The Software Life Cycle
In my short list of suggestions to improve software quality, and in my syllabus,

I have alluded to stages in software development generally known as the software life cycle

A virtue of software is that it is relatively easy to change--otherwise it might as well be hardware

· nevertheless, the more complex a software system gets, the harder it is to change--why?
· larger software systems are harder to understand

Software engineers try to alleviate these problems by planning for change

· software modules (classes) help to isolate and localize change

· But sometimes it is necessary to retire an old version and redesign it from scratch

How can good comments facilitate and reduce the cost of software maintenance?

· Hint: think about invariants, things that don’t change.

· How can the discovery and preservation of invariants make it easier to change software?

A software life cycle is a process: a series of steps involving activities, constraints and resources

that produce an intended output.

· Each process activity, e.g., design, has entry and exit criteria—why?
· A process uses resources, which are subject to constraints (such as a schedule or a budget)

· A process is organized in some order or sequence, structuring activities as a whole

· A process has a set of guiding principles or criteria that explain the goals of each activity

Software engineers recognize stages in a software process or lifetime of a software product

· Development is analogous to conception and childhood

· operation and maintenance to adolescence and adulthood,

· and retirement--to mix metaphors--is the sunset of a program=s life

Stages of the software life cycle (multimedia):

Requirements Analysis-->Design-->Coding-->Testing-->Maintenance
“Waterfall” model cascades from one stage down to the next, in stately, glorious order.

· Progresses from one stage to the next only after previous stage is complete

· Gravity only allows the waterfall to go down; it’s very hard to swim upstream
· At least, this is the ideal!
· Department of Defense contracts prescribed this model for software deliverables for many years, in DOD Standard 2167-A.
Why would corporate manager types like this development model?
· It certainly would be simpler and cheaper to minimize the possibility of change!

· Associated with each process stage are milestones and deliverables, so project managers could use the model to gauge how close project was to completion at any point in time.

· Many software shops associate different people with different stages:

a systems analyst does analysis (and possibly design), programmers code & test, etc.

http://www.cse.lehigh.edu/~glennb/oose/figs/pfleeger/waterfall.jpg shows waterfall model.

· Note distinction between Unit Testing and System Testing: what’s the difference?

· Note distinction between System Acceptance and Acceptance Testing: what’s the difference? (Hint: who does the accepting of each?)

· What’s missing from this diagram?

http://www.cse.lehigh.edu/~glennb/oose/figs/pfleeger/softwareReality.jpg shows what some might regard as a more realistic model of software development…..

· Do you think this is more realistic?

· Do you think approach to software development is a good idea?

· The reality is that not only does software change, but change happens during the process

The life cycle process is not strictly linear, but allows for cycles

· Bear in mind, however, that more cycles mean more costs.
Other drawbacks of the waterfall model:

· While waterfall shows how each major phase of development terminates in the production of some artifact (e.g., unit testing produces code modules written and tested),

· it offers no insight into how each activity transforms one artifact into another, e.g., requirements to design.

· Transitions from one stage to the next can be non-trivial; smoothing these transitions is something that OOSE has taken a desiderata

· Waterfall model also fails to treat software a problem-solving process

· Unlike hardware, software development is not a manufacturing but a creative process

· Manufacturing processes really can be linear sequences, but creative processes usually involve back-and-forth activities such as revisions

· Software development involves a lot of communication between various human stakeholders—

· Stakeholders are all people with a direct or indirect influence on the product, including external stakeholders such as customers who pay for the project, users, and system administrators, and internal stakeholders such project managers, analysts, programmers, testers—each stakeholder brings different perspective on problem.

Nevertheless, more complex models are often embellishments of the waterfall,

· incorporating feedback loops and additional activities

http://www.cse.lehigh.edu/~glennb/oose/figs/pfleeger/waterfallPrototyping.jpg:

· This variation of the waterfall model adds with prototyping as sub-processes

· A prototype is a partially developed product that enables customers and developers to examine some aspect of a proposed system and decide if it is suitable for a finished product.
· Used to explore the risky aspects of the system:

· risk of developing the “wrong” system (what client doesn’t want)

· other technical risks – e.g. performance, new technology, alternative algorithms, etc.

· E.g., for the CIMEL project, we developed a prototype user interface

· http://www.cse.lehigh.edu/~cimel/Graphics/CimelPrototype.jpg
· We asked potential users and domain experts to review the prototype

· A review panel then summarized their findings and made recommendations

· We now have an alpha version of the interface, which I hope is better:

· http://www.cse.lehigh.edu/~cimel/Graphics/CimelAlpha.jpg

http://www.cse.lehigh.edu/~glennb/oose/figs/pfleeger/Vmodel.jpg:

· The V model, developed by the German Ministry of Defense, is a variation of the waterfall

· What does this model highlight?

· Unit and system testing verify the program design, ensuring that parts and whole work correctly

· Acceptance testing, conducted by the customer rather than developers, validates the requirements, tying each system function meets a particular requirement in the specification

· How does this model account for cycles in the process?

· If problems are found during verification or validation, then the left side of the V can be re-executed to make fixes and improvements.

· While the waterfall emphasizes documents and artifacts, the V model emphasizes activities and correctness

http://www.cse.lehigh.edu/~glennb/oose/figs/pfleeger/transformational.jpg:

· Balzer’s transformational model tries to reduce error by eliminating development steps, emphasizing formal specifications, and using automated support to facilitate transformations from specification to deliverable system

· Hitch: the need for a formal specification precise enough for automated transformations

· We’ll see that even semi-formal specifications can help with other software life cycles

Reducing cycle time:

· Nowadays, customers are less willing to wait years for a software system to be ready

· So it’s necessary to reduce the cycle time of software products

· In 1996, 80% of HP’s revenues derived from products developed in previous two years

· How is this accelerated cycle time made possible?

http://
www.cse.lehigh.edu/~glennb/oose/figs/pfleeger/phased.jpg:
· A way to reduce cycle time is phased development
· Design a system so it can be delivered in pieces, letting users have some functionality while the rest is under development

· So there are usually two or more systems in parallel: the operational or production system in use by the customer and the development system which will replace the current release

· I.e., as users use Release n, developers are building Release n + 1

Recognizing the need to reduce cycle time is a way to convince customers (and managers)

to accept the reality of cycles in software development

http://www.cse.lehigh.edu/~glennb/oose/figs/pfleeger/iterative.jpg
· Incremental development partitions a system into subsystems by functionality

· An early releases starts with a small, functional subsystem, later releases add functionality

· Top part of this figure shows how incremental development builds up to full functionality

· Iterative development shown in the bottom part of the figure

· Delivers a full system in the first release, then changes the functionality of each subsystem with each new release

E.g., suppose a customer wants to develop a word processing package

· An incremental approach would provide just creation functions in Release 1, the both creation and organization in Release 2, and finally add formatting in Release 3

· An iterative approach would provide primitive forms of all three functions in Release 1, then enhance them (by making them faster, improving the interface, etc.) in Release 2, etc.

· In reality, many organizations use a combination of iterative and incremental approaches

http://www.cse.lehigh.edu/~glennb/oose/figs/pfleeger/spiral.jpg:

· Spiral model (Boehm 1988) makes the cyclical nature of software development explicit

· Also adds the idea of risk assessment and management at each loop in the cycle

· First prepare an initial plan for development (including budgets, constraints and alternatives)

· Then do a risk analysis based on this initial plan

· If risk analysis suggests a go ahead, create a initial prototype

· Then evaluate the risk and prototypes as input to a “concept of operations” document describing how the target system should work

· That document leads to a fleshed out requirements specification,

· This fleshed out specification starts the second cycle in the cycle

· With each iteration, risk analysis weights different alternatives in light of expanded requirements and constraints, and prototyping verifies feasibility before choosing a particular alternative

· Designers may run tests to ensure that users prefer one type of interface over another

· What does risk analysis add to the software development process?

· When is it appropriate?
Do these different life cycle models give you an appreciation for the big picture?

Comments?

Does it motivate to learn to avoid just hacking?

The Unified Modeling Language unifies a wave of OO analysis and design methods

developed in the late ‘80s and early 90’s,

· esp. by three OO software engineers now known as “The Three Amigos,”

· each of whom had written books on the subject:

· Grady Booch, Ivar Jacobson, and Jim Rumbaugh

· The Object Management Group (OMG) standardized on UML in the late 90’s

UML is a modeling language, not a method

· A modeling language is a notation (mainly graphical)

· A method also includes advice on the process, or steps to take in doing analysis and design

· So, in principle, UML could be used with any OO method or process

The three amigos have also developed a unified process called the Rational Unified Process (RUP)

· Again, you don’t have to use the Rational Unified Process to use UML

· But it’s a good place to start; it is interestingly different from the traditional waterfall model

· Fowler recommends that teams or software houses develop their own processes,

using published processes or methods as advice rather than as standards

Overview of the Rational Unified Process:

Inception (Elaboration (1 2 3 Construction … (Transition
The process is iterative and incremental

· Software product is not released in one big bang at the end of the project

· Instead, developed and released in pieces (prototypes, partial releases, beta, etc.)

· During inception, you establish the business rationale for the project as well as its practical scope

· Business case considers how much it will cost and how much it will bring in

· Scope tries to get a sense of the size of the project and whether it’s doable

· In elaboration, you collect more detailed requirements and do high-level analysis and design

· Inception gives you the go-ahead to start a project, elaboration determines the risks
· Requirement risks: a big danger is that you may build the wrong system (how’s that?)

· Technological risks: can the technology actually do the job? will the pieces fit together?

· Skills risks: can you get the staff and expertise you need?

· Political risks: can political forces get in the way?

· Use cases are a good starting point for determining what the user actually wants
· Construction phase consist of man iterations, each of which builds production-quality software, tested and integrated, that satisfies a subset of the requirements of the project

· Delivery may be to external, to early users, or purely internal

· Each iteration contains usual life-cycle phases of analysis, design, implementation and testing

· Planning is crucial: use cases and other UML documents can help here.

· Transition activities include beta testing, performance tuning (optimization) and user training

· No new functionality unless it’s small and essential, but bug fixes are OK

PAGE
5

