
Unix and C Review

These are adapted from Prof Davison’s 2009 Slides

Fall 2012

Accessing The Suns

• Use your ssh client to connect to a CSE/ECE

Sun

– Lehigh students can get a number of ssh-

compatible implementations here for various

operating systems.

• If you have forgotten your CSE/ECE Sun

account password, or don't yet have an

account, send mail to help (at) cse.lehigh.edu

Accessing The Suns

• On our Suns (and Linux) your default shell is
bash (Bourne-Again Shell). Most shells,
including bash, offer:

– tab completion -- just type the first few letters and
press tab to complete the command name

– command history -- use the up and down arrows
to select from your history of past commands

– emacs-like keybindings -- C-a, C-e, C-t, C-b, C-f, C-
p, C-n all same

• When finished, type exit to close the shell.

Hello World

• What does a C version of hello world look like?

• Use an editor to create hello.c

• Compile using gcc hello.c

• Assuming no errors, run using ./a.out

• If no errros, the program will output its greeting

and exit

• How about a version that also says, “This is day X

of the semester.” where X is a variable set earlier?

GNU Emacs

• One of, if not the, most popular and full-featured editors

• Available for most every platform/OS

• More than just an editor; it can also read email, browse
web, etc

• Start emacs by typing emacs (and return) at a shell prompt

• If you are running within X-windows, a new window will
open.

• Otherwise, emacs will run full-screen (within the starting
terminal)

• Menus are available (use F10 to operate if not running
within X-window)

Operating Emacs

• Emacs provides many, many keyboard
shortcuts (as well as longer commands)

• Some combinations of keystrokes have special
meanings

– C-x (spoken as “control x”) means to press and
hold the control key while you press the x key
once

• Example command sequence: C-x C-f will
prompt you for the name of a file to open

Essential Commands

• Quitting Emacs
– C-x C-c -- Exit emacs permanently

– C-x -- Suspend emacs (iconify under X)

• File Commands
– C-x C-f -- Open a file for editing

– C-x C-s -- Save current file to disk

– C-x i -- Insert contents of another file

– C-x C-w -- Write/Save-As

– C-x k -- Close current file

• Handling errors
– C-g -- Aborts the current command

– C-_ or C-x u -- undoes most recent change

Essential Commands

• Searching
– C-s -- search forward

– RET --Abort current search at current location

– Repeated C-s or C-r will search for next location

• Cutting and Pasting
– Backspace(and sometimes C-Backspace) will usually delete letter to

left

– C-d (and often Delete key) will delete letter under cursor

– C-k -- kill to end of line (i.e. cut)

– C-y -- Yank from kill buffer (i.e. paste)

– A sequence of repeated C-k will put all such lines in the same buffer

• Miscellaneous
– TAB -- indent current line (depending on mode)

– C-x 1-- delete all other windows with emacs

Files Created by Emacs

• Emacs will let you open new files

• If you close a file that was modified (without

saving), it leaves a temporary file called

#filename#

• If you edit and save an existing file, emacs

renames the old file as filename~

Using Unix

• Reminder: How to find information about UNIX
commands/utilities?
– Type man <program> for any system command, most

utilities and system calls

– Type info <program> for any GNU utility or program
(and man pages!)

– Check your reference books

– The rest: Google, instructors, etc

• What if you don’t know the name of the
program?
– man –k <keyword>

Using Unix Shells

• When you run a program, e.g. ls or emacs, it typically
takes the place of the shell, and returns you to the shell
when it is finished.

• How can you stop the program if it is not running
properly?

• How can you make it run in the background (so that
you can continue to use the shell)?

• How can you capture the output of a program to a file?

• How do you feed the contents of a file as input to a
program?

• How do you take the output of a program and use it as
the input to a different program?

Finished Using Unix

• Any questions?

• Let’s move on to C

The C Programming Language

• is low-level
– C can directly access structures that are tied to hardware

• is structured
– Structures are used to control the flow of execution (e.g.

while, for, if/then)

• is procedural
– Can re-use code in subroutines (but not object oriented)

• is weakly typed
– You can read data from memory as any type you like

• is staticly typed
– Types are only checked at compile-time

C Versus C++

• C++ is mostly a superset of C

• So what are the major changes?

Major C differences from C++

• No classes or objects – all code is in functions

• C structures cannot have methods

• I/O in C is based on library functions

• No function overloading

• No new or delete (use library functions

instead)

• No reference variables (aliases)

Other Differences

• Variables must be declared at the beginning of
a block, typically at the beginning of the
function

– This is no longer true for C99

• No bool datatype

• No << and >> operators for I/O

• Cannot substitute and, or, and not for boolean
operators &&, ||, and !

• Different approach to strings

Basic C Data Types

• Pretty much the same as in C++

– int (%d, -40), short int, long it, long long int,

unsigned int

– float (%f, 3.14), double, long double

– char(%c, ‘a’), unsigned char, signed char

• Variable names are also similar to C++

– made of letters, digits, underscore

– cannot start with a number

Operators

• Arithmetic operators
– Typical binary operators: + - * / %

– Unary + and -

• Logical (Boolean) operators
– &&, ||, !

• Bitwise operators
– &, |, ^, ~, <<,>>

• Relational operators
– <, <=,>,=>,==,!=

• Conditional operator
– condition> expression1:expression2;

Assignment operators

• Assignment = (e.g. a=4;)

• Modify and assign

– Increment++ and decrement –

– Combinations *=, /=, %=, +=, -=, &=, ^=, |=

• a+=4;

Type conversions

• C permits (and performs) many kinds of type conversions
– Compiling with –Wall should warn you about them if they are

not explicitly cast

– When a float is converted to an int, the value is truncated

– Integer arithmetic generates integer results (even when the
result has a fraction value)

– If any value in an expression is of type float (or double, etc),
then the result will be of that type

• Use of the type cast operator explicityly tells the compiler
to do the conversion (and has higher precedence than
anything but unary +/-)
– (int) 29.55+(int) 21.99 is the same as 29+21 in C

Control Flow

• Loops
while (expression)

statement

for (expr1; expr2; expr3)
statement

do
statement

while (expression);

• The break statement drops control out of the
innermost loop while moves on to the next
iteration.

Control Flow

• Conditionals

if (expression)

statement1

else

statement 2

switch (expression) {

case const-expression: statements

case const-expression: statements

default: statements

}

C Arrays

• Assuming we know the number of elements, we can easily create
and manipulate arrays of items

int i[5];

i[0]=i[1]=1;

i[2]=2;

i[i[2]+1]=i[2]+2;

• Unfortunately, we cannot set all values of an array at once, nor
assign one array to another. Instead, we must iterate through each
item.
int i, a[10];

// clear of copy all values

for (i=0;i++; i<1-_ {

a[i]=0; // or a[i]=x[i];

}

Character Arrays

• An array of characters works the same. We can create and initialize
them with the same syntax

char hello[]={‘h’,’e’,’l’,’l’,’o’,’!’};

• There are many characters that are not letters, numbers or
keyboard symbols. Such characters are represented by an escape
sequence using the backslash.

• Common characters include:
\n a “newline” character (e.g. a line feed)

\b a backspace

\r a carriage return (without a line feed)

\’ a single quote (e.g. in a character constant)

\” a double quote (e.g. in a string constant)

\\ a single backslash

• Character constants always use single quotes.

C Strings

• A string constant is zero or more characters
enclosed in double quotes.
print (“hello world.\n”);

• Strings in C are always terminated internally by a
null character

char word[]={“hello!”};

char word[7]=“hello!”;

char word[]={‘H’, ‘e’,’l’,’l’,’o’,’!’,’\0’};

printf(“She said %s\n”,word);

• Let’s write code to concatenate two strings. Here
is a skeleton that we can fill out.

Using Strings in C

• There are many useful functions to help us use
strings in C.

• For example, since C does not let us assign entire
arrays, we use the strcpy function to copy one
string to another;

#include <string.h>

char string1[]=“Hello, world!”;

char string2[20];

strcpy(string2, string1);

use strncpy

Use Strings in C

• Let us compare arrays

char string3[]=“this is”;

char string4[]=“a test”;

if (strcmp(string3, string4)==0)

printf(“strings are equal\n”);

else

printf(“strings are different\n”);

• This code fragment will print “strings are different”.
Notice strcmp does not return a boolean result.

• And of course the string concatenate function (which
we implemented previously) is available as strcat.

Using Strings in C

• Often you’ll need to know how long a string is
– .e.g to see if a copy of it will fit into a destination buffer

– You can call strlen, which returns the string length(i.e. the number of
characters in it), not including the terminating null:

char string7[]=“abc”;

int len=strlen(string7);

printf(“%d\n”,len);

which might be implemented as

int mystrlen(char str[]){

int i;

for (i=0; str[i];i++);

return i;

}

– We can print strings using printf() with the %s format (e.g.
printf(“%s\n”,string5);).

Structures

• Sometimes it is useful to collect a set of variables together,
and reference them as a unit.
struct date {

int month;

int day;

int year;

};

struct date today;

• In C, this is accomplished with a structure

• Access members of a struct using the period operator.

today.day=2

today.month=4;

Structures

• Can be passed as a parameter (by value) to a function.

• Can have arrays of structs, and structs containing arrays
or other structs.

struct date {

int month;

char monthname[10];

int day;

int year;

struct tm time; // struct inside

};

struct date year[365];

C Libraries Use Structs

• Consider acquiring the current time.

• The time call returns the number of seconds since the Unix epoch (Jan 1,
1970)

• The localtime function converts that to a struct:
struct tm {

int tm_sec; /* seconds after the minute */

int tm_min; /* minutes after the hour */

int tm_hour; /* hour since midnight - [0,23] */

int tm_mday; /* day of the month- [1,31] */

int tm_mon; /* months since January –[0,11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday-[0,6] */

int tm_yday; /* days since Jan 1st*/

int tm_isdst; /* flag for daylight savings time */

};

Pointers

• With pointers, we can manipulate addresses

or contents referenced by the addresses

• We can first declare a pointer variable

int *ip;

• Which tells the compiler that variable ip is of

type (int *) or equivalently that *ip is of type

int.

Pointers

int ip;

• Pointers contain addresses (Note that ip above is
currently undefined). We can set ip to the
address of another variable easily, as in

int i=5;

ip=&i;

• At this point, the contents of ip and the address
of i are the same – they both refer to the same
memory location which contains the number 5.

Pointers

• We can read the contents of the location a pointer points to
by prefixing the pointer name with an asterix, as in

print(“%d\n”, *ip);

• We can also write to the contents of the location that a
pointer points to in the same way

*ip=4;

• So now the value of i will also be 4.
We can also examine the variable ip itself, by casting it to a
type that is usable in printf(), as in”

printf(“%uld\n”,(unsigned long) ip);

• Note that here we will see the 32-bit value of ip (that is the
memory location), and not the value contained in the
location to which ip points.

Parameters in C Functions

• Parameters to C functions are always call-by-value.
– So formal parameters are copies of actual arguments.

• Arrays are passed by using the name of the array, which effectively passes the
address of the array.

– Changes to array elements will affect original array

• Passing the address (using &) of a variable is how we permit functions to modify
the contents of variables

• Must use the *var convention to modify contents of memory address.
void multbytwo(int *x) }

*x=*x*2;

}

void main(void) {

int a=4;

multbytwo(&a);

multbytwo(&a);

printf(“a is %d\n”, a);

}

Pointer Declarations

• As with any other variable types, you can initialize
the value of a pointer variable when you declare
it, as in

int *ip=&i;

• But you cannot initialize the value of the memory
location to which it points, as something like

int *ip=5;

• Will only tell the compiler to use address 5 as the
initial value for ip (and the contents of address 5
are undefined, and probably off-limits to your
program anyway).

Pointer Declarations

• While the compiler thinks these are

equivalent:

int *j;

int* j;

• The later leads to possible problems later,

such as writing

int* i,j;

when you wanted two pointers;

Pointer Arithmetic

• In addition to single variables, pointers can be used to access parts
of an array

int *ip;

int a[20];

ip=&a[3];

• Given that ip points to element 3 of a, we can use pointer
arithmetic to access elements before or after 3, as in

ip++;

*ip=7;

*(ip+1)=8;

*(ip-2)=3;

• Which sets element 4 to 7, element 5 to 8 and element 2 to 3.

String Operations Using Pointers

• mystrcmp() using pointers

char *p1=&str1[0], *p2=&str2[0];

while(1) {

if (*p1!=*p2)

return *p1-*p2;

if (*p1==\0’|| *p2==‘\0’)

return 0;

p1++;

p2++;

}

• mystrcpy() using pointers
char *dp= &dest[0], *sp=&src[0];

while (*sp!=‘\0’)

*dp++=*sp++;

*dp=\0’;

Null Pointers

• A null pointer is a special value that is known to not point
anywhere. Such a pointer is never valid.

• One way to get a null pointer is to use the constant NULL:

#include <stdio.h>

int *ip = NULL;

• And then you can test the value of ip to see if it is a valid pointer, as
in

if (ip!=NULL)

printf(“%d\n”, *ip);

• NULL is implemented as a macro for the number 0, much like the
null character ‘\0’ is also the number 0, but is of type

#define NULL (void*) 0

Null Pointers

• Null pointers are useful as markers to say that the

pointer is not ready for use, or for failure when

you would otherwise return a valid pointer.

• For example, the strstr function returns a pointer

to the first occurrence of one string within

another string , but returns a null if not found.

• Also helps prevent the use of uninitialized

pointers (e..g those with undefined values) which

can cause unrepeatable problems.

Pointers and Arrays

• It turns out that pointes and arrays have much in common.
int a[10];

int *ip;

ip=a;

• It is as if we had written ip=&a[0];

• We can also use array subscription with pointers e.g.

ip[3]==*(ip+3)==a[3];

is also valid and evaluates to true

• This is how the compiler lets us pass arrays as parameters!
– A function call: myfunc(a,10) is actually myfunc(&a[0],10)

– Similarly, the definition void myfunc(int array[], int size) is
treated as if it had been void myfunc(int *array, int size) since
later uses of array[x] are still permitted when array is a pointer.

Strings As Pointers

• Since arrays and pointers can be used
interchangeably, it is common to and manipulate
character pointers as strings

• This means
– Any function declared to take a string (char array), will

also accept a character pointer, since even if an array
is passed, the function actually receives as pointers
the first element of the array.
printf %s actually expects a character pointer

– Many programs extensively manipulate strings as
character pointes and never explicitly declare any
actual arrays

Strings As Pointers

• One caveat in initialization, however

char string1[]=“Hello 1”;

char *string2=“Hello 2”;

string1[0]=‘J’;

string2[0]=‘J’;

• The first assignment is fine; the second may
crash! The first declaration created an array with
the initial contents of “Hello 1”. The second
created a pointer to a string constant, which
might be placed in an area that is read-only.

Pointers and Storage

• Pointers always point to something, even when not initialized. They
are easy to use in this state:

int *x;

[..]

*x = 45;

• Therefore,

• It is essential to keep careful track of pointers, e.g. by using null
pointers

int *x=NULL;

[…]

if (x)

*x=45;

• This is particularly true when using dynamically allocated storage.

Static vs Dynamic Allocation

• “Static” allocation of space is straightforward, with
variables or arrays declared locally or globally.

char myarray[1000];

char *ptr=0;

for (ptr=myarray; (ptr-myarray)< 1000;ptr++)

// do something with each entry of myarray

• Dynamic allocation asks the OS for space for the pointer to
access
#include <stdlib.h>

char *myarray=0, *ptr=0;

myarray=(char *)malloc(1000); // ask for 1000 byte block

for (ptr=myarray; (ptr-myarray)<1000; ptr++)

// do something with each entry of myarray

Why Dynamic Allocation?

• Dynamic allocation (e.g. with malloc) is
– necessary when a function returns a pointer to a

structure created by the function (not just passed in)

struct myobj *create_object(void);

– useful when you don’t know the size of the allocation
at compile time

#include <stdio.h>

int numobjs;

int ret;

ret= scanf(“%d”, &numobjs);

// check return value for error

Why Dynamic Allocation?

• Dynamic Allocation (e.g. with malloc) is

– Useful when you want to make a copy of a

variable/array (esp without wasting extra space)

char *somestring=0, *copy=0;

copy=(char *) malloc(strleng(somestring)+1); /* +1 for ‘\0’ */

strcpy(copy, somestring);

How much to allocate?

• One byte more than the string length if you are copying
a string

• In general, you want the number of objects times the
size of an object

• So if you were allocating an array of ints, rather than
chars

int *ip=(int *)malloc(1000*sizeof(int));

• Sizeof() is a compile-time operator that determines the
size of the data type passed as the parameter

• Note that just like an array, it is easy to have a pointer
(or array index) exceed the allocated space (and cause
problem)

Potential Problem

• Consider this function:

int myfunc(void) {

int *ptr = (int *) malloc(10000*sizeof(int));

if (!ptr)

exit(-1);

[some computation using space in ptr]

return ptr[0];

}

• Important to realize that allocated space persists, even if no
pointers point to it (C does not have automatic garbage collection)
– Forgetting this leads to “memory leaks” causing your program to use

more and more memory

Returning memory

• Eventually, the space allocated via malloc may

no longer be useful to your program. Perhaps

– The program is shutting down

– The pointer to the data is going away

– You want to be able to continue to allocate

memory in the future

Returning memory

• Memory that has been malloc()ed is returned to the OS via
free
#include <stdlib.h>

int *ip=(int *)malloc(1000*sizeof(int));

…

free(ip);

ip=0;

• Note the null pointer assignment

• Note also that free() will succeed even if you
– Free memory that was already free()d

– Free random memory locations that were never malloc()ed

But either one will eventually cause your program to crash.

Functions that return pointers

• When using routines that return pointers, you must
determine who is responsible for the memory

– Possibilities include

• Pointer to a global value – memory never needs to be freed, but
might get overwritten by later function calls (e.g, some
networking code)

• Pointer is to a dynamically-allocated local structure that must be
destroyed or freed with another library call

• Pointer to a dynamically-allocated block of memory that could
later move or be freed independently of this pointer (e.g. strstr())

• In general, you need to know whether
• You are now responsible to free() this memory

• This memory might get overwritten in the future

User-Defined Structures

• We have previously mentioned structs as in

struct complex{

double real;

double imag;

};

• Which defined a new type struct complex

• We could also have declared some new variables of that type in two
ways

struct complex {

double real;

double imag;

} var1, var2;

struct complex var3, var4;

Access to Structs

• We also saw that we could access contents using the
period operator:

c1.real=c2.real+c3.real;

• Pointers to structs work as expected

struct complex *p1, *p2;

*p1 = *p2;

printf(“%lf\n”, (*p1).real);

• Parentheses are needed. Could instead use -> operator

printf(“%lf\n”,p1->real);

which is an equivalent (and common) shortcut

User-Defined Types

• A struct is a user-defined type

• The typedef operator also permits us to use an alternate name for a
defined type.
Thus,

typedef char *StringPtr;

typedef struct complex Complex;

StringPtr string;

Complex c1, c2;

• Would be equivalent to

char *string;

struct complex c1, c2;

• We often define new type names
– For convenience

– To make code more self-documenting

– To make it possible to change the actual base type used for a lot of variables
without declarations of all those variables

