
Detecting Payload Attacks on Programmable Logic
Controllers (PLCs)

Huan Yang∗, Liang Cheng†, and Mooi Choo Chuah‡
Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015

E-mail: ∗huy213@lehigh.edu, †cheng@cse.lehigh.edu, ‡chuah@cse.lehigh.edu

Abstract—Programmable logic controller (PLC) is a critical
component of industrial control system (ICS). Providing hard-
ware peripherals and firmware support for control program (i.e.,
a PLC’s “payload”) written in languages such as ladder logic,
PLCs directly receive sensor readings and control ICS physical
process. An attacker with access to PLC development software
(e.g., by compromising an engineering workstation) can modify
the payload program and cause severe physical damages to the
ICS. To protect critical ICS infrastructure, we propose to model
runtime behaviors of legitimate PLC payload program and use
runtime behavior monitoring in PLC firmware to detect payload
attacks. By monitoring the I/O access patterns, network access
patterns, as well as payload program timing characteristics,
our proposed firmware-level detection mechanism can detect
abnormal runtime behaviors of malicious PLC payload. Using
our proof-of-concept implementation, we evaluate the memory
and execution time overhead of implementing our proposed
method and find that it is feasible to incorporate our method
into existing PLC firmware. In addition, our evaluation results
show that a wide variety of payload attacks can be effectively
detected by our proposed approach. The proposed firmware-level
payload attack detection scheme complements existing bump-
in-the-wire solutions (e.g., external temporal-logic-based model
checker) in that it can detect payload attacks that violate real-
time requirements of ICS operations and does not require any
additional apparatus.

I. INTRODUCTION

In industrial control systems (ICS), programmable logic
controllers (PLC) play a critical role in process automation.
As cyber attacks targeting ICS increase in sophistication, field
devices, such as PLCs, are of particular concerns because they
directly monitor and control physical processes. As shown in
Figure 1, PLCs are typically deployed close to sensors and
actuators, implementing local control actions (i.e., regulatory
control). In addition of utilizing sensor data and controlling
actuators locally, PLCs transmit real-time process data to
operator workstations and execute their commands, facilitating
the realization of supervisory control. Due to the unique and
vital role of PLCs in critical ICS infrastructure [1], they are
one of the major targets of cyber attacks. For example, the
Stuxnet attack managed to silently sabotage centrifuges in a
uranium-enrichment plant by reading and writing code blocks
on PLCs from a compromised engineering workstation [2], [3].
By modifying a PLC’s control program, severe damages (e.g.,
data loss, interruption of system operation, and destruction
of ICS equipment) can be induced by attackers. In [4], it is
shown that malicious code can easily be slipped into PLC
control programs and evade the scrutiny of relay engineers
from both academia and industry. Therefore, it is crucial

Engineering
Workstation

Operator
Workstation

(HMI)

Physical
Infrastructure

Sensor
Actuator

Sensor
Actuator

Sensor
Actuator

Sensor
Actuator

PLC

C
on

tr
ol

 N
et

w
or

k

Corporate
Workplace

C
or

po
ra

te
 N

et
w

or
k

Fig. 1. Architecture of industrial control systems and the role of PLCs.

to devise automated detection method against cyber attacks
launched by modified PLC’s control program.

As PLCs are special-purpose computers interfacing with
various sensors/actuators and providing firmware support to
run control programs (also known as “payload” programs [5],
[6]) that emulate the behaviors of an electric ladder dia-
gram [7], [1], attacks on PLCs can be launched by modifying
or overwriting the PLC payload program. Such attacks are
known as PLC payload attacks. A PLC control program is
typically written by a team of PLC engineers using the suite
of programming languages specified in IEC 61131-3 [8]. Such
a control program is regarded as the payload of a PLC’s
firmware, which controls access to hardware resources (e.g.,
inputs, outputs, and timers) and repeatedly loops through
the payload instructions. An attacker with PLC access (e.g.,
by gaining control of an engineering workstation running
PLC development and monitoring software) can download
malicious payload and gain full control over its sensors and
actuators. In the Stuxnet attack, a component of Stuxnet is
capable of launching payload attacks on PLCs by first infecting
an engineering workstation and then downloading malicious
code blocks [3]. Payload attacks can also be carried out by
an insider (e.g., a disgruntled employee) with the help of
tools such as SABOT [5], which generates malicious payload
based on adversary-provided specifications. Since legitimate
payload relies on PLC programming instructions implemented
by the firmware to carry out control and monitoring tasks, a
malicious payload program can execute any combination of
these instructions to sabotage the physical process.

In this paper, we introduce runtime behavior monitoring
into PLC firmware to detect payload attacks and protect ICS
from severe physical damages. Based on control system spec-
ification provided by control system engineers, we establish
runtime behavior profile of normal/legitimate payload program
in terms of I/O access patterns, network access patterns, as

well as payload program timing characteristics. When a newly
updated payload program is downloaded into a PLC (either
by an attacker or by a trusted control system engineer), its
runtime behavior data is collected by the PLC firmware. When
abnormal behaviors are observed by the firmware, execution
of the payload program is terminated so that abnormal control
signals will not be sent to actuators. The contributions of our
work are as follows:

• We introduce runtime behavior monitoring into PLC
firmware to enable automated detection of PLC pay-
load attacks. In contrast to existing detection methods
based on linear temporal logic, our proposed approach
can identify attacks that violate real-time requirements
of an ICS and does not require the introduction
of bump-in-the-wire apparatus between engineering
workstation and PLCs.

• We present a proof-of-concept implementation of the
firmware-level payload attack detection scheme on
ARM R© Cortex R©-M4F microcontrollers. Our evalu-
ation results show that the proposed approach can de-
tect a wide variety of payload attacks revealed by prior
research [4] and reported cyber-security incidents.

• Furthermore, we evaluate the overhead of implement-
ing the proposed detection method and find that it is
feasible to incorporate our scheme on microcontrollers
used by existing PLCs to detect payload attacks.

II. RELATED WORK

A. Programmable Logic Controller (PLC) and Payload Pro-
gram Execution Model

A programmable logic controller (PLC) is a special-
purpose computer designed to replace relay panels and control
a physical process [7]. Figure 2 presents the general hard-
ware and software architecture of PLCs. There are several
important characteristics that distinguish PLCs from personal
computers [9]: PLCs are designed to operate in harsh industrial
environments and are programmed in relay ladder logic or
other PLC programming languages [8]. In addition, a PLC ex-
ecutes a simple payload program in a sequential fashion. Once
deployed in an ICS, a PLC continuously collects readings from
sensors connected to its inputs, runs the PLC payload program,
and generates outputs that control the physical process. As
shown in Fig. 1, PLC control program can be developed
on engineering workstations using programming software that
supports ladder logic or other PLC programming languages
and downloaded to target PLC for execution. Operator of
an ICS may monitor and control the physical process via a
human-machine interface (HMI), which communicates with
PLCs to receive real-time process data and issue control
commands.

To control and monitor physical process, a PLC’s firmware
implements input and output image tables as well as a program
scan cycle [7], [9]. A program scan cycle consists of input
scan, program scan, output scan, and housekeeping phases,
which are shown in Fig. 3. After system start-up, a PLC
repeatedly walks through the four phases of the program
scan cycle as follows: First, in the input scan phase, the

PLC
HardwareI/O Timer Counter CPU Memory Communication

FirmwareInput image table Output image tableDriver library

Control
logicPLC payload/control program

Fig. 2. General PLC hardware and software architecture.

PLC firmware samples the I/O pin values and writes them
into the input image table. Then, in the program scan phase,
instructions in the payload program are executed one by one
using values stored in the input image table. Output values are
generated during this phase and written into the output image
table. Next, in the output scan phase, values in the output
image table are transferred to the external output terminals,
making control actions specified in the payload program take
effect. Finally, in the housekeeping phase, internal checks on
memory and system operation are performed. Additionally,
communication requests originated from other hosts (e.g., the
HMI) or generated by the payload program itself are also
serviced before the next program scan cycle starts.

B. PLC Ladder Logic

Many widely-used PLC programming languages are stan-
dardized in IEC 61131-3 [8] and ladder logic is the most
commonly used one [9] since it is straightforward to control
system engineers who prefer to define control actions in terms
of relay contacts and coils. Instructions specified by ladder
logic have their own symbolic representation. A PLC payload
program written in ladder logic has one or more ladder-
formatted schematic diagrams. Within each diagram, ladder
logic instructions are organized into rungs. Each rung may
contain multiple ladder logic instructions, which are evaluated
from left to right. Instructions on the left of a rung test
input conditions or outputs generated by other rungs, and
instructions on the right generate rung outputs. Multiple input
condition checks can be placed in tandem, and the input logic
evaluates to true if and only if all input conditions are true.
Parallel branches can be used on a rung to accommodate
more than one input condition combinations. The rung logic
is evaluated to true as long as one of the branches forms a
true logic path. When multiple output branches are present on
a rung, a true logic path controls multiple outputs.

Fig. 4 shows a sample subroutine of a ladder logic program
consisting of three rungs. The “XIC” instruction on the first
rung examines if an input is true. If so, the instruction evaluates
to true. The “OTE” instruction energizes a specified output bit.
Input condition of the first rung first checks if input bit I:0/4 or

Program
start-up

Input
scan

Program
scan

Output
scan

House-
keeping

Fig. 3. PLC payload program execution model.

I:0/4

I:0/3

I:0/0 O:2/1

O:2/2

Jump To Subroutine
JSR

XIC

OTE

SBR File Number U:7

END

Fig. 4. A sample ladder logic program with three rungs.

I:0/3 is true and then checks if I:0/0 bit is true. The output of
this rung controls both output bits, i.e., O:2/1 and O:2/2. The
second rung’s input condition is always true, so the subroutine
in file U:7 is executed. Note that the subroutine is essentially
another ladder logic diagram. When the subroutine returns, the
second rung completes and the third rung is evaluated, which
signals the end of the payload program. Note that hierarchical
addressing is used in ladder logic program to specify the
data type, slot number, and bit position of PLC data and
peripherals [9]. For example, I:0/4 is the fifth bit of binary
input slot 0 (with the first bit being I:0/0). For analog I/Os, the
hierarchical address is slightly different. For example, O:2.0
is an analog output on the output module installed on slot 2,
and the output value is written to the first (zero-indexed) word
of its allocated memory.

Ladder logic provides a wide range of instructions for
PLC engineers to specify control actions. Bit instructions
examine status of individual input/internal bit or control a
single output bit. Word instructions, such as mathematical
operations, data transfer, and logical operations, operate on
data words or registers. Program control instructions, such
as subroutine invocation and return, control the execution
flow of the payload program. For control program of large
and complex ICS, subroutines are frequently used to better
organize the instructions and enhancement maintainability. In
addition, communication instructions allow a PLC to commu-
nicate with other hosts via a particular ICS network protocol.
From the perspective of PLC control program development, a
malicious payload is essentially a combination of legitimate
PLC programming instructions causing disastrous impacts on
an ICS. In this paper, we focus on detecting payload attacks
implemented via ladder logic, but the proposed techniques are
applicable to attacks written in other languages [8] as well
because different PLC programming languages can be used to
implement the same control system specifications [9].

C. Firmware vs. Payload Attacks

As revealed by Fig. 2, both the PLC firmware and its
payload program can become the target of cyber attacks. An
attacker can reverse-engineer and modify the firmware on a
PLC to launch firmware attacks. In this case, even though
a legitimate payload program is downloaded to the PLC, its
execution will still be monitored and/or intercepted by the
modified firmware. In [10], a rootkit is developed on the
CODESYS PLC runtime to intercept I/O operations of the
payload program. When the payload wants to read or write
a certain I/O pin, interrupt handler installed by the attacker
is called first, within which the attacker can reconfigure the
I/O pins or modify values to be read/written. In [6], a more
advanced rootkit is developed for an Allen Bradley Compact-
Logix PLC firmware. In addition to intercepting PLC inputs

and outputs at the firmware, it incorporates physical-process
awareness and always presents modified sensor measurements,
hoaxing ICS operator in front of the HMI to think that the
system runs normally.

Firmware attacks typically requires detailed knowledge on
target PLC’s hardware components and reverse-engineering
of its firmware because PLCs are closed-source embedded
devices [11]. An attacker needs to install the rootkit on PLCs
either via the built-in remote firmware update mechanism or
by loading it via JTAG interface [6]. For firmware update
process protected by cryptographic means (e.g., certificate in
the X.509 standard), it is hard to install a modified version of
the firmware on the PLC. Alternatively, an attacker can load
modified PLC firmware via JTAG interface. However, such an
approach will require physical access to the PLC and possibly
disassembling it.

PLC payload attacks, on the other hand, are much easier
to launch. An insider with proper privileges can easily down-
load (e.g., a disgruntled control system engineer) a malicious
payload program. As shown in Fig. 1, such an insider may
download a malicious payload program via the engineering
workstation to one or multiple PLCs. Integrity checks on PLC
payload program cannot effectively prevent such attackers
from downloading malicious payload because warnings on
payload program changes can always be overridden once
proper privileges are acquired (e.g., a password allowing
engineers to repeatedly download revised payload program for
development and debugging purposes). Alternatively, sophis-
ticated cyber attacks, such as Stuxnet [2], [3], may include
payload attack as a component to induce physical damages
on ICS. Partial knowledge on the physical process can be
sufficient to create a malicious payload using automated tools
such as SABOT [5]. In [4], a small-scale challenge shows
that malicious code snippets are likely to evade the scrutiny
of code reviewers. Therefore, it is necessary to develop auto-
mated payload attack detection mechanisms to protect physical
infrastructure from PLC payload attacks.

D. Payload Attack Detection

As payload attacks can easily be launched by insiders
or from compromised engineering workstations, several tech-
niques that detect payload attacks have been proposed. In [12],
a bump-in-the-wire device, called PLC guard, is introduced to
intercept the communication between an engineering work-
station and a PLC, allowing engineers to review the code
and compare it against previous versions. Features of the
PLC guard include various levels of graphical abstraction and
summarization, which makes it easier to detect malicious code
snippets. In [13], an external runtime monitoring device (e.g., a
computer or an Arduino microcontroller board) sits alongside
the PLC, monitors its runtime behaviors (e.g., inputs, outputs,
timers, counters), and verifies them against ICS specifications
converted from a trusted version of the PLC payload program
and written in interval temporal logic. It is shown that func-
tional properties of payload program can be verified against
ICS specifications, but the types of payload attacks that can
be detected by this approach remain to be explored.

In [14], [15], a trusted safety verifier is introduced as a
bump-in-the-wire device that automatically analyzes payload

program to be downloaded onto a PLC and verifies whether
critical safety properties are met using linear temporal logic.
However, linear temporal logic implicitly assumes that states
of the systems are observed at the end of a set of time intervals.
In the case of PLC payload program, snapshot of system states
is taken at the end of each program scan cycle. As a result,
real-time properties that does not span multiple program scan
cycles cannot be checked by the trusted safety verifier. For
example, a legitimate payload program is required to energize
its output immediately when a certain input pin is energized.
An attacker can inject malicious code and prolong the program
scan cycle to cause real-time property violation while evading
code analytics based on linear temporal logic. In [16], the
timer on-delay (TON) ladder logic instruction is modeled
using linear temporal logic. The TON instruction starts a
timer when its input condition evaluates to true and energizes
its output (i.e., the “Done” bit) when the timer reaches the
preset value. It is shown in [16] that TON behavior can be
approximated with the combination of liveness and fairness
properties: Either TON instruction is not used or TON output
bit will eventually be energized. However, linear temporal
logic cannot verify whether the TON output bit is energized
at the exact program scan cycle designated by control system
engineers. Therefore, such an approximation does not capture
critical real-time requirements of ICS.

In this paper, we introduce runtime behavior modeling and
monitoring of PLC payload in PLC firmware. Our proposed
approach complements existing detection techniques and can
detect violations of ICS real-time properties. In addition, our
proposed approach does not require the introduction of any
external apparatus that may introduce new vulnerabilities into
ICS.

E. Runtime Behavior Monitoring for Anomaly Detection

The idea of detecting abnormal program behaviors by
monitoring its execution at runtime has been applied to an
rich array of computer systems. Runtime behavior monitoring
techniques on operating systems such as Windows, Linux, and
Android are reviewed in [17], [18]. However, these techniques
cannot be directly applied to PLCs since PLCs are closed-
source systems [11] running specialized firmware and payload
programs. System calls utilized by existing techniques are not
available in PLC systems. In [19], a runtime anomaly detector
hardware design is proposed for embedded systems, which

TABLE I. CONTROL SYSTEM SPECIFICATIONS VS. LEGITIMATE PLC
CONTROL LOGIC

Control System Specification Legitimate Control System Logic

Digital I/O pins, values &
functionality Control logic of binary inputs and outputs

Analog I/O pins, value
ranges, & functionality

Sensor output and actuator input ranges, control
logic of analog I/Os

Legitimate sequences and
timing relationships of I/O
operations

Control logic of I/Os, possibly controlled by
counters and timers

Network data packet and
timing relationships

Data from network for local control tasks or data
required by remote hosts (e.g., HMI or other
networked PLCs), and real-time requirements for
these network events

Network commands and
timing relationships

Control tasks mandated by operator workstation
and their real-time requirements

eliminates performance overheads incurred by software-based
runtime monitoring methods. In [20], a timing-based PLC pro-
gram anomaly detector is designed. An external data collector
is deployed to collect program execution time measurements
and detect unauthorized modifications to the PLC system.
In [21], runtime behaviors are monitored via dedicated hard-
ware performance counters, which are not widely available in
microcontrollers utilized by PLCs. To detect payload attacks
in existing ICS, runtime behavior monitoring technique must
utilize only the resources available on microcontrollers used
in existing PLCs and does not require external apparatus (e.g.,
data collector proposed in [20]).

III. SYSTEM OVERVIEW

A. Adversary Model

A malicious payload may be directly downloaded by an
insider with PLC programming privilege. For instance, the
insider can be a PLC programmer responsible for deploying
tested PLC payload program. However, he/she downloads a
different payload, which may be written anew or modified
from the tested version. Since such an attacker has proper
privilege to program PLCs, integrity checks on PLC payload
program can be overridden and will not prevent malicious
payload from being downloaded. For an external attacker,
security flaw of other ICS components may be exploited
to gain access to an engineering workstation, which allows
he/she to download malicious payload. For example, in the
Stuxnet attack [2], many potential attack vectors, including the
PLC programming environment, are exploited to eventually
compromise a PLC-connected engineering workstation.

We assume that the attacker is not capable of changing
the PLC firmware, which requires either attacking the cryp-
tographically protected firmware image or loading modified
firmware directly via JTAG interface. Therefore, firmware-
level detection mechanism proposed in this paper is not
tampered by the attacker. The goal of a payload attack is not
limited to blocking legitimate outputs, causing system inter-
ruption, and destruction of system equipment. Sophisticated
attacks such as the PLC blaster worm [22] which replicates
itself to other PLCs can also be launched. However, such
attacks download a payload program that are significantly
different from the legitimate version in terms of program size
and functionality, which can be identified by human operator
monitoring the control system. In this paper, we consider
stealthy payload attacks that are modified from legitimate
payload programs. Such attacks preserve certain legitimate
payload properties (e.g., always sending sensor readings re-
quested by HMI) while carrying out malicious tasks.

B. PLC Program Development Process and Control System
Specifications

To develop PLC payload program for an ICS, the following
process is typically adopted by PLC engineers:

1) Specification Formulation. Control tasks to be carried
out by a PLC are identified and input/output signals
required by these tasks are defined. The logical
sequence of operations for the PLC are specified,

e.g., in the form of sequence table, flow chart, or
relay schematic [9].

2) PLC Program Development. At this step, PLC pro-
gram is developed based on the formulated specifi-
cations. Although an engineering team usually has
its own set of guidelines and best practices on pro-
gram organization and documentation, the generated
PLC payload always aims to accurately implement
the specifications. At this stage, an attacker (e.g.,
a disgruntled control system engineer) may collect
legitimate payload program and modify it to generate
malicious payload.

3) Testing. Before deploying the PLC program, PLC
engineers need to test the program via simulation
or under some test environment. Safety properties
(e.g., a circuit breaker must trip if a fault is detected)
can be provided by system operators and/or iden-
tified during specification formulation. In addition,
different combinations of input values are fed to the
PLC to ensure that correct responses are taken under
different system operation scenarios. Although the
test cases may not be exhaustive (e.g., it is hard
to implement all test cases when analog inputs are
used), important system properties, such as safety and
real-time requirements, should always be validated.

4) Maintenance. After an initial version of the PLC
control program is deployed, the ICS may go through
hardware upgrades and design improvements. Ac-
cordingly, the specifications should be updated and
the PLC program should be revised. After necessary
testing, the new payload is downloaded to the PLC.

In this paper, we assume that control system specifications,
such as the number of I/Os, functionality of each I/O pin, and
possible ranges of I/O values, are available. Such specifica-
tions are usually provided by the control system engineering
team that develops the legitimate payload program. Table I
summarizes the control system specifications required by our
detection mechanism and the corresponding legitimate control
system actions. For instance, when designing the legitimate
payload, a digital output pin may be used to control a circuit
breaker to trip. The engineering team knows whether a “0”
or a “1” corresponds to the “trip” signal, so it is straight-
forward to generate control system specifications describing
the functionality of this output pin. To implement control
operation sequences (e.g., tripping a circuit breaker and then
re-closing it), timers and counters are generally used. When the
legitimate payload program is created, timers and counter must
be properly configured to control the temporal behaviors of the
payload program. These configurations can then be converted
into timing relationships among I/O and network events.

C. Payload Attack Detection at PLC Firmware

Using control system specifications, runtime behavior
model of legitimate PLC payload program is established and
stored in the PLC firmware. The timing relationships between
inputs and outputs, the number of network packets generated
after different control actions, as well as timing relationships
between I/O and network events, are modeled. By modifying
the PLC firmware, runtime behaviors of the payload program

...

...

......

Digital input
terminals

Digital output
terminals

Analog
input

terminals

Analog
output

terminals

I:0/0

HIGH

LOW

Manual reset
energized

Manual reset
de-energized

O:2/8

HIGH

LOW

Energize circuit
breaker (CB)

trip coil

De-energize
CB trip coil

O:3.0

12~15V Charge actuator
battery

I:1.0

0~3V Actuator battery
needs to be charged

12~15V Actuator battery
level is normal

Network Port

Packet counts
(sending)

Packet counts
(receiving)

1, 3

1

Fig. 5. PLC wiring diagram with sample control system specifications for
I/O and network events. Note that wiring of I/O terminals is simplified (digital
ground terminal as well as terminal pairs for each analog I/O are not shown).

(e.g., I/O and network access patterns) are time-stamped and
compared against the established runtime behavior model.
In addition, a backup version of the output image table is
separately stored by the firmware at the beginning of each
program scan cycle. If a certain abnormal runtime behavior is
detected, the backup output image table is loaded to overwrite
the output generated by the payload. As a result, any output
related to the detected abnormal runtime behavior will not
affect the physical system. For PLC payload sending/receiving
network packets, network requests are also blocked when a
runtime behavior anomaly is detected by the firmware.

IV. SYSTEM DESIGN

A. PLC Payload Runtime Behavior Model

Given the control system specifications, it is possible to
create a runtime behavior model for legitimate PLC payload.
Suppose that we need to create control system specifications
for the PLC shown in Fig. 5. In this figure, sample specifi-
cations for I/O terminals and the network port is provided.
We note that timing relationships are not shown in Fig. 5.
The information categorized in Table I allows us to create
the runtime behavior model as follows: First, the number
of (analog and digital) I/Os and their feasible values are
determined. For instance, for digital input I:0/0 in Fig. 5,
its legitimate values are “1” and “0”. For analog input I:1.0
(note that the notation for analog I/Os is different from that
for digital I/Os as mentioned in Sec. II-B), the legitimate
value ranges are 0∼3V and 12∼15V. In the PLC firmware,
such information can be stored as a table (see Fig. 6 for an
example), with each row storing the legitimate values/ranges
of a particular pin. We call this table the I/O event table.

Next, the number of network packets received or sent by
the legitimate payload are extracted from the specifications.
Since PLC payload program is designed to control physical
process, network packets are typically associated to specific
I/O conditions. For instance, when an alarm signal is energized
to sound a horn, the same alarm signal is usually transmitted
via a network packet to the HMI at the same time. When
a process data request from the HMI is received, the PLC
generates process data response(s) to transmit the requested

I/O Event Table

I/O Event

I:0/0

I:1.0

O:2/8

O:3.0

...
...

...
...

Legitimate
Values/Ranges

1 (HIGH), 0 (LOW)

...

0:3 (0~3V), 12:15 (12~15V)

1 (HIGH), 0 (LOW)

...

12:15 (12~15V)

...
...

Network Event Table

Network Event
Legitimate

Packet Counts
receiving

sending

1

1, 3

Timing Behavior Matrix

Fig. 6. A sample runtime behavior model established based on control system
specifications in Fig.5. The model consists of two tables and a sparse matrix.

data. In the PLC firmware, network event information can be
stored as a table with two rows (see Fig. 6 for an example).
The first row lists the numbers of network packets that can
be received, and the second row lists those that can be sent.
We call this table the network event table. Using the I/O and
network event tables, we are able to model the legitimate
runtime behaviors of I/Os and network port(s) at any particular
time instant.

Then, timing relationships between inputs, outputs, and
network accesses are established. To store these relationships,
a sparse matrix is created in the PLC firmware (see Fig. 6
for an example). We call this sparse matrix the timing be-
havior matrix. Both the rows and the columns of the matrix
are indexed by legitimate I/O and network operations. For
instance, the I:0/0:1 event in the matrix in Fig. 6 represents the
I/O event where digital input pin I:0/0 is set to HIGH. Each
column of the matrix represent a particular payload program
action, whereas the rows with non-zero values represent its
preconditions. For instance, the matrix in Fig. 6 indicates that
there are four preconditions under which a network packet will
be generated and sent by a legitimate PLC payload. Note that
the non-zero value in the matrix represent the maximum time
(in microseconds) within which a column event will occur.

Once all information provided in the control system spec-
ifications is converted into a runtime behavior model, three
tables are stored into the PLC firmware (i.e., the I/O event
table, the network event table, and the timing behavior matrix).
These tables will only be updated if changes to the control
system specifications are made (e.g., additions of new sen-
sors/actuators). When a PLC payload is downloaded to a PLC,
the PLC firmware assumes that its runtime behaviors match
the ones specified in the supplied control system specifications.
Any deviation from the encoded runtime behavior model will
be regarded as an anomaly.

B. Payload Attack Detection at PLC Firmware

Our detection scheme introduces runtime behavior moni-
toring into the PLC firmware and compares the runtime be-
haviors of the currently deployed payload against the runtime
behavior model established from control system specifications.
To implement the proposed detection scheme, the following
modifications to the PLC firmware are incorporated:

1) Logging Access to Input and Output Images: As intro-
duced in Sec. II-A, input image is updated before each run of

the payload program, and output image is updated after each
run. In existing PLC firmware, I/O reads move values from the
input/output image to a designated memory location. When
an output pin is written, value stored in a memory location
is moved to the output image table. To receive/send a packet,
receive/transmit queue is either explicitly (via ladder logic in-
struction) or implicitly (at the end of the housekeeping phase)
queried. To monitor the I/O and network access patterns, we
modify the implementation of PLC firmware to log the system
time-stamp of these operations. This can be achieved by setting
up the memory protection unit (MPU) to enter interrupt when
the user program accesses the input/output images or the
network queues. In existing PLC firmware, a separate system
timer is typically supported. This timer provides the time-
stamps for the I/O and network events to be monitored. If
I/O images are accessed, the interrupt handler decodes the I/O
pin address and log the time-stamp of the operation. Suppose
that the same input pin is accessed multiple times during a
single program scan cycle, only the time-stamp of the first
read operation is logged. For an output pin, both the first read
and the last write operations are time-stamped. For access to
network queues, the number of packets received/sent is logged
and time-stamped. Time-stamps of I/O and network operations
are stored in a separate table (known as the runtime time-
stamp table) in the PLC firmware. Each entry of the table
corresponds to a particular I/O event (e.g., a legitimate I/O
value is observed) or network event (e.g., a legitimate number
of packets are sent).

In our current implementation, the maximum number of
time-stamps logged by the runtime time-stamp table is 10 for
each I/O event. If more than 10 time-stamps are collected,
newly generated time-stamps will be discarded. We log the
time-stamp for the first I/O read operation and last output
operation within each program scan cycle because control
system specifications typically use the observation of an I/O
value on the physical process as precondition. Take the output
pin O:2/8 in Fig. 5 as an example. Even if the payload program
operates on O:2/8 multiple times during a program scan cycle,
it is the last value written into the output image that will
actually take effect. For each legitimate network event, our
current implementation logs a maximum of 20 time-stamps.
Newly collected time-stamps will be discarded if there are
already 20 time-stamps pending in the table.

2) Validating Runtime Behaviors: When time-stamping I/O
and network events, any event that is not included in the
I/O and network event tables is regarded as an abnormal
runtime event. In addition, a separate sparse matrix (known
as the runtime sparse matrix) is created and maintained in
the PLC firmware to keep track of the timing relationships
at runtime. The sparse matrix is also updated in the MPU
interrupt handler. Runtime behaviors specified in the timing
behavior matrix are validated in the output scan phase before
the values in the output image are transferred to external
output terminals. If any of the preconditions specified by the
runtime behavior model are met, the timing relationships are
checked. If an event occurs but none of its preconditions are
active, a runtime behavior anomaly is detected. Take the timing
behavior matrix in Fig. 6 as an example. Suppose that during a
program scan cycle, we observe two occurrences of the event

“Send:1”. For the first time-stamp of “Send:1”, we check the
all the time-stamps for its preconditions. If any of the timing
relationships is met, the corresponding entry in the runtime
sparse matrix is cleared. In the runtime time-stamp table, the
oldest time-stamp for the corresponding precondition event is
removed. If a violation of the timing relationship is detected,
a runtime behavior anomaly is found and the execution of the
payload program should be terminated. Then, for the second
time-stamp of “Send:1”, previously cleared precondition fields
are set if the corresponding entries in runtime time-stamp
table have pending time-stamps. The timing relationships for
“Send:1” are then validated again.

3) Backing Up the Output Image: At the beginning of
each program scan cycle (i.e., in the input scan phase), a
backup version of the output image table is separately stored
by the PLC firmware. Values in this backup image are simply
the output of the preceding program scan cycle. If runtime
behavior anomaly is detected at the current program scan
cycle, the backup image is used to overwrite the output image
generated by the payload program. In this way, output values
corresponding to illegitimate payload program behaviors are
blocked.

4) Canceling Network Send/Receive Requests: There are
two scenarios where network send/receive requests gener-
ated by ladder logic instructions are processed: Network
send/receive requests generated by a payload program are
always processed in the housekeeping phase. To block these
packets, we modify the firmware so that all pending network
requests are cleared in the output scan phase if runtime be-
havior anomaly is detected. Alternatively, a subset of network-
related ladder logic instructions can request the PLC firmware
to service pending network tasks immediately. To prevent
such network access, the implementation of MPU interrupt
handler is further modified to check the preconditions of
requested network operations. Suppose that a network-related
ladder logic instruction is executed, after the network requests
are generated (e.g., four packets will be retrieved from the
receive queue), the firmware first enters the MPU interrupt
handler and checks the preconditions of the requested network
event. If any of the preconditions is met yet the corresponding
timing relationship is violated, the network requests will not
be executed because a runtime behavior anomaly is detected.

It should be noted that our proposed detection scheme can
easily be customized to notify ICS operators of the detection

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

N u m b er of a n al o g o ut p uts

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Ma
xi
m
u
m
me
mo
ry
 s
iz
e
(
k
B)

u n m o difi e d fir m w ar e
m o difi e d fir m w ar e

Fig. 7. Maximum memory utilization of unmodified and modified PLC
firmware running PLC payload programs with different numbers of utilized
analog outputs.

of PLC payload attacks. Suppose an on-site operator is to be
notified, an extra output pin can be energized to set up an
alarm during the output scan phase when runtime behaviors
are examined. It is also possible to send out an alarm message
to a remote HMI during this phase after the runtime behavior
validation is done.

V. EVALUATION

We implement the proposed payload attack detection
method on Texas Instruments TM4C12x ARM R© Cortex R©-
M4F core-based microcontrollers. Payload attacks are written
in ladder logic, which are converted into machine code and
loaded onto the PLC prototype. Hardware resources of the
chosen microcontroller series are the currently active equiv-
alents to the microcontrollers used by existing PLCs [6].
Memory protection unit (MPU) and system timer are avail-
able to implement our proposed detection scheme. Runtime
behavior data collected by the PLC firmware is read from an
Universal Asynchronous Receiver/Transmitter (UART) mod-
ule connected to a PC. We first evaluate the overhead of
implementing the proposed detection mechanism and then its
detection performance.

A. Memory Overhead

Memory overhead of implementing the proposed detection
method comes from both the firmware and payload levels. In
the PLC firmware, runtime behavior model converted from
control system specifications needs to be stored. Extra tables
and sparse matrix are required to time-stamp and keep track of
the runtime behaviors of the currently deployed payload. The
sizes of these matrices and tables will grow as the number
of I/O and network events specified in the control system
specifications grows. In addition, interrupt handler for the
MPU as well as initialization code for the system timer and
MPU need to be added to the PLC firmware. In our prototype,
these firmware modifications translate to about 200 lines of
assembly code (compared to the unmodified PLC firmware
with about 6000 lines of assembly code).

To evaluate whether the memory overhead of our pro-
posed detection mechanism is acceptable, we create payload
programs utilizing different numbers of I/Os and generating
different numbers of network packets. Note that each of these
payload programs generates two types of network events (i.e.,

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

N u m b er of a n al o g o ut p uts

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

Ma
xi
mu
m
ex
ec
ut
io
n
ti
me
 (
s)

u n m o difi e d fir m w ar e
m o difi e d fir m w ar e

Fig. 8. Maximum execution time of PLC programs with different numbers of
utilized analog outputs. All payload programs are executed on both unmodified
and modified PLC firmware.

Medium- or High-Voltage Bus
Voltage and

Current Sensors
Circuit Breaker (CB)

Primary
Transformer

Load
1

Load
2

Load
3

Primary
Transformer

Protection PLC

Feeder #1
Protection PLC

Feeder #2
Protection PLC

Feeder #3
Protection PLC

PLC A

Fig. 9. Sample power substation protection system implemented by multiple
PLCs. Note that our PLC prototype only emulates PLC A.

sending two packets or receiving one packet within each pro-
gram scan cycle) and utilizes 16 digital I/Os. The number of
analog outputs utilized by these payload programs varies from
0 to 16. Each analog output has two legitimate value ranges.
The timing relationships in the control system specifications
all describe preconditions for analog outputs. These payload
programs are then loaded onto our PLC prototype twice: First,
unmodified PLC firmware is used to execute the payload
programs and the maximum sizes of the PLC firmware in
the RAM are logged. Then, PLC firmware with our payload
detection mechanism is used and the maximum firmware sizes
are also recorded. Fig. 7 shows the memory overhead of
implementing our PLC payload attack detection method in our
PLC prototype. For a PLC system with 16 analog outputs, the
memory overhead (compared to unmodified PLC firmware)
is about 1 kB, which translates to a 3% increase in memory
size. This memory overhead is acceptable for existing PLC
systems on the market, which typically have more than 32 kB
of memory [9].

B. Execution Time Overhead

PLC payload program needs to satisfy execution time
requirements in order to control physical process correctly.
If a program scan cycle takes too long to complete, the PLC
will not be able to track the changes of the physical process
and generate control outputs timely. Since our payload detec-
tion mechanism incorporates runtime behavior monitoring and
validations in the PLC firmware, it is necessary the ensure that
execution time of the program scan cycle does not significantly
increase.
TABLE II. ATTACK INSTANCES IMPLEMENTED ON PLC PROTOTYPE

Attack Instance Group Description

Illegitimate analog in-
puts (Group 1, 5 in-
stances)

Scaling factors of analog input modules are modified
by attacker to generate out-of-range input values.

Illegitimate network
events (Group 2, 5
instances)

When trip coils are energized, the attack payload
sends process data to multiple pre-specified destina-
tions. When process data request is received, a packet
containing intentionally modified process data is sent.

Illegitimate I/O event
timing (Group 3, 5 in-
stances)

Trip coils are not energized within 1000 µs when a
voltage/current fault is detected.

Illegitimate network
event timing (Group
4, 5 instances)

Packet containing up-to-date process data is not sent
within 500 µs after process data request is received.

TABLE III. ATTACK INSTANCES AND DETECTION RESULTS

Group/ID 1 2 3 4 5 6 7 8 9 10
1/1 X X X X X X X X X X
1/2 X X X X X X X X X X
1/3 X X X X X X X X X X
1/4 X X X X X X X X X X
1/5 X X X X X X X X X X
2/1 X X X X X X X X X X
2/2 X X × × X X × X × X
2/3 X X X X X X X X X X
2/4 X X X X X X X X X X
2/5 X X X X X X X X X X
3/1 X X X X X X X X X X
3/2 X X X X X X X X X X
3/3 X X X X X X X X X X
3/4 X X X X X X X X X X
3/5 X X X X X X X X X X
4/1 X X X X X X X X X X
4/2 X X X X X X X X X X
4/3 X X X X X X X X X X
4/4 X X X X X X X X X X
4/5 X X X X X X X X X X

To evaluate the execution time overhead of the proposed
detection mechanism, we measure the execution time of the
payload program instances created in Sec. V-A. Each payload
program are executed for 1,000 program scan cycles on both
unmodified and modified PLC firmware. Note that we added
six extra assembly instructions in the PLC firmware to set up
an extra output pin of the prototype PLC: At the beginning
of each program scan cycle, this pin is set to HIGH. At the
end of each program scan cycle, this pin is set to LOW. Fig. 8
shows the maximum execution time of the payload program
instances. The average increase in maximum execution time
is about 65 µs, which is far above the typical execution time
of PLC payload programs (e.g., 1∼10 ms [9]).

C. Detection Performance

To evaluate the detection performance of our proposed
method, our PLC prototype emulates PLC A shown in Fig. 9.
To implement the protection tasks assumed by PLC A, four
analog inputs and two digital outputs are utilized. Our control
system specifications require that both circuit breakers are
tripped within 1000 µs once a voltage/current fault is detected
on either side of the transformer. In addition, when process
data request (sent by a PC emulating an HMI) is received,
a packet containing up-to-date current and voltage readings
must be sent within 500 µs. We create 20 different payload
attack instances, which can be categorized into the four
groups and are described in Table II. Each payload attack
instance is executed for 10 times (each run consisting of 1,000
program scan cycles). Table III shows the detection results
when running the payload attacks on modified PLC firmware.
19 out of the 20 payload attack instances can always be
detected during our evaluation, which shows that our proposed
detection mechanism can help prevent PLC payload attacks
without introducing external apparatus.

One of the attack instances (Group 2, Instance 2) cannot
always be detected. This attack instance either generates ille-
gitimate outputs or transmits modified process data as network
packets. When it sends network packets, it simply modifies
the process data values stored in memory before they are
encapsulated. The preconditions of this network events are still

met and the timing relationships are not violated. Although this
attack instance can sometimes evade our detection, it can be
easily identified by existing detection methods against false
data injection attacks [23].

VI. DISCUSSION

In this paper, we propose incorporating runtime behavior
monitoring and establishing runtime behavior models from
control system specifications to detect PLC payload attacks.
Although our evaluations show that it is feasible to implement
our proposed method in existing PLC firmware and achieve
good detection performance, we note that further enhance-
ments to the proposed method are possible. For instance, it is
possible to encode correlations between I/O events at certain
time instants during the program scan cycle (e.g., by iden-
tifying legitimate I/O combinations in the runtime behavior
model). However, such an enhancement will require overly de-
tailed control system specifications. Control system engineers
may not be aware of all the legitimate I/O combinations when
creating the PLC payload program. Furthermore, the memory
and execution time overhead of such an enhancement will also
increase. Therefore, it remains to be further evaluated whether
other runtime behavior specifications should be included in our
model.

Our current implementation focuses on payload attack
detection instead of mitigation. Although output and network
packets related to abnormal control logic are blocked, the
operations of the ICS may still be affected. As our future
work, we will devise better mitigation strategies for ICS with
different mitigation resources.

VII. CONCLUSION

In this paper, we propose the detection of PLC payload
attacks via runtime behavior monitoring in PLC firmware.
Through modeling and monitoring the runtime behaviors, our
proposed firmware enhancements can detect abnormal runtime
behaviors of malicious payload. Using our proof-of-concept
PLC prototype, we show that the proposed approach can
identify a wide variety of PLC payload attacks revealed by
prior research. In addition, our evaluations show that the ex-
ecution time and memory overhead of the proposed detection
mechanism are acceptable for existing PLC firmware. Our
proposed approach complements existing bump-in-the-wire
solutions in that it can detect payload attacks that violate real-
time requirements of ICS operations.

ACKNOWLEDGMENT

This work is supported by the U.S. Department of Energy
(DoE) under Award Number DE-OE0000779.

REFERENCES

[1] E. R. Alphonsus and M. O. Abdullah, “A Review on the Applications of
Programmable Logic Controllers (PLCs),” Renewable and Sustainable
Energy Reviews, vol. 60, no. Supplement C, pp. 1185–1205, July 2016.

[2] D. Kushner, “The Real Story of Stuxnet,” IEEE Spectrum, vol. 50,
no. 3, pp. 48–53, March 2013.

[3] N. Falliere, L. O. Murchu, and E. Chien, “W32. Stuxnet Dossier,” White
Paper, Symantec Corp., Security Response, vol. 5, no. 6, 2011.

[4] N. Govil, A. Agrawal, and N. O. Tippenhauer, “On Ladder Logic
Bombs in Industrial Control Systems,” arXiv:1702.05241 [cs.CR],
February 2017.

[5] S. McLaughlin and P. McDaniel, “SABOT: Specification-Based Pay-
load Generation for Programmable Logic Controllers,” in Proceedings
of the 2012 ACM Conference on Computer and Communications
Security (CCS ’12), 2012, pp. 439–449.

[6] L. Garcia and S. A. Zonouz, “Hey, My Malware Knows Physics!
Attacking PLCs with Physical Model Aware Rootkit,” in Proceedings of
the 2017 Network and Distributed System Security Symposium (NDSS
’17), 2017.

[7] A. Rullán, “Programmable Logic Controllers versus Personal Comput-
ers for Process Control,” Computers & Industrial Engineering, vol. 33,
no. 1, pp. 421–424, October 1997.

[8] “Programmable Controllers - Part 3: Programming Languages,” Inter-
national Electrotechnical Commission (IEC), International Standard,
February 2013.

[9] F. Petruzella, Programmable Logic Controllers, 5th ed. New York,
NY, USA: McGraw-Hill Education, 2017.

[10] A. Abbasi and M. Hashemi, “Ghost in the PLC: Designing an Un-
detectable Programmable Logic Controller Rootkit via Pin Control
Attack,” in Black Hat Europe ’16, November 2016, pp. 1–35.

[11] L. Cojocar, K. Razavi, and H. Bos, “Off-the-Shelf Embedded Devices
as Platforms for Security Research,” in Proceedings of the 10th Eu-
ropean Workshop on Systems Security (EuroSec’17), April 2017, pp.
1:1–1:6.

[12] J. O. Malchow, D. Marzin, J. Klick, R. Kovacs, and V. Roth, “PLC
Guard: A Practical Defense against Attacks on Cyber-Physical Sys-
tems,” in 2015 IEEE Conference on Communications and Network
Security (CNS), September 2015, pp. 326–334.

[13] H. Janicke, A. Nicholson, S. Webber, and A. Cau, “Runtime-Monitoring
for Industrial Control Systems,” Electronics, vol. 4, no. 4, pp. 995–
1017, December 2015.

[14] S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel, “A
Trusted Safety Verifier for Process Controller Code,” in Proceedings of
the 2014 Network and Distributed System Security Symposium (NDSS
’14), 2014.

[15] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting Industrial Control
Malware Using Automated PLC Code Analytics,” IEEE Security &
Privacy, vol. 12, no. 6, pp. 40–47, November 2014.

[16] O. Rossi and P. Schnoebelen, “Formal Modeling of Timed Function
Blocks for the Automatic Verification of Ladder Diagram Programs,”
in Proceedings of the 4th International Conference on Automation of
Mixed Processes - Hybrid Dynamic Systems (ADPM2000), 2000, pp.
177–182.

[17] N. Delgado, A. Q. Gates, and S. Roach, “A Taxonomy and Catalog
of Tuntime Software-Fault Monitoring Tools,” IEEE Transactions on
Software Engineering, vol. 30, no. 12, pp. 859–872, December 2004.

[18] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A Survey on Malware De-
tection Using Data Mining Techniques,” ACM Comput. Surv., vol. 50,
no. 3, pp. 41:1–41:40, October 2017.

[19] S. Lu, M. Seo, and R. Lysecky, “Timing-Based Anomaly Detection
in Embedded Systems,” in The 20th Asia and South Pacific Design
Automation Conference, January 2015, pp. 809–814.

[20] S. Dunlap, J. Butts, J. Lopez, M. Rice, and B. Mullins, “Using Timing-
Based Side Channels for Anomaly Detection in Industrial Control
Systems,” International Journal of Critical Infrastructure Protection,
vol. 15, no. Supplement C, pp. 12–26, 2016.

[21] X. Wang, C. Konstantinou, M. Maniatakos, R. Karri, S. Lee, P. Robison,
P. Stergiou, and S. Kim, “Malicious Firmware Detection with Hardware
Performance Counters,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 2, no. 3, pp. 160–173, July 2016.

[22] R. Spenneberg, M. Brüggemann, and H. Schwartke, “PLC-Blaster: A
Worm Living Solely in the PLC,” in Black Hat Asia ’16, 2016.

[23] R. Deng, G. Xiao, R. Lu, H. Liang, and A. V. Vasilakos, “False Data
Injection on State Estimation in Power Systems – Attacks, Impacts,
and Defense: A Survey,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 2, pp. 411–423, April 2017.

