Design Patterns

A pattern is a recurring solution to a standard problem, in a context.

Heinz Zullighoven: “A pattern is the abstraction from a concrete form which keeps recurring in specific non-arbitrary contexts.”

Jim Coplein: “I like to relate this definition to dress patterns. I could tell you how to make a dress by specifying the route of a scissors through a piece of cloth in terms of angles and lengths of cut. Or, I could give you a pattern. Reading the specification, you would have no idea what was being built or if you had built the right thing when you were finished. The pattern foreshadows the product: it is the rule for making the thing, but it is also, in many respects, the thing itself.”

Mature engineering disciplines have handbooks that describe successful solutions to known problems.

· E.g., automobile designers don't design cars using the laws of physics.

· Instead, they reuse standard designs with successful track records.

· Developing software is expensive: patterns support reuse of software architecture and design

Design Patterns, by Gamma, Helm, Johnson & Vlissides (Addison-Wesley, 1995)

· Authors known as the “gang of four” in the developing design patterns literature

· Evolved idea of patterns from Smalltalk frameworks and Jim Coplien’s book on C++ idioms.

· Chris Alexander wrote about patterns in architecture in 70’s, capturing expertise in his field

· But design patterns are more abstract, less code-specific, than either frameworks or idioms

· GOF book catalogs 23 different solutions to different classes of problems, in C++ and Smalltalk

· Eckel maps some of these solutions into Java

Design patterns aren’t really tied to the realm of design;

· Patterns stand apart from traditional stages of analysis, design and implementation

· Instead, a pattern embodies a complete idea within a program, so can appear at the analysis

· or high-level design phase, even though a pattern can include a direct implementation in code.
· How is this possible? How can a pattern with a code implementation show up so early?
· Abstraction: a pattern is a way to separate things that change from things that stay the same

· Discovering a use for a pattern in analysis or early, high-level design is like discovering

a large invariant; it promotes reuse and maintainability

Java has included some design pattern from early versions of its library and has added new ones

E.g., Enumeration is a pattern for modeling iteration,

Iterator is an improvement of this pattern in JDK 1.1, which works with its collections.

Iterator lets you write generic code that performs an operation on all elements

in a sequence without regard to how that sequence is built

Note emphasis on genericity in design patterns – works a little better in C++ with templates

The “Gang of Four” describe three general categories of design patterns:

· Creational patterns isolate the details of object creation (Singleton, FactoryMethod, Prototype)

· Structural patterns work with the way object connect with other objects to ensure that changes in the system don’t require changes in connections (Composite, Proxy, Bridge, Façade)

· Behavioral patterns encapsulate actions or processes (Iterator, Observer, Visitor, Command)
Command pattern

Where have we seen the Command pattern before? (I got the idea from Bertrand Meyer.)

Here’s how the GOF book describes the Command pattern:

Synopsis: Encapsulate a request as an object, thereby letting you parameterize clients

with different requests, queue or log requests, and support undoable operations.

Context: You want to model the time evolution of a program:

· What needs to be done, e.g. queued requests, alarms, conditions for action.

· What is being done, e.g. which parts of a composite or distributed action have been completed.

· What has been done, e.g. a log of undoable operations.

In other words, you want a kind of Reflection where what is being described is work flow,
not just instantaneous data.

Forces: The number and implementation of program operations can vary.

· Operations should be undoable, e.g. if the request was mistaken or a failure

occurred in the middle of a composite action.

· Additional functionality related to an operation, such as logging,

should be decoupled from the operation itself.

Solution: Explicitly represent units of work as Command objects.

The interface of a Command object can be as simple as a DoIt() method.

Extra methods can be used to support undo and redo.

Commands can be persistent and globally accessible, just like normal objects.

Structure (it helps to have a picture… the following is a UML diagram):

When can you use the Command pattern?

· When you need an action as a parameter—commands replace callback functions

· When you need to specify, queue, and execute requests at different times

· When you need to support undo

· When you structure a system around high-level operations built on primitive operations

A Transactions encapsulates a set of changes to data

Systems that use transaction often can use the command pattern

Consequences:

· Decouples the object that invokes the operation from the one that knows how to perform it

· It is easy to add new commands, because you do not have to change existing classes

· You can assemble commands into a composite object

Command processor pattern shows how to manage Commands, scheduling their execution and undo.

Structure

[image: image1.png]Command
:r‘:)(cessor p‘enorms - Command Recaiver
ol command) | Stores
undoit() erecue() action()
commandStack 4% /
ConcreteCommand
transfer
command evectte() o 1 receiver->action() ﬂ
p— [Teceiver

Look familiar?
Factory design pattern

Creational design pattern

· System determines subclass from which to instantiate objects at runtime

· Uses a factory object

· Uses an interface to instantiate object

· Example:

· java.net.SocketFactory creates SocketImpl object

Observer pattern

Here’s how the GOF book describes the Observer pattern:

Synopsis: Define a one-to-many dependency between objects so that when one object changes state,

all its dependents are notified and updated automatically.

Context: You want to maintain consistency between related objects, e.g. data and its visual

representation, a file system and its cache, or a 3D sphere and the cube which is constrained

to abut it.

Structure:

[image: image2.png]| Subject Iopconers | -Qbserver
iggcehc;Observer) observers 8/’;::::‘?(3
Detach(Observer)
Notify()
JAN
Subject W
getState () Update ()
setState(...) observerState
subjectState

Forces: You want to develop the objects separately, to minimize coupling (what they know about

each other) and increase reuse (using one without the other).

There may be several observers for each subject, with the precise configuration unknown

at compile-time.

Solution: Equip subject with an interface for subscribing and unsubscribing to change notifications.

Also include an interface for querying the subject, so that observers can get the information

they need. Equip the observers with an interface for receiving the notifications from

the subject.

When the subject is modified, it will notify its subscribers of a change,
who will then have the opportunity to query the subject for details and update themselves.

Implementation: Notes about tradeoffs for speed & space and avoiding bugs such as dangling pointers.

The “Model-view” aspect of Smalltalk’s model-view-controller framework models this view

· When you change state of model, views must know to update themselves correspondingly

Where do we see this pattern in the Java Development Kit? AWT framework with listeners.

· the “add<event>Listener” method registers the listener with the subject (an awt component)

· The “notify” is generated automatically by the run-time support

· Also threads, where objects being monitored in synchronized blocks can notify waiting threads, so that one can enter a ready state.

Here’s Eckel’s implementation of Observer pattern in Java.

· class Observable keeps track of everybody who wants to informed of a change

· class Observer says “OK, everybody check and maybe update themselves.”

Observable class calls method notifyObservers() for each one on the list

//: BoxObserver.java demonstrates of Observer pattern

// using Java's built-in observer classes.

import java.awt.*;

import java.awt.event.*;

import java.util.*;

//1

// You must inherit a new type of Observable:

class BoxObservable extends Observable {

 public void notifyObservers(Object b) {

 // Otherwise it won't propagate changes:

 setChanged();

//2

 super.notifyObservers(b);

//3

 }

}

public class BoxObserver extends Frame {

 Observable notifier = new BoxObservable();

//4

 public BoxObserver(int grid) {

 setTitle("Demonstrates Observer pattern");

 setLayout(new GridLayout(grid, grid));

 for(int x = 0; x < grid; x++)

 for(int y = 0; y < grid; y++)

 add(new OCBox(x, y, notifier));

//5

 }

 public static void main(String[] args) {

 int grid = 8;

 if(args.length > 0)

 grid = Integer.parseInt(args[0]);

 Frame f = new BoxObserver(grid);

 f.setSize(500, 400);

 f.setVisible(true);

 f.addWindowListener(

//6

 new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 });

 }

}

class OCBox extends Canvas implements Observer {

//7

 Observable notifier;

 int x, y; // Locations in grid

 Color cColor = newColor();

 static final Color[] colors = {

 Color.black, Color.blue, Color.cyan,

 Color.darkGray, Color.gray, Color.green,

 Color.lightGray, Color.magenta,

 Color.orange, Color.pink, Color.red,

 Color.white, Color.yellow

 };

 static final Color newColor() {

 return colors[

 (int)(Math.random() * colors.length)

];

 }

 OCBox(int x, int y, Observable notifier) {

 this.x = x;

 this.y = y;

 notifier.addObserver(this);

//8

 this.notifier = notifier;

 addMouseListener(new ML());

 }

 public void paint(Graphics g) {

 g.setColor(cColor);

 Dimension s = getSize();

 g.fillRect(0, 0, s.width, s.height);

 }

 class ML extends MouseAdapter {

 public void mousePressed(MouseEvent e) {

 notifier.notifyObservers(OCBox.this);

//9

 }

 }

 public void update(Observable o, Object arg) {

//10

 OCBox clicked = (OCBox)arg;

 if(nextTo(clicked)) {

//11

 cColor = clicked.cColor;

//12

 repaint();

 }

 }

 private final boolean nextTo(OCBox b) {

//13

 return Math.abs(x - b.x) <= 1 &&

 Math.abs(y - b.y) <= 1;

 }

} ///:~

Comments on BoxObserver code:

1. Package java.util contains class Observer and interface Observer
2. Method setchanged sets “changed” flag so observers got notified

3. super.notifyObservers(b) invokes base class Observable’s notifyObservers() method

4. Constructor creates a single Observable object called notifier
5. Create a matrix of objects of type OCbox (defined below), passing in coordinates and notifier.

6. BTW, this anonymous inner class defines a WindowAdapter (much shorter than defining every method in the WindowListener interface), thus just defines windowClosing() method

7. Class OCbox implements interface Observer
8. OCbox’s constructor add’s this OCbox to notifier’s list.

9. When mouse is clicked, the notifierObservers() method is called, passing in clicked object

10. Method update() is part of Observer interface, here defined by OCbox
11. If the clicked Observable object is nextTo this Observer object,

12. then change the color of this Observer to color of Observable object

13. Here’s the definition of method nextTo()
Summary: design patterns in general strive to separate the things that change from the things

that remain the same.

Thus, OOP isn’t just about polymorphism; polymorphism is just one way

“to separate the things that change from the things that remain the same.”

Design patterns show other ways to accomplish this goal of genericity.

Patterns aren’t necessarily a panacea: there’s also a literature of antiPatterns

· An AntiPattern is a literary form that describes a commonly occurring solution to a problem that generates decidedly negative consequences.

· It may be the result of a manager or developer not knowing any better, not having sufficient knowledge or experience in solving a particular type of problem, or having applied a perfectly good pattern in the wrong context.

· There’s still no “silver bullet”: patterns are a guide for learning good practice.

Some useful links:

http://hem.passagen.se/gumby/cs/patterns.html (links to tutorials and examples)

http://www.bell-labs.com/people/cope/Patterns/Process/index.html (Jim Coplien’s work on patterns)

8
1

