Data abstraction with C++ classes

C++ adds a great deal to C (originally called "C with classes")

· Swedish connection: Bjarne Stoustrup borrowed ideas from Simula

· especially classes for describing behavior of real world objects

· C++ continues to evolve: version 1.0 released by AT&T in 1986

· Version 2.0 in 1990 (added multiple inheritance), 3.0 in 1992 (templates)

· ANSI standard in 1996 (exception handling, run time type identification, STL)

· C++ became the dominant OOPL in the early 90's, though now Java challenges

Let's see how C++ improves on C with respect to modularity:

A data structure for dates in C:

 struct Date {

 int month, day, year

 }

 void setMonth(struct Date*,int); //Note: ANSI C function prototypes from C++

 void setDay(struct Date*,int);

 void printDate(Date*)

What's the problem? No information hiding

· No way to prevent someone from assigning an illegal value to a Date's month

· Or suppose we want to change the representation of Date--say, to a string?

Closer coupling is possible in C++:

 struct Date {

 int month, day, year

 void set(int m,int d,int y) { month=m; day=d; year=y; }

 void print(); //Implement elsewhere

 ...

 }
· Functions are now declared inside the struct: called member functions
· Member functions invoked by a variable of the type:

 Date today; //A C++ improvement: structs automatically define types

 today.setMonth(6); //Using . notation to access member function

 today.print();
We now have data abstraction:

· procedural abstraction abstracts over blocks of codes with procedures or functions

· data abstraction closely couples a data structure with associated procedures

 e.g., associated with integer type are integer arithmetic operators

A C++ struct still don't provide information hiding yet: anyone can access its data

 today.month = 33; //circumvents today.setMonth()
C++ adds syntax of class to restrict access to data members:

 class Date {

 int month, day, year

 public:

 void setMonth(m) { if (m > 0 && m < 32) month=m; }

 void print(); //Implemented elsewhere...

 ...

 };
· member functions set and print following public: are visible to clients

today.setMonth(6);

· data members month, day and year are private or invisible outside class Date

today.day; xx

· but note that setMonth() itself has access to private data (month, day, year)

· class members are by default private

· could add keyword private: to make it explicit what is invisible

What principle does the reserved words private: and public: exemplify?

· information hiding: client of Date cannot alter its data members

Suppose we want to let consumers access to month without altering it?
· add member functions to Date that return data values:

int getMonth() { return month; }

· in client's code: today.getMonth();
What's are the advantages of this technique?
· No side effects: can't change data except through interface, e.g., setMonth()
· Modularity: supplier could now change representation of Date (e.g., compress it?)

Do you see a possible disadvantage, e.g., to using functions to set and get data?
· efficiency: but C++ solves this problem by supporting inline functions

· compiler inserts function body in code rather than function call

· functions defined in a class are implicitly inline (but compiler may ignore this advice)

Classes restrict access; C++ also provides ways to open access selectively

 1) Scope operator: ::

 Date::print() //Define print() declared in scope of Date
 { printf("%d/%d/%d",month,day,year); }
 print(), declared inside Date, has access to private members

 In C++ there are new operators for I/O: << and >>

 { cout << month << '/' << day << '/' << year; }
 << operator figures out how to print its arguments

 month, day, year are ints, '/' is char

 2) friends: provides selective access

 class Date {

 int month, day, year

 public:

 void setMonth(int m) {...}

 void print();

 ...

friend readDate(Date); //function can access private data

friend class calendar; //Class accesses all member functons

 }

 readDate(Date) { cin >> Date.month >> '/' >> Date.day ...

Thus, classes put hard shells around data, and friends poke holes in the shells!

· putting hard shells around data is called encapsulation

· poking holes in encapsulating shells is called friends
· you'd better be careful who you choose for friends!

· but note that C++ lets the supplier choose a class's friends, not the client

· In C, you can access any variable in another module with an extern declaration

· On the other hand, you provide out of file access with a static declaration

Exercise: declare a C++ class for Stacks, including data and accessor functions.

 Note: class declaration is an interface: it need not necessarily provide implementation

