Object Oriented Software Engineering

Distribute and explain consent forms, then discuss syllabus: note email and web addresses

Prerequisites:

Familiarity with C or Pascal. How many of you already know some C++ or Java?

Advanced data structures (stacks, pointer structures, hash tables, etc.)

Texts:
1) Discuss recommended texts (two in bookstore), most on reserve (Java book, too?)

2) Additional texts (which I will put in library on reserve):

 OO Analysis & Design

Bertrand Meyer, Object-Oriented Software Construction, respected primer for OOA&D

Coad&Yourdon, Object-Oriented Programming, Yourdon Press, 1993.

· Third book in series that Coad has co-authored with Ed Yourdon: OOA and OOD
· Reviews and gives many extended examples from OOA through OOD to OOP

· Good examples of C++ (and Smalltalk) code, using templates and inheritance

· We’ll use shareware software based on Coad/Yourdon's OOA is available for Windows

 C++ reference books:

Thinking in C++, 2nd Edition

Scott Meyers is a recommended book on C++ idioms (C++ programming is not obvious!)

Requirements:
1. Comparison paper (see end of these notes) and project proposal (next week)

2. programming assignment in Java

free Eiffel compiler, Visual Eiffel, available from the Web; Java available via web

Borland C++, GNU C++ in Unix, or DJGPP with Lookout frontend

3. term project to practice OOSE--must work in teams of 2-4 (3 person teams is about optimal)

· life cycle will last a semester: please note milestones in the syllabus

· first few weeks: project ideas, teams form, requirements specification

· object-oriented analysis weeks 5-7; OOD weeks 9-11, documents evaluated & improved

· presentations of works in progress near end of semester

· projects handed in during final exam period

Extra credit option: present a research paper on some topic relevant to OOSE

· libraries, OO databases, distributed objects (CORBA), classless languages (Self)

Goal of term project is to learn how OOSE tackles programming in the large
· What is the relationship between the size of a program & the time it takes to develop it?

· Would you say the size to time relation is linear, polynomial, or exponential? Why?

· What about the relation of program size and programmers involved? Why?
· OOSE attempts to tame this explosion

 Steve Jobs of Apple claims a 50-times increase in productivity using OOP

· hence the project: let's say a prototype of a large program, by a team of three persons

· team projects force you to learn the virtues of modularity and abstraction

Project developed in stages, noted in syllabus:

Any pet ideas?

Past projects: hypertext editor, browser, matrix arithmetic, video games, databases,

operating system simulator, boolean logic simulator, network simulator

Lookout for C++ parser (just two control structures, no pointers, safe arrays, etc.)

Assignment for next class: write a one paragraph description of a project idea

Why OOSE?

· Why not do it all in assembly language? or C? or FORTRAN? or Basic?
· Software crisis: large‑scale software development is expensive, unreliable

When is software not really "soft"? ‑‑when it's hard to modify or reuse

· Why can't software be like hardware?

· Brad Cox describes the vision, if you will, of OOSE:

software components should be like integrated circuits (ICs) (or plumbing components)

Bertrand Meyer, in Object Oriented Software Construction, explicates Cox's metaphor.

Software, like IC chips, should meet these desiderata (i.e., wish list):

1) modular (IC chips, disk drivers, etc., are self‑contained: packaged code)

 a) compatible (chips or boards that plug in easily, easily combined with others: simple interfaces)

 b) reusable (same processor IC can serve various purposes: commonality)

 c) extendible (IC technology can be improved: inheritance)

2) reliable (an IC works most of the time!)

 a) correct (it does what it's supposed to, according to specification)

 b) robust (it functions in abnormal conditions)

3) efficient (ICs are getting faster and faster!)

4) inexpensive (ICs prices are falling)

5) portable (ease of transferring to different platforms)

6) timely (released when or before users want it)

What do you think: will any software paradigm answer all our wishes?

OOSE starts by addressing desiderata #1

Key ideas:

 classes as self-contained modules (self-contained units facilitate compatibility & reusability)

 inheritance supports extendibility

(given class Bird , classes Robin, Canary can inherit Bird’s properties and behaviors;

 if Bird has feathers & lays eggs, then its subclasses inherit these properties and behaviors

 and can add new properties or behaviors, e.g., Robin has red breast, Canary is yellow)
C++ and Objective‑C claim to address desiderata #3

· Objective‑C builds on C, hooks for optimizing code in C

· C++ more so, for example, with inline functions to avoid function call overhead

Java puts more emphasis on desiderata #2b and 5, at the expense of #3

Eiffel addresses desiderata #2 a bit more rigorously than Java

· support for assertions checked at run‑time (as exceptions)

· we'll look at assertions and exception handling in C++ and Java also

OO Class Libraries may be a way to address desiderata #4 and perhaps #5 and #6

· C++ (unlike Smalltalk, Objective‑C or Eiffel) comes with no library

· C++ class libraries are just starting to become widely available

Modularity
What are software modules or components? Are FORTRAN subroutines modules?

· Only partially: they work well for mathematical routines,

but less well when dealing with complex data structures, like hash tables

A definition: modules are self‑contained software units, with simple interfaces,

that are easy to compose into larger systems.

Criteria for modularity
Decomposability: can I break a complex problem down into simpler ones?

· An exemplar: top‑down design (functional decomposition)

· Top level node "main" invokes lower level nodes (functions)

· Decomposition of problem into a tree of function calls

· counter‑example: initialization function: initializes data structures for an entire program

· Why is such a function counter‑productive to modularity?
· Initialization function must access the data structures of all other modules

Composability: can I freely combine software elements into systems?

· Example of composability: UNIX shell, with pipes, e.g.,
ls -l | wc -l --finds out how many files are in a directory

· Composability can be at odds with decomposability, as you might expect

 (Meyer is a bit literary, maybe because he's French: he likes paradoxes. So do I!)

· Top‑down design is not so good here: produces non‑reusable modules

· Instead, Meyer advocates a bottom‑up approach

· This is radical -- maybe what he means is a middle out approach?

Understandability: does the module document itself?

· Important for maintenance

· Want to avoid spaghetti‑like interdependencies

Continuity: can modules help isolate small changes in a system?

· E.g., symbolic constants are better than magic numbers!

· Important for extendibility

Protection: can it confine abnormal conditions at run‑time?

· C error handling is at best organized panic: exit(i)

· Ada (and C++) exception‑handling facilities actually violate this criteria

· Exception‑handlers propogate errors out of a module

· Now many modules have to check for the same exception

· Eiffel exception‑handling emphasizes containment of exceptions within modules

· more about language-specific approaches to exception handling on another day!

Principles of modularity
Information hiding, due to David Parnas, who coined two maxims of information hiding:

· Software client should have information needed to use a module, and nothing more

· Client has access to public information only

· Software supplier should have information needed to implement it, & no more

· Supplier has access to private information, but only in supplier's module

· Why is information hiding such a good idea for software engineering?
· Implied in principle: distinguish public from private information

interface vs. implementation: how do we see this distinction in C++?
Weak coupling via small and obvious interfaces: just as ICs have a small number of pins,

software modules should have small, simple and explicit interfaces

· “weak coupling” means that modules should exchange as little information as possible

· How does block structure tend to violate weak coupling?

Few interfaces: limit communication to as few modules as possible

· Too many interconnections makes change harder and propagates errors throughout a system

· How does top down functional decomposition violate this principle?
· Top node(s) are at the center of design, like the hub of a wheel

· Top node (or generally high‑level nodes) become bottleneck

· Too much emphasis put on finding a comprehensive top

· Do complex systems really need a top?

· Removing the center emphasizes democracy rather than hierarchy

· OOSE encourages bottom‑up design?

· Autonomous classes designed independently

· Emphasis on reuse of existing components

Open‑closed principle: open to supplier, closed to client

· Another paradox, pointing out that information hiding has two faces:

· To supplier, a module must be open for extension, for new enhancements

· To client, a module must have a closed, stable interface

· This principle implies the need for inheritance and dynamic binding

Linguistic units: programming language should explicitly support the above principles!

Homework exercise: How well do the modular structures of C (or some other high level programming language) support the criteria and principles of modularity? Compare these two languages. If you do not know C, discuss another high level programming language that you do know, such as Pascal.
PAGE
3

