
Detection and Classification of Different Botnet

C&C Channels

Gregory Fedynyshyn1, Mooi Choo Chuah2, and Gang Tan2 ⋆

1 Lehigh University. Bethlehem, PA 18015, USA,
gef209@lehigh.edu

2 {chuah, gtan}@cse.lehigh.edu

Abstract. Unlike other types of malware, botnets are characterized by
their command and control (C&C) channels, through which a central
authority, the botmaster, may use the infected computer to carry out
malicious activities. Given the damage botnets are capable of causing,
detection and mitigation of botnet threats are imperative. In this pa-
per, we present a host-based method for detecting and differentiating
different types of botnet infections based on their C&C styles, e.g., IRC-
based, HTTP-based, or peer-to-peer (P2P) based. Our ability to detect
and classify botnet C&C channels shows that there is an inherent simi-
larity in C&C structures for different types of bots and that the network
characteristics of botnet C&C traffic is inherently different from legiti-
mate network traffic. The best performance of our detection system has
an overall accuracy of 0.929 and a false positive rate of 0.078.

Keywords: botnet detection, network security, host-based intrusion de-
tection system

1 Introduction

Botnets are organized networks of infected (zombie) machines running bot code,
categorized by their use of a command and control (C&C) channel. Through the
C&C channel, a central authority (i.e., the botmaster) may issue commands to
his army of zombie machines and essentially take full control over the infected
machines. These networked armies of zombie machines are typically used to
carry out an array of malicious activities, including, but not limited to, engaging
in spam campaigns, stealing personal or financial information, participating in
click-fraud campaigns, initiating distributed denial of service (DDoS) attacks,
and propagating bot code to other vulnerable machines. Due to the vast amounts
of damage botnets can cause, detecting and mitigating infections are imperative.

⋆ The authors would like to thank Alex Lanstein of FireEye for all around, general
assistance, and Dezhao Song and Xu Li of Lehigh University for help in collecting
some botnet data.



1.1 Background: C&C Channel Types and Fast Flux

Current botnet C&C channels follow a general model: first, a botmaster must is-
sue a command to the botnet; second, the botnet performs activities in response
to the command; and third, the botnet sends the results of performing its ac-
tivities back to the botmaster. There are 3 types of C&C channels, namely (a)
Internet Relay Chat(IRC)-Based C&C channels which use a push-based model,
where the botmaster pushes new commands to the botnet, which then responds
directly to the commands, (b) HTTP-based C&C channels which use a pull-based
model where bots periodically poll the C&C server to request new commands,
(c) Peer-to-peer (P2P) based C&C channels where peer-to-peer communication
is used to proxy commands or to locate a C&C server. P2P-based C&C has the
advantage of not having a single point of failure which is inherent to IRC-based
and HTTP-based bots.

Many botnets use a DNS technique called fast flux to hide their central C&C
server. The idea behind fast flux is to use an ever-changing array of compromised
hosts to proxy messages between the central C&C server and the botnet. The
botmaster continually changes the proxy to which a domain name points and
bots find the C&C proxy by looking up the domain name instead of using hard-
coded, static IP addresses. In the event a proxy is taken down, the central C&C
server will remain intact and continue to issue commands through different prox-
ies, adding a layer of resiliency and stealth to the botnet.

1.2 Botnet Detection Approaches

Most botnet intrusion detection systems (IDS) fall into three categories: host-
based, network-based, and a hybrid of the two. Host-based systems, such as
[1–3] focus on detecting bot infections on an individual host and typically use
signature- or behavior-based methods to correlate network traffic or system
events with known bot signatures or behavioral information. While host-based
IDS’s are able to detect single bot infections, some knowledge of the bot’s behav-
ior must be known in advance. Host-based approaches also benefit from being
easy to deploy and from empowering the end-user directly.

Network-based methods, such as [4–7], attempt to detect bot infections by
correlating similar behaviors among several different hosts on the monitored net-
work. Network-based methods do not need prior knowledge of bot signatures or
behavioral information as they rely on the intuition that hosts infected by the
same bot will behave very similarly to one another whereas uninfected hosts will
exhibit different network characteristics from one another. While network-based
intrusion detection systems (IDS) may not require prior knowledge of a bot’s
behavioral patterns, they do require that multiple hosts in the same network
become infected for the intrusion to be detectable. In addition, network-based
approaches may require additional cooperation of the network administrator and
care must be taken to protect the privacy of the network users.



1.3 Contributions

We adopt a host-based IDS in this paper. Our contributions to the field are:

1. Our system detects not only bot infections independent of packet payload
content, but also types of C&C channels, as knowing the type helps with
deploying appropriate defenses. To identify botnets and their types, our sys-
tem identifies persistent connections (similar to [3]), however, unlike [3] our
system can distinguish the type of C&C channel.

2. A domain-based approach is used to undermine the effectiveness of fast flux
obfuscation techniques. The domain-based approach groups conversations
using full domain names rather than IP addresses, allowing us to deobfuscate
fast flux botnets.

3. A binary classifier to identify IRC-based traffic instead of examining packet
payload content (which consumes much processing power and is not viable
for encrypted IRC traffic) or using popular IRC port numbers (which may
miss IRC traffic on non-popular IRC ports).

Our preliminary evaluation shows that there is a similarity inherent in the
traffic produced in botnet C&C communications that is different from legitimate
network traffic. Additionally, we show that each C&C style shares similarity
across multiple botnet families. This inherent similarity implies that that, unlike
many host-based IDS’s, our model has the potential to discover infections of
previously unknown bots.

The rest of the paper is organized as follows. In Section 2, we discuss related
work. In Section 3, we discuss hypotheses, objectives, and the architecture of our
IDS framework. In Section 4, we present the evaluation of our approach with
the results presented in section 5. In Section 6, we provide some discussions of
why our approach works and in Section 7, we conclude by discussing work that
we intend to carry out in the near future.

2 Related Work

Much work has been done on botnet intrusion detection. Many IDS’s make use
of the observation that the characteristics of botnet network traffic differ greatly
from those of normal network traffic. Many botnet detection systems rely on
anomaly detection to discover bot infections. Anomaly detection simply aims to
detect significant deviations from normal behavior and is typically applied to
network behavior, such as the characteristics of network connections, or system-
level behavior, such as CPU usage or modifications to the file system. The main
advantage of anomaly detection is that it is good at discovering new infections,
as infections are likely to cause changes in the monitored activity no matter what
shape they take.

There are different types of botnet detection methods, e.g. host-based or
network-based systems. The host-based IDS presented in [1] uses anomaly detec-
tion on aggregate network features to identify a deviation from normal activity.



Once identified, a snapshot of the network traffic surrounding the anomaly is
taken. Using the intuition that snapshots containing similar anomalies are likely
multiple instances of a bot responding to the same botmaster command, the
packet payloads leading up to the anomaly are searched for common content to
find the command. Once a suitable representation of the command is found, the
IDS can build a profile which can then be used to detect future occurrences of
the command/response pair. One drawback to this IDS is its need to examine
packet payloads. Many current-day botnets use encryption to obfuscate their
C&C messages. If the botnet uses a complex encryption algorithm for its C&C
channel, this approach will not find any commonality in packet payloads con-
taining botmaster commands.

Another host-based IDS presented by Giroire et al. [3] is based on the intu-
ition that bots must contact their C&C server regularly to receive commands
from the botmaster. Thus, unlike transient connections, the connections to C&C
channels will appear to be persistent. This IDS first builds a whitelist of legit-
imate destinations that the monitored host contacts persistently. If any new
connection is observed that exhibits high enough temporal persistence, an alarm
is raised. If this connection is legitimate, a user can simply add it to the whitelist,
otherwise, the connection is assumed to be malicious and is blocked. The success
of such a system relies on the assumption that the whitelist is easy to maintain
and that it does not need to be updated frequently. The system presented in this
paper also uses the notion of observing persistent connections to detect botnet
C&C channels.

The network-based IDS, BotSniffer [5] exploits the spacial and temporal sim-
ilarity of botnet activity to differentiate between botnet network traffic and legit-
imate network traffic. The inspiration behind BotSniffer is that each bot in the
network will receive a similar or identical command at similar times, and then
perform similar activities in response to the command at similar times. Potential
C&C messages are limited to incoming IRC and HTTP packets. Bot responses
are categorized into two types: message responses, such as sending a message
to an IRC chat room, and activity responses, such as scanning the network or
sending spam emails. Botnet detection works as follows: if at any point in time
a group of hosts is observed to be performing similar activities in response to
similar messages from the same server, they likely belong to the same botnet.

Similar to BotSniffer, BotMiner is a network-based IDS [6]. BotMiner catego-
rizes network activity into communication activity that corresponds to potential
C&C communication and malicious activity that corresponds to scanning, spam-
ming, or binary download events. BotMiner clusters hosts according to similar
communication activities and according to similar malicious activities, then per-
forms cross-cluster analysis to identify hosts that share both similar communi-
cation and malicious activities. While the BotMiner IDS had impressive results,
it still falls prey to the same problem most network-based detection schemes do:
that multiple hosts in the monitored network must be infected to be detected
by BotMiner.



3 Methodology

The goal of our host-based IDS is to be able to detect the presence of botnet
C&C traffic on the monitored host, as well as classify the style of C&C commu-
nication the bot is using, be it IRC, HTTP, or P2P. Furthermore, our detection
system is completely independent of the content of the C&C messages, i.e., we
do not examine packet payloads. The ability to locate and classify botnet C&C
connections depends on a few hypotheses:

1. Botnet C&C communication can be differentiated from botnet non-C&C
communication.

2. Botnet C&C communication can be differentiated from legitimate commu-
nication.

3. The characteristics of different styles of C&C are similar across different
botnet families.

We will use the term conversation to refer to all network packets transmitted
between two unique hosts, based on full domain name when available, otherwise
IP address. We use full domain name to undermine fast flux techniques. As a
botnet C&C channel may use several different servers in a fast flux network to
perform the same service of issuing commands to the bot, we wish to capture
the full C&C conversation, which an IP addressed based approach would fail
to do. Unless otherwise noted, we will refer to a conversation as being between
the monitored host and some destination host. We will also present the results
when IP addresses are used rather than domain names to define conversations at
the end of Section 5 for comparison. We use the observation that while humans
and bots alike may connect to a vast quantity of different destination addresses
during the course of any given day, the number of connections that exhibit long-
term, continual two-way traffic is relatively small. We also use the observation
that a bot must be in continual contact with its botmaster to effectively be a
member of a botnet. Thus, the C&C channel must appear as a conversation that
exhibits continual two-way network traffic over the course of time.

Instead of examining features of aggregate network activity on the monitored
host, we examine features on a per-conversation basis. We begin by dividing the
network traffic for each conversation into time slots of length t. Within each time
slot, we track the total number of bytes and packets sent, the total number of
bytes and packets received, the protocol and the ports used in the conversation.
We then generate instances with which to train the classifier by examining sta-
tistical features contained within an observation window that is n time slots in
length. Thus, the network features as calculated across the time slots in each
observation window generate a single instance of a conversation. Note that a
conversation that lasts longer than n time slots will generate more than one
instance. Let W be the observation window such that W = {si, si+1, ..., si+n−1}
where si is the network traffic contained in time slot i. Figure 1 shows an exam-
ple of the relationship between time slots to the observation window where the
observation window consists of twelve time slots.



Fig. 1. Example showing time slots and observation window

3.1 Data Collection

In this section, we describe the data collection process. As we will eventually be
training a classifier, we need a good set of network traces which are comprised
of legitimate traffic as well as a set of network traces comprised of botnet traffic.

Normal Traces: To collect data with legitimate network traffic, we used a
libpcap-based packet capture program to capture all network traffic on four
hosts for a combined total of 29 days. We do not want to promiscuously capture
network traffic for two reasons. First, we are implementing a host-based IDS, so
we do not want to look at the network activity of other hosts on the network.
Second, we know that the machines used to generate normal network activity
are clean of malware but cannot be certain about other hosts on the network. An
IDS is useless if it is not robust enough to work on any given host. To that end,
we ensured our normal traces covered a wide range of legitimate activity, such as
instant messaging, email communications, web browsing, video streaming, SSH,
IRC, etc.

Botnet Traces: Collecting botnet traffic is a more challenging affair. Our re-
quirements for running bot samples are: to make sure that the generated traffic
is typical of the specific bot and to make sure the bot does not damage any other
hosts on the network. To tackle the first requirement, we ran our bot samples on
a virtual machine running Windows XP SP2 and recorded network traffic using
a libpcap-based capture program. Virtual machines can be easily reverted back
to their pre-infection state, which established a clean baseline from which to run
the bot samples. As the host machine running the virtual Windows XP system
is on the Lehigh University campus network, it is important to make sure it will
not cause any damage to the network. For example, many botnets infect new
users through worms and OS exploits, so outgoing traffic on known exploit ports
was blocked. We believe that our measures were sufficient in avoiding any dam-
age to the Lehigh University campus network. Table 1 shows a summary of the
network data collected. In many cases, data for botnet families were generated
using different variants of the bot. Botnet family identification was performed
using the open source ClamAV antivirus tool [8].



Table 1. Summary of data collected

Trace Type C&C Type Number of Variants Total Length

Normal NA NA 29 days

Ircbot IRC 4 8 days

Agobot IRC 3 18 days

Rustock HTTP 2 5 days

Storm HTTP 4 17 days

Bobax HTTP 4 5 days

Waledac P2P 2 6 days

UDP Storm P2P 1 6 days

3.2 Data Processing

We define persistence in terms of the number of time slots in the observation
window in which two-way communication occurs divided by the total number of
time slots in the observation window. For example, if two-way communication is
only observed in half of the time slots in the observation window, the persistence
of the conversation in that particular observation window is 0.5.

Figure 2 provides a graphical representation of the steps taken to create
instances which can then be sent to the Botnet Classifier for botnet detection:

1. Collect network traffic
2. Split network trace into conversations
3. Divide conversations into observation windows and extract feature values to

create instances
4. Filter out impersistent instances
5. Pass final instance set to Botnet Classifier

Only instances that pass the persistence test are retained. For each retained in-
stance, we compute the following features across the time slots contained within
the instance:

– Standard deviation of bytes sent / byte received
– Standard deviation of packets sent / packets received
– Standard deviation of bytes sent / packets sent
– Standard deviation of bytes received / packets received
– Standard deviation of the number of source ports used
– Standard deviation of the number of destination ports used
– Average number of bytes sent
– Average number of bytes received
– Average number of packets sent
– Average number of packets received
– Average number of TCP packets transmitted
– Average number of UDP packets transmitted



Network Trace

Conversation 1

Conversation 2

.

.

.

1. Collect Network
Traffic

2. Split into
 Conversations

3. Extract features to 
generate instances

4. Filter out impersistent
 instances

.

.

.

Instance 1

Instance 2

Instance 3

Instance 4

Instance 5

Instance 1

Instance 3

Instance 4

Instance 5

Instance 1

Instance 2

Instance 3

Instance 4

.

.

.

5. Pass final instance set
to Botnet Classifier

.

.

.

Fig. 2. Instance generation steps

– Average number of IRC packets transmitted

– Persistence value

Furthermore, let p be the persistence threshold. If the persistence value calcu-
lated for an instance of a conversation is less than the persistence threshold, the
instance is considered to be transient, and therefore not a likely candidate for
a potential C&C channel. A conversation that persists over time may produce
some instances that do not exceed the persistence threshold. Such a situation
may arise from a user shutting down her machine or losing her Internet connec-
tion. Thus, we decide to filter out these impersistent instances as they do not
accurately reflect the true behavior of the conversation that our botnet classifier
is concerned with.

Through experimentation, we found that t = 600 seconds (10 minutes),
n = 24 time slots (4 hours), and p = 0.6 produces the best results. As our
data clearly spans more than 4 hours, we can make use of a sliding observa-
tion window to generate multiple instances for a single conversation. Defining
instances based on observation windows has some benefits. Conversations can
theoretically persist indefinitely. Instead of having to store statistics regarding
entire conversations in computer memory, we only need to keep track of a hand-
ful of observation windows. In addition, were there a situation where a legitimate
site becomes hijacked and used for malicious purposes, the observation window
would soon slide past the time slots encompassing the legitimate traffic and be
able to detect the new, malicious behavior.

There are two approaches we can take when determining how far to slide the
observation window, W , to generate the next instance: slide W a single time
slot or slide W n time slots, such that no observation windows overlap. For an
online IDS, it would make the most sense to slide W by one time slot at a time
as overall detection time would decrease. On the other hand, sliding W by n

time slots at a time ensures that there is no overlap from one instance to the
next. Overlapping instances may skew the accuracy of the classifier favorably,
so we present results based on a non-overlapping sliding observation window.
Using a non-overlapping observation window with t = 600 seconds and n = 24
time slots, a 24-hour long conversation can generate at most 6 instances. Using
an overlapping observation window with the same values for t and n, a 24-hour



long conversation can generate at most 20 instances.
Table 2 shows the number of instances generated from the persistent con-

versations using the domain-based approach. Note the relatively low number of
persistent conversations found in each trace compared to the overall number of
conversations. As Table 2 shows, the number of persistent conversations in both
normal and botnet traces is immensely smaller than the total number of conver-
sations. By filtering out all transient conversations, we are left only with likely
C&C conversations. In addition, by disregarding impersistent connections, we
drastically cut down the amount of network traffic we need to analyze, leading
to a more computationally efficient model.

During our evaluation, we split our 89 total days network traffic such that
half (44 days) is used to build the training set and the other half (45 days) is
used to build the testing set, where there is no overlap between the training and
testing data. The number of instances generated for both training and testing
are also shown in Table 2.

Table 2. Summary of instance generation

Trace Type Total Convs Persistent Convs Training Instances Testing Instances

Normal 8,662 98 95 128

Ircbot 377 31 57 89

Agobot 32 4 17 10

Rustock 181 7 15 21

Storm 433 18 12 155

Bobax 42,307 24 40 51

Waledac 705 16 60 59

UDP Storm 1341 126 116 194

3.3 IRC Binary Classifier

Calculating the value of the average number IRC packets requires that we know
which conversations are IRC sessions and which are not. While typical IRC
servers are run on ports in the 6667-6669 range, many botnets use other ports
for IRC servers as a way to obfuscate their presence. We did indeed notice
this behavior with several of the bot samples we ran, with one contacting an
IRC server on port 65520. One can examine packet payload content for strings
common to IRC sessions, however any approach that examines packet payload
content would fail if the IRC session is encrypted. Thus, we need a scheme for
detecting IRC sessions that satisfies the following criteria:

1. Must be port independent
2. Must be packet payload-content independent



3. Must be accurate

Our solution was to build a binary classifier to determine whether a conversation
is an IRC session or not. The IRC binary classifier should not be confused with
the botnet classifier, as its aim is to distinguish IRC sessions from non-IRC
session regardless of whether they belong to a bot or a legitimate user. To build
the IRC classifier:

1. Make a copy of our training and testing sets
2. Manually examined our network traces to locate IRC conversations
3. Manually remove encrypted conversations (i.e., unsure if IRC)
4. Set the class label of the instances corresponding to IRC conversations to be

”IRC”
5. Set the class label of the instances not corresponding to IRC conversations

to be ”Non-IRC”

While manually examining network traces to locate IRC conversations is an ex-
pensive process, it only needs to be done once to build an appropriate training
set for building the classifier. We found a J48 classifier to perform best at de-
tecting IRC sessions. We performed sensitivity analysis on our full feature set to
find a reduced feature set for the IRC classifier that gave the best performance:

– Standard deviation of bytes received / packets received
– Standard deviation of the number of source ports used
– Average number of bytes received
– Average number of packets sent
– Average number of packets received
– Average number of UDP packets transmitted

A single conversation can generate several instances according to our scheme,
meaning that it is possible that our IRC binary classifier could classify some
instances of a conversation as being IRC traffic and some instances as not being
IRC traffic. Such a result is not reflected in reality as IRC sessions will continue
to be IRC sessions. Rather than labeling single instances, we decided to label
entire conversations as being IRC or not. Our approach begins by classifying the
instances in each conversation as being instances of IRC traffic or non-IRC traffic.
If the majority of instances in a conversation are labeled as being IRC traffic,
we consider the entire conversation to be an IRC session and update all of its
instances to be considered IRC instances. Similarly, if the majority of instances
in a conversation are labeled as non-IRC instances, the entire conversation is
considered not to be an IRC session and all of its instances are updated to reflect
this. Figure 3 illustrates our IRC binary classification process. The results of our
IRC binary classifier are presented in Table 3. For the IRC binary classifier,
accuracy is defined as the number of correctly classified conversations divided
by the total number of conversations. Using the IRC binary classifier, we are able
to differentiate IRC sessions from non-IRC sessions with an accuracy of 0.977.
Now that we can be fairly confident about which conversations are IRC sessions,
we are able to determine the value of the ”average number of IRC packets”
feature.



Table 3. Results of IRC Classifier on conversations

Classified as → NON-IRC IRC

Non-IRC 151 2

IRC 2 17

IRC Classifier

IRC

Non-IRC

Conversation 2

W1 W2 W3 W4 W5

Conversation 1

W1 W2 W3 W4 W5

Conversation 2

W1 W2 W3 W4 W5

Conversation 1

W1 W2 W3 W4 W5

1. Extract feature values
for each observation window

(i.e, instance)

2. Label instances as belonging 
to IRC conversations

3. Label conversations as IRC
by majority vote of their

instances

Conversation 1 (IRC)

W1 W2 W3 W4 W5

Conversation 2 (Non-IRC)

W1 W2 W3 W4 W5

Fig. 3. Classification of IRC conversations: domain-based

4 Evaluation

We used the Weka Machine Learning Java library [9] to build our classifiers.
During the training phase, all generated instances (see Table 2) are labeled with
one of four class values indicating the type of C&C channel used: NORMAL,
IRC, HTTP, P2P. Labeling is based on prior knowledge of the bots used to
generate network traces. We examined the effectiveness of the two best perform-
ing classifiers, a J48 classifier and a Random Forest classifier [9]. As there was
no overlap in destination hosts for persistent conversations between normal and
botnet traces, testing the classifier on the generated test instances is equivalent
to overlaying botnet traces on top of normal traces because the data processing
stage would separate the individual conversations from the merged traces.

In addition, we performed sensitivity analysis on our feature set to select
reduced subsets of features that produced the best overall accuracy. Trying all
possible combinations of features from our total fourteen-feature set, the best
set of features for the J48 classifier was found to be:

– Standard deviation of packets sent / packets received
– Average number of bytes sent
– Average number of bytes received
– Average number of TCP packets transmitted
– Average number of UDP packets transmitted
– Average number of IRC packets transmitted



– Persistence value

Similarly, the best feature set for the Random Forest classifier was found to
be:

– Standard deviation of bytes sent / bytes received
– Standard deviation of the number of source ports used
– Average number of bytes sent
– Average number of bytes received
– Average number of packets sent
– Average number of UDP packets transmitted
– Average number of IRC packets transmitted
– Persistence value

5 Results

Accuracy is defined as the number of instances correctly classified divided by
the total number of instances. False positive rate is defined as the number of
instances of legitimate traffic classified as botnet traffic divided by the total
number of instances of legitimate traffic. The results of running the classifiers on
the reduced feature sets are shown for both the J48 classifier and the Random
Forest classifier in Table 4. The J48 classifier had an overall accuracy of 0.926
with a false positive rate of 0.188. The Random Forest classifier had an overall
accuracy of 0.929 with a false positive rate of 0.078.

Table 4. Results of Botnet Classifiers: domain-based

J48 Random Forest

Classified as → NORMAL IRC HTTP P2P NORMAL IRC HTTP P2P

Normal 104 0 21 3 118 0 5 5

IRC 0 99 0 0 0 99 0 0

HTTP 21 1 201 4 32 1 189 5

P2P 2 0 0 251 2 0 0 251

In the results we presented in Table 4, we chose to classify individual instances
of conversations rather than entire conversations since we are hoping to produce
an online detection system eventually. With an observation window of 4 hours
long, our online IDS would potentially be able to detect the presence of a bot
within 4 hours of the initial infection. However, it is more intuitive to think of
botnet C&C detection in terms of detecting entire C&C conversations. Thus,
we also report the accuracy rate of our detection method for classifying entire
conversations using a majority vote of the classification results for the instances
generated from a conversation. Our results for both the domain-based approach



as well as the IP-based approach are shown in Table 5. On a per-conversation
basis, accuracy is defined as the number of correctly classified conversations
divided by the total number of conversations. False positive rate is defined as the
total number of normal conversations classified as botnet conversations divided
by the total number of normal conversations. For the domain-based approach,
the J48 classifier correctly classified 169 out of a total of 181 conversations and
the Random Forest classifier correctly classified 171 of 181 conversations. On a
per-conversation level, the J48 classifier had an accuracy of 0.934 and a false
positive rate of 0.173 and the Random Forest classifier had an accuracy of 0.945
and a false positive rate of 0.038.

Whereas the domain-based approach found a total of 19 IRC botnet conver-
sations, the IP-based approach found 30. However, in many cases, multiple IP
addresses of IRC servers corresponded to a single domain name. Though only
19 persistent connections to domain names were found in the domain-based ap-
proach for IRC-based botnets, they accounted for a total of 48 IP addresses,
meaning that the IP-based approach missed 18 of the IP addresses associated
with the IRC C&C channels. Thus, the results presented in Table 5 are adjusted
to include the missed IP addresses. The IP-based approach only found 30 of 38
IP addresses associated with HTTP C&C channels. Both the P2P-based bots did
not demonstrate multiple IP addresses associated with a single domain name.
While the IP-based approach missed 8 IP addresses associated with persistent
conversations to domain names for the instances generated from legitimate traf-
fic, it does not make sense to count those additional IP addresses as misclassified
when calculating false positives, as a missed conversation can not raise an alarm.
Therefore, the number of normal conversations found by the IP-based approach
is left at 48 in Table 5. The per-conversation accuracy of the J48 classifier using
the IP-based approach is 0.752 with a false positive rate of 0.200 and the accu-
racy of the Random Forest classifier using the IP-based approach is 0.771 with
a false positive rate of 0.042. Compared to the per-conversational accuracy and
false positive rate achieved using the domain-based approach, it is clear that the
IP-based approach has poorer performance.

Table 5. Results of Botnet Classifiers (entire conversations)

Domain-based IP-based

J48 Random Forest J48 Random Forest

Conversations Total Correct Total Correct Total Correct Total Correct

Normal 52 43 52 50 48 40 48 46

IRC 19 19 19 19 48 24 48 23

HTTP 34 31 34 26 38 24 38 23

P2P 76 76 76 76 76 76 76 76

Total 181 169 181 171 218 164 218 168



6 Discussion

We describe three hypotheses at the beginning of Section III that have to be true
in order for our approach to work. The results we have presented in the previous
section have shown that botnet C&C communication can be differentiated from
botnet non-C&C traffic through the use of a persistence metric. The intuition
that botnet traffic follows an inherent command-response pattern such that it
can be differentiated from normal, legitimate traffic was shown to be true, as
our classifiers were able to successfully distinguish between normal and botnet
traffic. Furthermore, the thought that the characteristics of C&C styles across
different botnet families would still contain inherent similarities was also shown
to be true, as both of our classifiers were able to successfully differentiate the
different C&C styles across multiple variants of bots in the same botnet fam-
ily, and across bots from different bot families. We have also shown that, while
IP-based approaches to botnet detection may appear to produce decent results,
they run both the risk of missing connections to malicious IP addresses as well
as the risk of not capturing the entire behavior of a C&C conversation in the
presence of fast flux DNS techniques.

Ultimately, the Random Forest classifier produced the best results in terms
of accuracy and false positive rate. For an online IDS, one could either prompt
the user when a suspicious conversation is detected, asking her whether or not
she wants to block the connection or could automatically block the connection.
A high false positive rate would either annoy the user by raising prompts too
frequently or would block legitimate connections, leading to further user annoy-
ance. Thus, minimizing the false positive rate is imperative. Sometimes, a botnet
conversation may not be detected when it first appears in an observation window
but it is very likely that it will be detected in subsequent windows. We hope to
quantify the detection time in the near future. As a single, persistent conversa-
tion will generate multiple classifiable instances as time progresses, even if the
bot infection is not detected in the first observation window, it could certainly
be detected in a future observation window. Furthermore, many bot samples
initiated several persistent conversations. To successfully detect a bot infection,
we only really need to discover one of the persistent conversations. To this end,
our IDS was able to detect every bot infection even if it misclassified some of
the instances generated from the multitude of bot conversations.

7 Concluding Remarks

Botnets are serious threats to computer networks. Malicious activities such as
sending spam, stealing personal or financial information etc can be launched
by botnets. In this paper, we present a host-based method for detecting and
differentiating different types of botnet infections e.g. IRC-based, HTTP-based
or P2P based bots. Our method includes a few unique features, namely (a)
the ability to correctly identify the C&C style, (b) a binary IRC classifier that
allows identification of IRC traffic without payload inspection, and (c) a domain-
based approach that helps to deal with fast flux obfuscation techniques which



are becoming more popular in botnet traffic that has been identified in recent
months. Our detection scheme can achieve an accuracy of 0.929 with a false
positive rate of 0.078 and a false negative rate of 0.033 using the Random Forest
classifier. In the near future, we would like to extend our work to detect botnet
infections on mobile devices as the growing popularity of smartphones is making
them a growing target for hackers to exploit.

References

1. Peter Wurzinger and Leyla Bilge. Automatically Generating Models for Botnet De-
tection, European Symposium on Research in Computer Security, 2009.

2. Liberios Vokorokos, Anton Balaz, Martin Chovanec. Intrusion Detection System
Using Self Organizing Map, Acta Electrotechnica et Informatica, 2006.

3. Frederic Giroire, Jaideep Chandrashekar, Nina Taft, Eve Schooler, Dina Papagin-
naki. Exploiting Temporal Persistence to Detect Covert Botnet Channels, Recent
Advances in Intrusion Detection, 2009.

4. Anirudh Ramachandran, Yogesh Mundada, Mukarram Bin Tariq, Nick Feamster.
Securing Enterprise Networks Using Traffic Tainting, Special Interest Group on
Data Communication, 2008.

5. Guofei Gu, Junjie Zhang, Wenke Lee. BotSniffer: Detecting Botnet Command and
Control Channels in Network Traffic, Network and Distributed System Security,
2007.

6. Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee. BotMiner: Clustering Anal-
ysis of Network Traffic for Protocol- and Structure-Independent Botnet Detection,
Proceedings of the 17th conference on Security symposium, 2008.

7. Su Chang and Thomas Daniels. P2P Botnet Detection using Behavior Clustering &
Statistical Tests

8. Clam AntiVirus. http://www.clamav.net.
9. Weka 3 Data Mining and Machine Learning Software.

http://www.cs.waikato.ac.nz/ml/weka/.
10. John John, Alexander Moshchuk, Steven Gribble, Arvind Krishnamurthy. Studying

Spamming Botnets Using Botlab, Network Systems Design and Implementation,
2009.

11. Yuanyuan Zeng, Xin Hu, Kang Shin. Detection of Botnets Using Combined Host-
and Network-Level Information, International Conference on Dependable Systems
& Networks, 2008.

12. Joe Stewart. Inside the Storm: Protocols and Encryption of
the Storm Botnet, http://www.blackhat.com/presentations/bh-usa-
08/Stewart/BH US 08 Stewart Protocols of the Storm.pdf, 2008.

13. Andreas Pitsillidis, Kirill Levchenko, Chritian Kreibich, Chris Kanich, Goeffrey
Voelker, Vern Paxson, Nicholas Weaver, Stefan Savage. Botnet Judo: Fighting Spam
with Itself, Network and Distributed System Security, 2009.

14. Phillip Porras, Hassen Saidi, Vinod Yegneswaran. A Multi-perspective Analysis of
the Storm (Peacomm) Worm http://www.cyber-ta.org/pubs/StormWorm/report,
2007.

15. Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, Felix Freiling. Mea-
surements and Mitigation of Peer-to-Peer-based Botnets: A Case Study on Storm
Worm, USENIX Workshop on Large-Scale Exploits and Emergent Threats, 2008.


