutability
- Resilient system by distributed data storage
Energy Consumption Issues of using Blockchain for IoT Applications

- Hundreds or even thousands of non-leaf nodes and/or ad hoc nodes

Criticisms of blockchain technologies, particularly Proof-of-Work-based systems

- Digiconomist estimates that a single Bitcoin transaction uses over 800 kilowatt hour
Collecting real-world data and modeling the energy consumption of both PoW and non-proof-of-work coins and associated consensus algorithms

- The size of the network
- The number of messages sent per transaction
- The computing cost of such a consensus protocol

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Energy used to communicate between nodes</td>
</tr>
<tr>
<td>e</td>
<td>Energy for a machine to validate a transaction</td>
</tr>
<tr>
<td>f</td>
<td>Average transaction fee</td>
</tr>
<tr>
<td>h</td>
<td>Network hashrate</td>
</tr>
<tr>
<td>o</td>
<td>Average confirmation time for a transaction</td>
</tr>
<tr>
<td>t</td>
<td>Number of transactions in the last 24 hours</td>
</tr>
<tr>
<td>v</td>
<td>Energy to validate a transaction locally (Stellar)</td>
</tr>
</tbody>
</table>
Consensus Algorithms

Proof of Work

• The original blockchain consensus algorithm

Ripple Protocol Consensus Algorithm

• A customized solution to the Byzantine Generals Problem

Stellar Consensus Protocol

• Federated Byzantine Agreement (FBA) using open membership and quorum slices
Proof of Work

- Full nodes must solve a complex mathematical puzzle in order to be able to verify a group of transactions included in a block.
- In order to mine a block, a full-node miner must guess a nonce for the block.
- Once a block is mined the miner node will broadcast the block to the network for its validation by the rest of the network.
Ripple Protocol Consensus Algorithm

- Ripple divides voting into rounds
- Initially, each node collects all transactions that it has seen that have not yet been applied and then publishes them in what is known as a “candidate set”.
- Each node collects the candidate sets and votes on the validity of the transactions.
- All transactions that receive more than a certain percentage of “yes” votes proceed to the next round, if applicable.
- In the final round, at least 80% of the nodes must vote yes on each transaction for it to be verified.
- After this round, all transactions that have reached this threshold are added to the public ledger.
Stellar Consensus Protocol

- A quorum is a set of nodes sufficient to reach an agreement.
- Stellar also utilizes quorum slices, which is a subset of a quorum that can convince another node of agreement.
- Each node decides upon a group of nodes that it trusts, which forms the node’s quorum slice.
- There are two conditions for a node to accept a transaction
 - the node must have never accepted a conflicting transaction;
 - a large enough portion of the node’s quorum slice must also vote for or claim to accept the transaction.
Data Collection

Online Data Scraping

- Proof-of-work coins from cryptocurrency statistics available online, including Bitcoin, Ethereum, Litecoin, Monero, and Vertcoin.
- For each coin, we collected daily data on the number of transactions, the difficulty, hashrate, mining profitability, and price.
- Using Digiconomist formula to estimate each coin’s daily energy usage.

Testbed

- RPCA & SCP: energy consumption measured by Yokogawa power meter.
Modelling Results (1)

PoW

- LASSO (Least Absolute Shrinkage and Selection Operator) regression model
- Estimates the energy usage of a cryptocurrency in kilowatt hours with 92% accuracy

\[e = 8.987e^{-12}h + 1.041e^7f + 15.02t - 1.375e^4o \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Energy used to communicate between nodes</td>
</tr>
<tr>
<td>e</td>
<td>Energy for a machine to validate a transaction</td>
</tr>
<tr>
<td>f</td>
<td>Average transaction fee</td>
</tr>
<tr>
<td>h</td>
<td>Network hashrate</td>
</tr>
<tr>
<td>o</td>
<td>Average confirmation time for a transaction</td>
</tr>
<tr>
<td>t</td>
<td>Number of transactions in the last 24 hours</td>
</tr>
<tr>
<td>v</td>
<td>Energy to validate a transaction locally (Stellar)</td>
</tr>
</tbody>
</table>
Modelling Results (2)

Ripple Protocol Consensus Algorithm

\[e = n \times t \times 5.05e^{-4} \]

Stellar Consensus Protocol

\[e = n \times t \times 1.914e^{-6} \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Energy used to communicate between nodes</td>
</tr>
<tr>
<td>e</td>
<td>Energy for a machine to validate a transaction</td>
</tr>
<tr>
<td>f</td>
<td>Average transaction fee</td>
</tr>
<tr>
<td>h</td>
<td>Network hashrate</td>
</tr>
<tr>
<td>o</td>
<td>Average confirmation time for a transaction</td>
</tr>
<tr>
<td>t</td>
<td>Number of transactions in the last 24 hours</td>
</tr>
<tr>
<td>v</td>
<td>Energy to validate a transaction locally (Stellar)</td>
</tr>
</tbody>
</table>
Conclusion and Future Work

Linear regression models provide reference estimations of the energy consumption impact in designing blockchains for IoT systems.

Future research

- Impact of sharding blockchain networks on energy consumption
- Trade-offs between the energy usage and the transaction time on large-scale blockchains

Nonlinear models