Object Oriented Software Engineering

Discuss syllabus: note email and web addresses

Prerequisites:

Familiarity with C or Pascal. How many of you already know some C++ or Java?

Advanced data structures (stacks, pointer structures, hash tables, etc.)

Texts:
1) Discuss highly recommended texts (Fowler for UML and OOA and Deitel&Deitel for Java)

2) Additional texts (which I will put in library on reserve):

 OO Analysis & Design

Shari Pleeger is a decent book on the software engineering as a whole, esp.

Life cycles, testing, delivery and maintenance issues

Gamma, Helm, Johnson and Vlissides (“Gang of Four”, Design Patterns.

· The “bible” of design patterns; launched a whole new subfield of OOSE

· Eckel’s Thinking in Design Patterns, preliminary version, gives a fresh perspective

Scott Meyers is a recommended book on C++ idioms (C++ programming is not obvious!)

 Programming reference books:

Eckels’ Thinking in C++, Thinking in Java, 2nd Edition, both recommended.

 Also multimedia material: see http://cimel.cse.lehigh.edu (but please use logins!)

Requirements:
1. Small analysis, design and programming assignments (in Java):

· Java JDK 1.4 available via web and on campus LANs.

· Eclipse, Visual Studio, Borland Jbuilder, JavaEdit on campus via win-install
· Multimedia available via camel.cse.lehigh.edu – I’ll have logins set up for tomorrow.
2. Term project to practice OOSE--must work in teams of 2-4 (3 person teams is about optimal)

· Life cycle will last a semester: please note milestones in the syllabus

· Scope should be large enough to require multi-person development, yet doable in a semester.

· Projects must make use of object-oriented constructs: ADTs, inheritance and dynamic binding

· “Real world” customers are recommended and will be evaluated more highly; customer role would represent outside stakeholder(s).

· Syllabus discusses different roles; we’ll discuss this a bit more when we get into life cycles

· first few weeks: customers propose projects, analysis teams form, requirements specification

· object-oriented analysis and design during middle of semester; evaluation and improvement

· projects handed in during final exam period (there is no final exam)

Last week of class presentations of works in progress and special extra credit presentations

Extra credit option: present a talk about some on some topic relevant to OOSE

· Other features of the JDK (e.g., Java Database Connectivity, servlets); C++ class libraries

· Tools: Rational Rose, Eclipse or other useful CASE tools for OOSE, etc.

· Java Web Start, Java web services

· C# (Microsoft’s answer to Java), Self (a classless object-oriented language), etc.

· Interesting and instructive issues emerging from projects

Goal of term project is to learn how OOSE tackles programming in the large
· What is the relationship between the size of a program & the time it takes to develop it?

· Would you say the size to time relation is linear, polynomial, or exponential? Why?
· What about the relation of program size and programmers involved? Why?
· OOSE attempts to tame this explosion

Steve Jobs of Apple claims a 50-times increase in productivity using OOP

· hence the project: let's say a prototype of a large program, as teams

· team projects force you to learn the virtues of modularity and abstraction

PPT: Software engineering

http://www.cse.lehigh.edu/~glennb/oose/figs/pfleeger/DeveloperRoles.jpg:

· This figure will I hope begin to give some idea about why the syllabus has some complicated rules about team roles for your term projects

· Students often work by themselves or with small groups

· Documentation required by instructor is often skimpy; no user manual, training document, or plan for maintenance or reuse

· Real customers often request systems that are larger, more complex, with greater emphasis on documentation and maintainability

· Multimedia: maintenance is where the $ is. Why?
· So, for this project, I hope to give you ample opportunity to learn about different roles

· Customer requests a project (you may also be a agent representing an outside customer)

· Analysts work with the customer to specify what he or she wants in a clear requirements spec

· Designers work with analysts to generate a system-level description of what system will do

· Programmers implement what requirements and design documents specify

· Testers verify that programs work according to spec, identifying faults

· Librarians prepare and store documents used throughout the life of a system, including requirements specifications, design descriptions, program documentation, test data, deliverables and training manuals, schedules, etc.

· Project managers oversee the resources available, i.e., budgets and schedules, trying to keep the project moving toward the goal, coordinating the other players. For this course, an analyst/designer will also be the project manager.

· Subcontractors or outsourcers can be hired to help with well-specified tasks of design, coding or testing. Subcontracts must be negotiated with the project manager on behalf of the core team.

· Any questions about these roles? Do you see how playing these different roles will help you appreciate the software engineering process?
· You’ll also learn how OOSE techniques will also help with this process
PAGE
2

