Software quality

Software engineering should address issues of software quality.

· There are many famous examples of software failures….

· In early 1980’s, the IRS hired Sperry Corp to build an automated federal income tax form processing system.

· In 1985, an extra $90 million to enhance original $103 million worth of equipment.

· But the system did not improve the situation (still hasn’t?). Congressman Jim Lightfoot called the project “a $4-billion fiasco that is foundering because of inadequate planning.” (How well do software developers plan their projects?)

· In early 1990’s the Therac-25, a radiation therapy and X-ray machine, malfunctioned and killed several patients!

· What happened? The software designers had not anticipated the use of arrow keys in nonstandard ways, so that the software retained its high settings for doses of radiation.

· Zero defect software is very hard to achieve….

· But how can software developers improve software quality?

· Object-oriented analysis, design and programming improve modularity and extensibility of software units
· But it’s not all OOP; OOSE looks at ways to improve the whole process
· More emphasis of software planning
· Insistence on documents that communicate clearly to all stake-holders in a system.
· Clear specifications written in explicit, programming-language independent notation.
· Keep the customer involved in the process, possibly with rapid prototypes
· Code review and inspection (rather than the usual coding and testing on your own)
· Code review by an independent programmer can catch 80% more faults (Fagan 1986)
· Well-planned test procedures
· Well-planned delivery, training maintenance procedures
So, why OOSE?
· Why not do it all in assembly language? or C? or FORTRAN? or Basic?
· Software crisis: large‑scale software development is expensive, unreliable

· Why can't software be like hardware?

· Brad Cox describes the vision, if you will, of OOSE:

software components should be like integrated circuits (ICs) (or plumbing components)

When is software not really "soft", i.e., when does software suffer the limitations of hardware?
· When it's hard to modify or reuse

Modularity

Bertrand Meyer, in Object Oriented Software Construction, explicates Cox's metaphor.

Software, like IC chips, should meet these desiderata (i.e., wish list):

1) modular (IC chips, disk drivers, etc., are self‑contained: packaged code)

 a) compatible (chips or boards that plug in easily, simple interfaces)

 b) reusable (same processor IC can serve various purposes: commonality)

 c) extendible (IC technology can be improved: inheritance)

2) reliable (an IC works most of the time!)

 a) correct (it does what it's supposed to, according to specification)

 b) robust (it functions in abnormal conditions)

3) efficient (ICs are getting faster and faster!)

4) inexpensive (ICs prices are falling)

5) portable (ease of transferring to different platforms)

6) timely (released when or before users want it)

What do you think: will any software paradigm answer all our wishes?

OOSE starts by addressing desiderata #1

Key ideas:

· Classes as self-contained modules (self-contained units facilitate compatibility & reusability)

· Inheritance supports extendibility

· Given class Bird, classes Robin, Canary can inherit Bird’s properties and behaviors;

· if Bird has feathers & lays eggs, then its subclasses inherit these properties and behaviors

and can add new properties or behaviors,

e.g., Robin has red breast, Canary is yellow
C++ and Objective‑C claim to address desiderata #3

· Objective‑C builds on C, hooks for optimizing code in C

· C++ more so, for example, with inline functions to avoid function call overhead

Java puts more emphasis on desiderata #2b and 5, at the expense of #3

Eiffel addresses desiderata #2 a bit more rigorously than Java

· support for assertions checked at run‑time (as exceptions), recently added to Java (1.4)

· we'll look at assertions and exception handling in C++ and Java also

OO Class Libraries may be a way to address desiderata #4 and perhaps #5 and #6

· C++ (unlike Smalltalk, Objective‑C, Eiffel or Java) comes with no library

· C++ class libraries are just starting to become widely available

· A major strength of Java are de facto standardized library of the JDK, plus JavaBeans.

· JavaBeans push the virtues of modurity achieved by classes even further, by standardizing on useful design patterns to create components that can be assembled in a visual environment

What counts as a module?
What are software modules or components? Are FORTRAN subroutines modules?

· Only partially: they work well for mathematical routines,

but less well when dealing with complex data structures, like hash tables

A definition: modules are self‑contained software units, with simple interfaces,

that are easy to compose into larger systems, and easy to reuse and extend.

Criteria for modularity

(Bertrand Meyer)

Decomposability: can I break a complex problem down into simpler ones?

· An exemplar: top‑down design (functional decomposition)

· Top level node "main" invokes lower level nodes (functions)

· Decomposition of problem into a tree of function calls

· counter‑example: initialization function: initializes data structures for an entire program

· Why is such a function counter‑productive to modularity?
· Initialization function must access the data structures of all other modules

· How well do FORTRAN or C functions support decomposability?

· How well do C++ or Java classes support decomposability?

Composability: can I freely combine software elements into systems?

· Example of composability: UNIX shell, with pipes, e.g.,
ls -l | wc -l --finds out how many files are in a directory

· Composability can be at odds with decomposability, as you might expect

 (Meyer is a bit literary, maybe because he's French: he likes paradoxes. So do I!)

· Top‑down design is not so good here: produces non‑reusable modules

· Instead, Meyer advocates a bottom‑up approach

· This is radical -- maybe what he means is a middle out approach?

· How well do FORTRAN or C support composability and middle-out design?

· How well do C++ or Java classes support composability and middle-out design?

Weak coupling via small and obvious interfaces: just as ICs have a small number of pins,

software modules should have small, simple and explicit interfaces

· “weak coupling” means that modules should exchange as little information as possible

· How does block structure tend to violate weak coupling?

Few interfaces: limit communication to as few modules as possible

· Too many interconnections makes change harder and propagates errors throughout a system

· How does top down functional decomposition violate this principle?
· Top node(s) are at the center of design, like the hub of a wheel

· Top node (or generally high‑level nodes) become bottleneck

· Do complex systems really need a top?

· Removing the center emphasizes democracy rather than hierarchy

Information hiding, due to David Parnas, who coined two maxims of information hiding:

· Software client should have information needed to use a module, and nothing more

· Software supplier should have information needed to implement it, & nothing more

· Why is information hiding such a good idea for software engineering?
· Separation of concerns: client and supplier can work separately on different classes
· Interface vs. implementation: how do we see this distinction in C++?
Open‑closed principle: open to supplier, closed to client

· Another paradox, pointing out that information hiding has two faces:

· To supplier, a module must be open for extension, for new enhancements

· To client, a module must have a closed, stable interface

· This principle implies the need for inheritance and dynamic binding

PAGE
3

