## Modeling the Energy Consumption of Blockchain Consensus Algorithms

July 30, 2018

## Ryan Cole Liang Cheng

CSE Department Lehigh University

Acknowledgment Huan Yang



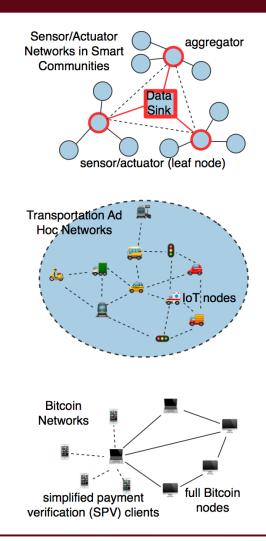
P.C. ROSSIN COLLEGE OF ENGINEERING AND APPLIED SCIENCE

# Background

## Blockchain for Internet of Things Applications

- Smart cities / communities
- Smart transportation systems

## Advantages


- Distributed trust via data immutability
- Resilient system by distributed data storage



# **Research Problem**

### Energy Consumption Issues of using Blockchain for IoT Applications

- Hundreds or even thousands of non-leaf nodes and/or ad hoc nodes
- Criticisms of blockchain technologies, particularly Proof-of-Work-based systems
  - Digiconomist estimates that a single Bitcoin transaction uses over 800 kilowatt hour





Liang Cheng, Ph.D. http://liangcheng.info IoT Blockchain Workshop July 2018 • Slide 3

# Our Approach

Collecting real-world data and modeling the energy consumption of both PoW and non-proof-of-work coins and associated consensus algorithms

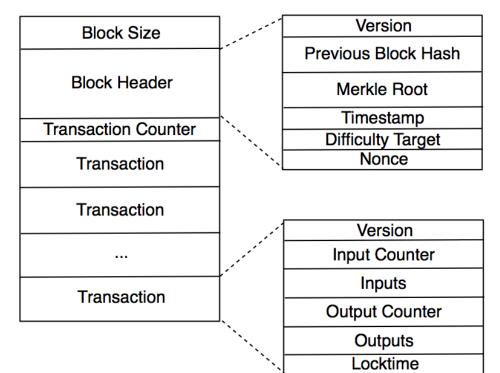
- The size of the network
- The number of messages sent per transaction
- The computing cost of such a consensus protocol

| Variable | Meaning                                            |
|----------|----------------------------------------------------|
| С        | Energy used to communicate between nodes           |
| e        | Energy for a machine to validate a transaction     |
| f        | Average transaction fee                            |
| h        | Network hashrate                                   |
| 0        | Average confirmation time for a transaction        |
| t        | Number of transactions in the last 24 hours        |
| v        | Energy to validate a transaction locally (Stellar) |
|          |                                                    |



# Consensus Algorithms

## Proof of Work


- The original blockchain consensus algorithm
- Ripple Protocol Consensus Algorithm
- A customized solution to the Byzantine Generals Problem
- Stellar Consensus Protocol
- Federated Byzantine Agreement (FBA) using open membership and quorum slices



## PoW

## Proof of Work

- Full nodes must solve a complex mathematical puzzle in order to be able to verify a group of transactions included in a block
- In order to mine a block, a fullnode miner must guess a nonce for the block
- Once a block is mined the miner node will broadcast the block to the network for its validation by the rest of the network





Liang Cheng, Ph.D. http://liangcheng.info IoT Blockchain Workshop July 2018 • Slide 6

## RPCA

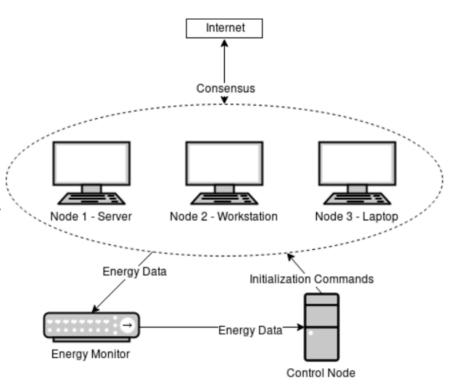
### Ripple Protocol Consensus Algorithm

- Ripple divides voting into rounds
- Initially, each node collects all transactions that it has seen that have not yet been applied and then publishes them in what is known as a "candidate set".
- Each node collects the candidate sets and votes on the validity of the transactions.
- All transactions that receive more than a certain percentage of "yes" votes proceed to the next round, if applicable.
- In the final round, at least 80% of the nodes must vote yes on each transaction for it to be verified.
- After this round, all transactions that have reached this threshold are added to the public ledger.



## SCP

### Stellar Consensus Protocol


- A quorum is a set of nodes sufficient to reach an agreement.
- Stellar also utilizes quorum slices, which is a subset of a quorum that can convince another node of agreement.
- Each node decides upon a group of nodes that it trusts, which forms the node's quorum slice.
- There are two conditions for a node to accept a transaction
  - the node must have never accepted a conflicting transaction;
  - a large enough portion of the node's quorum slice must also vote for or claim to accept the transaction.



# Data Collection

### Online Data Scraping

- Proof-of-work coins from cryptocurrency statistics available online, including Bitcoin, Ethereum, Litecoin, Monero, and Vertcoin.
- For each coin, we collected daily data on the number of transactions, the difficulty, hashrate, mining profitability, and price.
- Using Digiconomist formula to estimate each coin's daily energy usage



## Testbed

• RPCA &SCP; energy consumption measured by Yokogawa power meter



Liang Cheng, Ph.D. http://liangcheng.info IoT Blockchain Workshop July 2018 • Slide 9

# Modelling Results (1)

## PoW

- LASSO (Least Absolute Shrinkage and Selection Operator) regression model
- Estimates the energy usage of a cryptocurrency in kilowatt hours with 92% accuracy

$$e = 8.987e^{-12}\mathbf{h} + 1.041e^{7}\mathbf{f} + 15.02\mathbf{t} + -1.375e^{4}\mathbf{o}$$

| es     |
|--------|
| 0      |
| ion    |
|        |
|        |
| n      |
| rs     |
| lar)   |
| )<br>1 |



# Modelling Results (2)

### Ripple Protocol Consensus Algorithm

$$\boldsymbol{e} = \boldsymbol{n} \ast \boldsymbol{t} \ast 5.05\boldsymbol{e} - 4$$

#### Stellar Consensus Protocol

$$e = n * t * 1.914e^{-6}$$

| Variable | Meaning                                            |
|----------|----------------------------------------------------|
| с        | Energy used to communicate between nodes           |
| e        | Energy for a machine to validate a transaction     |
| f        | Average transaction fee                            |
| h        | Network hashrate                                   |
| 0        | Average confirmation time for a transaction        |
| t        | Number of transactions in the last 24 hours        |
| v        | Energy to validate a transaction locally (Stellar) |
| 1        |                                                    |



# Conclusion and Future Work

Linear regression models provide reference estimations of the energy consumption impact in designing blockchains for IoT systems

### Future research

- Impact of sharding blockchain networks on energy consumption
- Trade-offs between the energy usage and the transaction time on large-scale blockchains

Nonlinear models

