Distributed persistence, JavaBeans and CORBAPRIVATE

References:

seq level0 \h \r0

seq level1 \h \r0

seq level2 \h \r0

seq level3 \h \r0

seq level4 \h \r0

seq level5 \h \r0

seq level6 \h \r0

seq level7 \h \r0 (.
Peter van der Linden, Not Just Java, Prentice-Hall 1999.

(.
Bruce Eckel, Thinking in Java, Prentice Hall, 1998.

(.
Dick Baldwin’s Java Programming Tutorials (http://www.phrantic.com/scoop/onjava.html)

JavaBeans is Sun’s answer to Microsoft’s COM, DCOM, ActiveX and “DNA”

 COM, DCOM, ActiveX and “DNA” are Microsoft’s answer to CORBA:

· PRIVATE
Software frameworks for integrating software components distributed over a networktc \l 3 "·
Software frameworks for integrating software components rich may be distributed over a network"
A little history, starting with the evolution of Microsoft’s approach (like it or not!):

Windows gave PCs a more accessible computing environment

but there was still a problem with lack of consistency between different programs

What if you needed a spreadsheet and a word processor to share data?

Early solution was integrating suites into large programs: e.g., Microsoft Works

Microsoft comes out with Dynamic Data Exchange (DDE), circa 1989

· Lets different Windows programs share data through links

· E.g., suppose some spreadsheet data were linked into a word processor.

When you changed data in spreadsheet, the new data would appear in word processor.

Limitation: you couldn’t update the data in the word processor; you had to invoke the spreadsheet to update the date there.

Worse, links were fragile and would break if you moved data files around in file system.

Next, Microsoft came up with Object Linking and Embedding (OLE), circa 1991

· Linking was the same as DDE (essentially reference semantics)

· Embedding lets users copy a snapshot of data into word processor and save it there

· Linking was cheaper when data files were large; embedding made copies

· OLE was designed to support compound documents and document-centric computing, focusing on your data, not programs that you used to create the data

· But compound documents do not deliver the benefit of making data independent of application programs

· PRIVATE
And OLE was still a single desktop solution, when networks were becoming importanttc \l 1 "
And OLE was still a single desktop solution, when networks were becoming important"
So Microsoft introduced Component Object Model (COM) and OLE 2, circa 1993

· If programs could send objects to each other, why not send code as well as data?

· COM provides protocols letting components connect to their originating program

· E.g., word processor can tell the spreadsheet, “the user just clicked on the spreadsheet, so start yourself up in my windows, put your menus here, look for the data here, and let me know when you’re done, OK?”

BTW, HTML was already doing this in Web browsers, wasn’t it?

With Windows 95 came a new standard: OCX (OLE Custom eXtension component)

· A piece of code, smaller than application program, but with its own user interface

· The idea was to let users bundle OCX controls to form customized applications.

· PRIVATE
E.g., combine spell checker and synonym provider component to make a new programtc \l 2 "
E.g., combine spell checker and synonym provider component to make a new program"

Say, this is finally beginning to sound like object-oriented programming, isn’t it?

In 1996, Microsoft marketing retooled the terminology and came out with ActiveX
· Lets compound documents invoke viewing software for themselves

· Included Network OLE for rudimentary support of distributed applications

· Add executable content to web pages, like applets, only much less secure (no sandbox)

· Provides mechanism for downloading and running arbitrary files

· ActiveX Data Objects (ADO): a language-neutral object model that expose data raised by an underlying OLE DB Provider (So, why language-neutral?)
Also in 1996, Microsoft partnered with DEC to create Distributed COM (DCOM)

· Merged Network OLE with DEC’s ObjectBroker software

· A binary standard for communicating with remote Windows objects

The catch: it’s a Windows API, it’s proprietary, and it’s a bit clutzy to write code for

Microsoft’s J++ product includes hooks to COM (“J/direct”), along with a Raw Native Interface (RNI)

· differs from Sun’s official Java Native Interface (JNI)

Sun sued Microsoft about these differences as violations of their agreement & won, for now

Accounding to Sun JavaSoft: “A Java Bean is a reusable software component

that can be manipulated visually in a builder tool.”

· Once installed in the toolbox of a visual builder tool, a bean can incorporated into new applications and applets with no requirement to recompile the code for the Bean.

· Developer connects beans by dragging, clicking or highlighting components

· Borland Jbuilder is one builder tool: tutorial at http://www.drbob42.com/JBuilder/jb210t.htm
· E.g., given three JavaBeans, one reads mail, one saves text to a file, one encrypts text, connect these beans together and voila, you have a program that saves its files securely

· Any “glue” code needed is generated automatically behind the scenes

The following five attributes are common to Beans.

· Introspection: learn about a bean’s properties, methods and events, via getBeanInfo()

· Properties: customize the state of a bean, using set and get routines

· Events: respond to events use the event delegation model of JDK 1.1

· Customization: can modify the appearance and behavior of a bean, using a property editor

· Persistence: beans implement serializable interface

Automation of beans depends on a few conventions developed in JDK 1.1 and later:

· Beans depend on a naming convention: getX() and setX get and set a property, respectively

· Beans also rely on the "listener" approach to events, e.g., addFooListener(FooListener)
· Application builder tools use reflection to extract information about a Bean's properties & events

· Reflection (introspection) makes it possible to interrogate a class and get its methods

· For Beans, a class Introspector has a method, getBeanInfo(), which given a Class handle,

 returns a BeanInfo object that can be dissected to find properties, methods and events

· Beans also rely on multithreading and serialization of components

More developments:

· Lotus “Infobus” API lets JavaBeans pass large amounts of data among themselves

· Beans don’t have to know about each other, thus permitting loose coupling of objects

· Enterprise JavaBeans operate on the server side (not GUI-oriented),

e.g., read database, validate purchase order, insurance calculation and other business logic

seq level0 \h \r0

seq level1 \h \r0

seq level2 \h \r0

seq level3 \h \r0

seq level4 \h \r0

seq level5 \h \r0

seq level6 \h \r0

seq level7 \h \r0 (.
supported by Java Web Server (“servlets”)

(.
A servlet is a stand-alone Java program that an application server or Web server runs when Web clients request a particular HTML page.

(.
Java 2 Enterprise Edition requires support for upcoming EJB 1.1 standard, with “entity beans” Entity beans provide a much closer coupling between Java objects and relational database data than is found in EJB 1.0's session beans.
(
How does JavaBeans compare with COM and DCOM?

(.
Microsoft’s Transaction Server is a DCOM-based transaction processing monitor for NT

(
Microsoft’s latest net initiative is…. .NET, featuring:

· C#, a "new" language for writing classes and components, that integrates elements of C, C++, and Java, and adds additional features, like metadata tags, related to component development.

· C# borrows some of the component concepts from JavaBeans (properties/ attributes, events, etc.), adds some of its own (like metadata tags), but incorporates these features into the syntax differently.

· Java runs on any platform with a Java VM. C# only runs in Windows for the foreseeable future.

· A "common language runtime", which runs bytecodes in an Internal Language (IL) format.

· Code and objects written in one language can be compiled into the IL runtime, once an IL compiler is developed for the language.

· All IL byte code is in turn is compiled Just-In-Time into native machine code.

· Similar efforts with JVM: Jpython, Eiffel-to-Java, TCL/java, even COBOL, sans machine code.

· A set of base components, accessible from the common language runtime, that provide various functions (networking, containers, etc.).

· Sounds like JDK?

· Win Forms and Web Forms, new UI component frameworks accessible from Visual Studio.

· Microsoft’s alternative to Java Swing.

· ASP+, a new version of ASP that supports compilation of web-based ASPs (Application Service Providers) into the common language runtime (and therefore writing ASP scripts using any language with an IL binding).

· ADO+, a new generation of ADO data access components that use XML and SOAP for data interchange.

· XML and SOAP (Simple Object Access Protocol) are W3C standard that Microsoft has endorsed, parting from its emphasis on proprietary software.

· According to W3C, “SOAP is a lightweight protocol for exchange of information in a decentralized, distributed environment. It is an XML based protocol that consists of three parts: an envelope that defines a framework for describing what is in a message and how to process it, a set of encoding rules for expressing instances of application-defined datatypes, and a convention for representing remote procedure calls and responses.”

· High-level .NET components will include support for distributed access using XML and SOAP
· ADO+ is built on the premise of XML data interchange (between remote data objects and layers of multi-tier apps) on top of HTTP (AKA, SOAP). .NET's web services in general assume SOAP messaging models. EJB, JDBC, etc. leave the data interchange protocol at the developer's discretion, and operate on top of either HTTP, RMI/JRMP or IIOP.
PRIVATE
CORBAtc \l 4 "·
CORBA"
PRIVATE
Umbrella organization called Object Management Group (OMG) comes out with CORBA tc \l 4 "Umbrella organization called Object Management Group (OMG) comes out with CORBA "
· Goal since 1989 was to promote theory and practice of distributed OO software

· Object Management Architecture (OMA) defines a distributed object framework

· Object Request Broker (ORB) is a piece of “middleware” that links distributed objects

· Common Object Request Broker Architecture (CORBA) specifies what an ORB must do

· ORB lets client programs treat objects available on servers as if they were available locally, without the development overhead of sockets, protocols, packets, etc.

· Client makes a request (e.g., “Get me a stock price”);

ORB on a server gets the request,

Then makes a remote method invocation on an object on a (possibly different) server.

CORBA is not language specific: originally laid down with C++ in mind,

· but also works with C, Ada, Smalltalk, Java, even COBOL.

· (A goal was integration with legacy systems.)

Interface Definition Language (IDL) is the way CORBA achieves language neutrality

· IDL provides interfaces (analogous to Java interfaces), or stubs, not actual programs

· ORB server holds interface repository and implementation repository

· An object adapter invokes an implementation that satisfies the request

Several vendors have deployed their own ORB implementations, since late 1992

Java and CORBA map nicely to each other: interfaces and a reference object model

· Sun’s idltojava program generates a Java package named after the IDL module

A CORBA in Java example
(http://www.geocities.com/Athens/Academy/5120/Java620.htm)

Here are the steps for writing a CORBA application using Java under JDK 1.2 that runs as separate processes on the same platform using the name service

1. Write the IDL file that declares the necessary information about the servant objects.

· (In this lesson, we concentrated on servant object methods. However, other information about those objects can also be declared in the IDL file.)

2. Process the IDL file as a command-line parameter to the program named idltojava.

· (Generates one or more new packages with several Java source files in each package.)

3. Write the Java source code for the server and all of its servant classes

· The servant classes implement the declarations in the IDL file.

4. Write Java source code for the client that will invoke methods on the servant objects.

5. Compile all of the Java source files.

6. Start the name server program named tnameserv in its own process.

7. Start the server’s process.

8. Start the client’s process.

An IDL file is the glue that holds the system of programs together

· Makes it possible for code in a client to invoke methods in a remote object on a basis that is both platform and language independent.

Here is the source code in the IDL file for this simple application:

	 PRIVATE
/*File Corba02.*/

 module TheDateApp {

 interface TheDate{

 string getTheDate();

 }; //end interface TheDate

 }; //end module TheDateApp

The OMG Interface Definition Language (IDL) isn’t intended to compile into executable code.

· Rather, it is a language that is used to declare the interface to one or more operations (similar to methods in Java) on an object.

· The programmer is then responsible for translating the declaration of those operations into another language such as Java or C++, then implementing the operations in that language.

· idltojava (with JDK 1.2) automates the process of translating declarations from IDL file into Java source code.

· The module specification in the above file translates into a package specification in Java. Hence, the source files produced by the idltojava program will be stored in a package (folder) named TheDateApp.

idltojava -fno-cpp -p junk Corba02.idl
The -fno-cpp parameter overrides default requirement for a C++ style header file.

Optional -p junk argument causes the package/folder created by the program to be a sub folder of a folder named junk.

The following Java source files are created in the folder named TheDateApp:

seq level0 \h \r0

seq level1 \h \r0

seq level2 \h \r0

seq level3 \h \r0

seq level4 \h \r0

seq level5 \h \r0

seq level6 \h \r0

seq level7 \h \r0 (.
TheDateStub.java - This source file produces the class that functions as the client stub, providing CORBA functionality for the client. It implements the TheDate.java interface

(.
TheDateImplBase.java - This source file produces an abstract class that functions as the server skeleton. It provides basic CORBA functionality for the server implementing the TheDate.java interface. The server class TheDateServant extends _TheDateImplBase.

(.
TheDate.java - This interface contains the Java version of the IDL interface. It contains the single method getTheDate(). The TheDate.java interface extends org.omg.CORBA.Object, providing standard CORBA object functionality as well.

(.
TheDateHolder.java - This source file produces a final class that holds a public instance member of type TheDate. It provides operations for out and inout arguments, which CORBA has but which do not map easily to Java's semantics.

(.
TheDateHelper.java - This source file produces a final class that provides auxiliary functionality, notably the narrow() method required to cast CORBA object references to their proper types.

The next statement simply compiles all of the source files including those in the package/folder

(.
named junk.TheDateApp. There should be no surprises here.

	 PRIVATE
javac Corba02*.java junk/TheDateApp/*.java

· A client object can learn of a server object and its methods in several different ways.

· This application uses a name server that is delivered as an executable program named tnameserv in the JDK 1.2 download package:

	 PRIVATE
start tnameserv -ORBInitialPort 1050

By default, this name server operates on port 900. 9

(.
The above usage overrides the default and specifies that it operates on port 1050.

The next statement starts the server program running in a process of its own using port 1050:

	PRIVATE
 start java Corba02Server –ORBInitialPort 1050

The final statement in the batch file starts the client running in a process of its own.

(.
Under Win95, this will cause a new MS-DOS window to appear.

(.
After a short pause, the date and time will be displayed, having been obtained from the servant object on the server by the code in the client program.

	 PRIVATE
start java Corba02Client –ORBInitialPort 1050

The name of the file containing the server code is Corba02Server.java:

	 /PRIVATE
* File Corba02Server.java */

 import junk.TheDateApp.*;

 import org.omg.CosNaming.*;

 import org.omg.CosNaming.NamingContextPackage.*;

 import org.omg.CORBA.*;

 import java.util.Date;

	

This first fragment shows the required import statements.

(.
The first import statement accesses the class files produced by compiling the source code files in the package named TheDateApp by running idltojava on the IDL file.

(.
The next three import statements incorporate various CORBA libraries into the program. These are libraries that are part of the JDK 1.2 download package.

(.
The last import statement is needed to instantiate a Java Date object. This is the class that implements the method named getTheDate() that was declared in the interface in the IDL file. Hence, this is the method that the code in the remote client objects can invoke. They know about it because they also have access to the IDL file.

This method is very simple, simply returning the date and time as a String object:

	 PRIVATE
class TheDateServant extends _TheDateImplBase {

 public String getTheDate() { return new Date() + "\n"; }

 } //end TheDateServent class

The next fragment shows the definition of the class named Corba02Server:

	 PRIVATE
public class Corba02Server {

 public static void main(String args[]) {

 try { //Create and initialize the Object Request Broker (ORB) object

 //Instantiate servant object

 TheDateServant theDateRef = new TheDateServant();

 //Register the servant object with the ORB

 //Do everything necessary to register and expose the servant object

 // with the name service under the name "TheDate".

 System.out.println("Server is running");

 //Wait indefinitely for invocations from clients

 } catch (Exception e) { } //Exception handler goes here

 } //end main()

 } //end Corba02Server class

The file containing the client code is named Corba02Client.java:

	 PRIVATE
/*File Corba02Client.java */

 import junk.TheDateApp.*;

 import org.omg.CosNaming.*;

 import org.omg.CORBA.*;

Most of the code in this client is contained inside the main() method.

This is mostly boilerplate, since all this client does is to invoke the method on the remote object and display the String object that is returned.

	 PRIVATE
public class Corba02Client {

 public static void main(String args[]) {

 try{ //Create and initialize the ORB for the client

 //Do everything necessary to get reference to servant object named theDateRef
 //Use theDateRef to invoke the method on the remote object

 String theDate = theDateRef.getTheDate();
 //Display the value returned by the method

 System.out.println(theDate);
 //Delay program termination so that the console won't disappear from the screen

 // when running under control of a batch file.

 } catch (Exception e) {} //Exception handler goes here

 } //end main() method

 } //end Corba02Client class

Java now provides other support for distributed computing besides CORBA

· PRIVATE
Remote Method Invocation (RMI) permits objects to call methods on objects on serverstc \l 5 "·
Remote Method Invocation (RMI) permits objects to call methods on objects on servers"
· Java Database Connectivity (JDBC) allows access to ANSI SQL-2 databases

· Java Blend lets developers access databases without SQL statements or database schemata, by automatically mapping objects to database tables and vice versa

