Object-Oriented DatabasesPRIVATE

References (these lecture notes originated in 1993):

POET Programmer's and Reference Guide, BKS Software 1992

Communications of the ACM, October 1991, Special issue on Next-Generation Database
Systems -- articles on several OODB products and research prototypes

R. Cattell, Object Data Management, Addison-Wesley, 1991.

Brown, Alan, Object-Oriented Databases and their Applications to Software Engineering,

McGraw-Hill, 1991.

Why OODB?

· From programming language point of view:

· permanent storage of objects (languages just support objects in memory)

· sharing of objects among programs

· fast, expressive queries for accessing data

· version control for evolving classes and multi-person projects

· From database point of view:

· More expressive data types (traditional DBs provide limited predefined types)

· e.g., a desktop publishing program might model a page as a series of frames containing text, bitmaps, and charts

· need composite and aggregate data types (e.g., structures and arrays)

· More expressive data relationships
· many-to-one relationship (e.g., many students in one class)

· navigating across relationship links

· More expressive data manipulation
· SQL is relationally complete but not computationally complete

i.e., great for searching for lousy for anything else

· leads to use of conventional programming language plus SQL-interface

· overhead of mapping from SQL to conventional languages

· Better integration with programming languages (esp. OO languages)

· Encapsulation of code with data

Two possible directions:

· extend relational database model to OODB: POSTGRES extends INGRES SQL

· extend OOPL to OODB:

· ObjectStore, O2 and Poet extend C++;

· OPAL extends Smalltalk; GemStone extends Smalltalk and C++

Persistence: letting objects have a longer lifetime than running programs

Smalltalk supports storing and reading of entire memory image (programming env.)

· easy for programmer: shipping an application can just mean sending an image

· But images are large, and upper limit is amount of main memory

· no sharing of objects among programs or distributed processing

Smalltalk, Objective-C and Java also support automatic passivizing/activation objects

· storing and restoring objects from a flat, ASCII file, annotated with object tags

· Objective-C: [myClass storeOn:"myClass"]; //Store object in file

grammar=[myClass readFrom:"myClass"]; //Metaclass creates new instance

myClass may contain other objects, so storeOn: and readFrom: are recursive

How could cyclical structures be a problem? How to solve it?

· In Java, it’s called serialization: see QuizScoresFile.java for an example

public final class QuizScoresFile implements Serializable

· Serializability is enabled by the class implementing the java.io.Serializable interface
· During deserialization, the fields of non-serializable classes will be initialized using the public or protected no-arg constructor of the class
· Classes needing special handling must implement writeObject & readObject methods
· QuizScoresFile just invokes default writeObject method in writeFile and default readObject method in method readFile
· What is automatic about this input/output procedure?

· How else could serialization be used besides storing and restoring objects from file?

· Transferring files over a network; serialization is a key feature of JavaBeans
· When traversing a graph, an object may be encountered that does not support the Serializable interface. In this case the NotSerializableException will be thrown and will identify the class of the non-serializable object
· Coad & Nicola, ch. 3, design & implement flat file storage in C++ (not built into C++!)

· Shortcoming of C++: no metaclass, no knowledge about class structure at run-time

· need access to class declaration to figure out format of class structure (schema)

· See Coad & Nicola, p. 381: need a switch statement to invoke constructors

· Why does this approach lead to code maintenance problems?
· NIHCL class library attempts to provide smalltalk-like automatic I/O,

but still requires programmer intervention, to invoke the right constructors

OODBs support persistent objects, automatically stored and retrieved as needed

stored more efficiently than in flat text files, with random access to objects

Identity: how should a system uniquely identify an object?
How does C/C++ identify objects?
Why won't this model of identity work for OODB?
What about using user-generated identifiers, e.g., SS#s?

Security hole: someone might read an object, change its ID, and write it back!

OODB manager could generate its own unique Object IDs, hidden from object consumers

surrogate is a logical id rather than an address in memory or on disk

· every object must get a unique id: can use system clock, or counter

How do you determine physical address from a logical surrogate? Hash table.

POET, GemStone and POSTGRES use surrogate approach

· some OODB managers support typed surrogates, including type in OID

different counters for each type; different address space for each type

ORION and ITASCA provide typed surrogates: maybe useful for distributed DBs?

Another approach is structured addresses: both physical and logical component

· physical disk page number in high-order bits: to compute disk read quickly to get page

· logical slot number in low-order bits: to determine offset of object in a page

· can delete a move an object within a page by updating slot array at start of page

Need to map C++ pointers & references to DB objects and vice versa

· converting OIDs or surrogates to machine addresses is called swizzling
· When would swizzling be a good idea? When one refers to same object many times.

· When would swizzling be not so hot? When an object get used once, then swapped out

Object management issues:
Preserving object identity should avoid duplicating objects

read each object into memory just once, and update objects in file consistently

need to record updates (and avoid collisions among multiple users)

or even multiple references to a single object in one program:

Person Adam(objbase), Cain(objbase), Abel(objbase);

Cain.father = &Adam;

Abel.father = &Adam; //Should refer to same object in memory

Cain.Store();

Abel.Store();
 //Should store just one copy of Adam (but update him)!

Clean up transient objects in memory (garbage collection)

POET uses reference counting, built into all instances of PtObject (and its heirs)

Database issues:

Queries: should access data based on logical expressions

expressions should be able to compare values of object members

should support efficient access using B-trees and user defined indexes

Database needs to resolve potential conflicts among multiple users seeking access

POET now supports client-server architectures

Locking objects in database while a user has it in memory: why?

Locking large objects may involve longer time spans than locking traditional records

Transactions - making tentative changes than can be undone if conflicting with others

 PtBase::BeginTransaction() - keep changes in a database cache instead of database

 PtBase::CommitTransaction() - write changes from cache to database

 PtBase::AbortTransaction() - undo all changes in cache

 Watch changes by other users, and notify other users about your changes

Programming language issues:

Database as an extension of programming language semantics

· for C++, requires language extensions to maintain metaclass information at runtime

User interface for richer data:

· browsers for class hierarchy

· tools for viewing object instances graphically

Interfaces to standard databases (e.g., SQL) and multiple programming languages

POET Tutorial
A class is persistent if it is declared using the 'persistent' keyword:

persistent class Person {

char name[30];

short age;

 public: ...

}

POET preprocessor, PTXX, compiles C++ files with extra syntax and keywords

Class declarations in a .hcd file

sample.hcd --PTXX--> sample.hxx (compilable by C++):

 class Person: public PtObject {

PtString name; //PtString is a POET class declared in POET.HXX

short age;

 public: ...

What do you think PtObject adds? inherits PtObject's database capabilities

Person(PtBase* base, PtObjId *id, PtPtr2SurrTuple*& info) : //POET constructor

PtObject(base, id, info) ;

//base is a database descriptor, id is a surrogate identity for an object

//PTXX generates a class factory constructor (metaclass) for Person

 }

Persistent objects may be stored in a database:

#include <poet.hxx> //POET declarations (e.g., PtBase)

#include "sample1.hxx" //From sample1.hcd (POET version 1.0, 1992)

main()

{ PtBase objbase; //Declare a database variable

 objase.Connect("LOCAL"); //Connect to DB server (possibly over network?)

 objbase.Open("test");
//Open DB file

 Person *man = new Person(objbase); //Returns a vanilla pointer to Person object

 man->Store(); //Store object in DB

 objbase.Close(); objbase.DisConnect();

 delete man;

}

Some of the busy work has apparently been encapsulated in POET version 2.0:

 From HelloWindowsApp::HelloWindowsApp (HANDLE hInstance...)

 :WindowsApp (...)

 { // Create an instance for the POET administration

 oa = new PtBase();

 //Connect to server or LOCAL and open the objectbase

if ((env = getenv ("PTSERVNAME")) != (char *) NULL)

 sprintf (buffer, "%s", env);

else strcpy (buffer, "LOCAL");

if ((err = oa‑>Connect (buffer)) != 0) ErrorExit ("Can't connect to server");

All instances of a persistent class C in a database are members of the class C AllSets:

class CAllSets automatically generated by PTXX along with class C

 //Insert following before objbase.Close:

 PersonAllSet* allPersons = new PersonAllSet("objbase"); //Create an AllSet from objbase

 Person* aPerson;

 allPersons->See(0,PtSTART); //Get first person in db

 while (allPersons->See(1,PtCURRENT) == 0) //Any more members of AllSet?

{ allPersons->Get(aPerson); //Get member

 aPerson->method(); //Let aPerson do something

 allPersons->Unget(aPerson); //delete aPerson

 }

 delete allPersons;

POET also supports generic set classes:

cset<Person*> people; //A set of Person; a compact set fits in on 64K segment

lset<Person*> morePeople; //A large set may exceed 64K segment

hset<Person*> mostPeople; //A huge set may swap to disk

Use sets to compute queries to database:

PTXX also generates a query class Cquery for each persistent class C:

PersonQuery q; //PersonQuery also created by PTXX

PersonAllSet *allPeople=new PersonAllSet(objbase);

typedef lset<Person*> PersonSet;

PersonSet *result = new PersonSet;

PersonQuery automatically gets public methods to set up query operators for Person data:

Setname(PtString param, CmpOp op=PtEq); //Sets up query about Person.name

Setage(short param,CmpOp op=PtEq); //Sets up query about Person.age

You can use Setname to set up a query with comparison operators:

q.Setname("M*"); //Supports wildcard comparisons

allPeople->Query(&q,result); //Use q to scan database q producing result

You can compose more complex queries out of simpler ones.

Suppose I want to ask about all the parents of all pre-schoolers in my database

Let's add another field to Person:

persistent class Person {

PtString name; //PtString is a POET class declared in POET.HXX

short age;

cset<Person*> children; //Each person has a set of children

 }

PersonQuery parent,children; //We're going to compose a query from two subqueries

children.Setage(5,PtLT); //Set up a query about pre-schoolers

parent.Setchildren(1,PtGTE,&children); //Query about parents of pre-schoolers

allPeople->Query(&parent,result); //Poll the Person objbase

You can set up indexes for queries:

Why might value-based queries like those above be slow?
Speed-up solution: add an explicit index to a class: use person's name and zipcode

persistent class Person {

PtString name; //PtString is a POET class declared in POET.HXX

short age;

cset<Person*> children; //Each person has a set of children

Address address;

useindex PersonIndex;

 }

class address { //Another class used to define address field

PtString street,city;

int zip;

}

indexdef PersonIndex:Person {

PtString name;

address.zip;

 }

Query class will use PersonIndex to set up faster queries

but indexes take up space, too

You may not want to store all the data in a persistent class

So POET lets you declare transient members

persistent class Person {

PtString name; //PtString is a POET class declared in POET.HXX

short age;

cset<Person*> children; //Each person has a set of children

Address address;

useindex PersonIndex;

transient WINDOW *viewer; //POET won't store a WINDOW in database

 }

May need to initialize transient data member in your own constructor:

 public:

 Person(PtBase* base, PtObjId *id, PtPtr2SurrTuple*& info) : //POET constructor

 PtObject(base, id, info) //Still inherit POET's constructor

{ viewer = new PersonDialog; } //Initialize transient member, viewer

You may want to ensure consistency of database by declaring dependencies:

persistent class Person {

depend Person* allter_ego; //Link from Clark Kent to Superman

//If you delete Clark Kent, POET will automatically delete Superman, too!

Other OODBs provide richer syntax for inverse relationships

e.g., setParent <==> setChildren

Suppose an object is linked to other objects in a database?

How can this be a problem for database retrieval? - how much to retrieve?

Could spend a lot of time retrieving a network of objects, & could overwhelm memory

Need transparent buffering--read in as much as necessary?

 POET implements a template class called ondemand which resolves references as needed:

persistent class Person { ...

ondemand<Person> children;

Then explicitly assign and get references as needed:

Person* Father = new Person;

Person* Child = new Person;

Father->Assign(objbase);

Father->Child.SetReference(Child); //Set ondemand reference

Father->Store(); //Father has a reference to Child person in objbase

Person* pChild(); //Suppose I want to load Father's child into memory

Father->Child.Get(pChild); //pChild now points to Child via Father's reference

Version control--i.e., keeping track of previous versions of code (classes)

Why is version control an important issue for OODBs?

When class structure changes (as Person has during this lecture!), what happens to DB?

Don't want to lose data, and don't want to write conversion routines!

Database manager should know when a class has changed and convert all objects in DB

POET creates a class dictionary, recording schema for each persistent class in database

When POET creates a database for a class, it stores a schema based on its declaration

When POET detects a change in class declaration it automatically registers the changes

"New version of class 'Person'."

but user must convert the data, using the class browser

