Preliminary Requirements Analysis

Object-Oriented Software Engineering (OOSE)

Who? Audience analysis.

1. Who is your audience? Develop a profile of typical age, gender, ethnic or cultural background, etc. Do you want to include or attract an audience wider than your typical profile?

If so, revise your profile to be more inclusive.

For the prototype, we need to consider the audience for two different courses, CSc11 (Introduction to Computing), a freshmen level course and CSc432 (Object-Oriented Software Engineering), a graduate level course.

For CSc11:

1. Age: 85% are 17-19, 10% are 20-22, 5% are 23-60

2. Gender (based on the roster at the end of the semester, fall 1999): 61% male, 39% female

3. Ethnic/cultural background: Afro-American and Hispanic: 10-15%, Asian: 10-15%.

4. Minorities and some women struggle in this course.

For CSc432:

1. 90% are 22-45, 10% are 20-22 (give or take 5%).

2. Gender: 90% male, 10% (or less) female

3. Ethnic/cultural background: Afro-American and Hispanic: less than 5%, Asian: 25-40%.

We would like to see more women and minorities participate and succeed in this course.

2. What can you assume as background? What limitations or attitudes might some of your audience have that needs to be overcome?

1. Background: diverse. Just about all now come in knowing how to read e-mail and use the web.

2. Less than half know how to program in some language (mostly Pascal and Basic).

3. About a quarter or less are novices who are intimated by computers and programming.

4. The students in CSc11 could be divided into two groups:

· those who might take another course (majors, minors or other programs requiring or recommending a sequence in computer science) and

· students not likely to take another course (over half), taking this course out of interest and/or to fulfill a distribution requirement.

I am actually considering creating a new “CS0” course, for 2 or 3 credits, which would require little programming, perhaps some JavaScript, thus allowing students to self-select themselves into these two groups.

What? Goals and Content Analysis
3. What unit or chapter(s) worth of material do you want to teach?

The Universal Machine has 16 chapters,

· 6 of which deal with programming in C++, 3 with problem solving and software engineering, and

· 7 deal with the breadth of computer science.

A new CS0 course would drop the C++ programming chapters and perhaps add one or two units on web page development, HTML and JavaScript.

For the prototype, we want to rework the material in chapter 13, Object-Oriented Software Engineering, for both courses.

· Material from chapter 6: Classes: An Outside Look, and

· chapter 14, Classes: An Inside Look, is also relevant to the OOSE course.

4. What are the major topics of your chapter? Itemize them. Later write a short paragraph about each, then, develop a hierarchical outline of topics and sub-topics. . (This part requires detailed analysis! It’s a bit easier if you can work from existing material, such as a chapter of a textbook or teacher’s lesson plans.)

OOSE as a new paradigm (way of organizing knowledge) for software development

· Abstract data types and information hiding (introduced in Classes: An Outside Look)

· OO problem solving: categorization, simulation, prototypes and the need for formalization.

· Responsibility-driven design, CRC cards, design by contract

· Generalization through inheritance and dynamic binding

· Designing abstract data types (ADTs)

· ADTs for collections

Note: detailed analysis of the above can be gleaned from the chapter headings in The Universal Machine.

Additional topics for the OOSE course (see the syllabus):

· Unified Modeling Language (UML)

· Object-oriented analysis with CRC cards and UML use cases, etc.

· Object-oriented design with UML class diagrams, etc.

· Language-specific idioms, design patterns and software architectures

· Class libraries (Standard C++ library, C++ GUI libraries, Java Development Kit)

Note: detailed analysis of the above should be garnered by reviewing my lecture notes on each topic, available on the web page for the course.

5. What are the key concepts/skills of your chapter that you would like the learner to master?

For CSc11, OOSE is a breadth topic and sets up the chapter on Classes: An Inside Look.

For CSc432, students should be able to

1. perform analysis and design using CRC cards and a UML-based tool, and

2. create software based on their analysis and design in C++ or Java using class libraries.

3. They should also appreciate the use of idioms, design and large-scale architecture.

4. They should be able to use these concepts, tools and skills to communicate and work together in teams.

6. What is the desired performance level for learning these concepts/skills?

For CSc11,

1. Conceptual knowledge is sufficient.

2. For a subsequent chapter, they will be expected to implement or modify C++ programs involving simple classes.

For CSc432,

1. students must demonstrate skill by performing analysis, design and implementation of small Java programs as individuals and larger team projects in Java or C++.

2. Students should be able to do and present background research on the (constantly changing) state of the art in this field.

Why? Needs Assessment
7. What are the current sources/methods/practices by which students learn these concepts/skills?

1. Look at texts currently in use; interview faculty, TAs and students about current approach.

For CSc11, students

2. Use The Universal Machine textbook and CD-ROM; the multimedia installed on campus LANs,

3. Go through the multimedia in weekly laboratories.

4. Students attend lecture twice a week (there’s a significant level of absenteeism)

5. There are apprentice teachers (undergraduate or graduate TA) helping students in the labs and in extra office hours.

For CSc432, students

1. use Bruce Eckel’s Thinking in Java and several recommended textbooks on reserve in the library (see the syllabus).

2. Students attend lecture twice a week. There are no TAs.

8. What are the results of these practices? How can these practices be improved by multimedia?

For CSc11,

1. performance on final exams and programs has improved significantly since multimedia was introduced and refined.

2. Nevertheless, many students struggle with the material and many drop the course.

3. Minorities and women struggle more than average.

4. Students need to be coached to seek help.

5. Apprentice teachers help students significantly.

9. What areas of difficulty are students having that multimedia could address? How?

1. Weaker students need to be encouraged to seek help from apprentice teachers and instructors; avatars can help model and direct this interaction.

2. Better students (potential majors and minors) need to be challenged to explore breadth topics as a way to learn more about the field; inquiry-based learning can help here.

10. What strategies could you use for content and presentation of your material?

Where, how and when? Deployment, resources and timeline.
11. Where will your module be deployed? Via CD-ROM or via the Web or both?

1. Both, but I don’t think slow modem bandwidth should limit what we try to deliver.

2. On-campus, students can access software installed on campus network or via intranet;

3. off-campus students can use CD-ROM.

12. Who will work on your project? What roles will each project member have?

1. Martin, Harriet and myself.

· Harriet is our chief graphics and user interface designer.

· Martin is our multimedia programmer.

· I am the project manager and assistant designer and programmer. Does this sound right to you?

13. Who is the domain expert for teaching your content? How will he/she work with your team?

1. Myself.

2. Possibly Prof. Kay or Hofmeister could review.

14. What hardware and software resources will you need? What do you already have?

1. The machines in your office; Authorware, Flash, Dreamweaver.

2. Photoshop is available on campus.

3. Trial versions of other Macromedia software (Fireworks, Freehand) will have to suffice for the summer (until NSF funding comes in).

15. When do you expect to complete a design, a prototype, a testable program?

Design by August 1, testable prototype by October 1.

