Discuss C/C++ Modularity Papers
Homework exercise: How well do the modular structures of a high level programming language, such as Pascal, C or C++ support the criteria and principles of modularity?

Decomposability:

· C and Pascal supports decomposition into functions, of course.

· C also offers modules organized as files, with declarations accessible via header files.

· C++ adds decomposition into classes, combining code (behavior) and data (state).

Composability:

· C and Pascal functions may be freely combined.

· ANSI C function prototypes make the interfaces more transparent.

· However, C modules tend to depend a lot on global definitions of shared data structures, which can lead to maintenance problems.

· C++ supports composability of objects via class interfaces.

Understandability:

· Pascal’s emphasis on strong type checking and rich data type system (enumerations, array bounds, sets, etc.) promotes understandability

· C is not well known for promoting understandability, with:

· obscure operators (= vs. ==, ++j vs j++, etc.)

· weak typing and type casting

· pointer arithmetic

· macros that violate type and scope rules, etc., etc.

Continuity:

· C is oriented to systems programming, which often means machine‑specific code.

· Promoting continuity, as with understandability, takes considerable care and skill for a C programmer.

· Macros, which allow one to give names to constant values and expressions, and typedefs, which allow one to give names to data structures, help: one can change the definition of the name, in one place.

· ANSI C and C++ improves on macros with const. In C++, const is very versatile: not only for const values but invariant parameters, return types and class member functions.

· In C++, abstract classes (implied by pure virtual functions) promote invariants in an inheritance hierarchy.

Protection:

· Pascal is strong here, with typed pointers (Borland Pascal allows untyped pointers)

· C is abysmal here, with its notorious pointers to raw memory.

· There is some support from libraries for graceful exit(error_number), and emitting error messages to stderr().

· Even the exception handling of C++ falls short of Bertrand Meyer's ideals.

Information hiding:

· Pascal heavy reliance on block structure, nested procedures and non-local variables is bad news for information hiding.

· C is also a block-structured language, with the same tendency to expose implementation of data structures.

· On the other hand, C supports file scope, which separates names into different files. However, names in a file can be made visible to other files via extern declarations. (A more common technique is header files declaring names shared among C files.) To prevent extern declarations, one can declare variables static at file scope.

Few, small and explicit interfaces:

· In Pascal and C, interfaces are typically through function calls.

· In ANSI C, function signatures may be shared in header files, but C doesn't impose tight restrictions on interfaces. If the linker can find it, you can have it. Static variables prevent access by code in other files.

· ANSI C has tightened up type checking in C interfaces with prototypes, but there are still plenty of holes.

· C++ closes up these holes even further by tricking the compiler into doing “safe” type checking

· With classes, interfaces are considerably smaller than with files.

Opened‑closed principle.

· Standard Pascal and C don't do particularly well here.

· E.g., C libraries appear closed; if you want to extend them, you can write your own functions which modify the input or output of library functions, but your functions have new names and calling conventions.

· C++ does much better with inheritance and dynamic binding.

Linguistic units:

· C file/modules do provide some information hiding, and one can use header files to provide access to names in another file.

· C treats a file as a scoping mechanism: variables defined in a file are static and hidden from other files unless one includes their names in a header file.

· However, there is little syntactic support for accessing names on a per module basis. It is all too common to put all the names common to a program in one global header file, which gives all modules more access than they necessarily need.

· Here again, it is a matter of programming convention and discipline, which C++ classes promote better, with public, private and protected access.

