Networking in JavaPRIVATE

Networking is a massive and complex topic, whole courses are devoted to this subject

· Java provides a rich set of networking capabilities

· Ranging from manipulating URLs on the Internet to client-server systems connecting via sockets or distributed systems via JavaBeans or CORBA

· I will discuss a client-server example that I implemented (based on ideas from Deitel & Deitel)

· package java.net.* includes classes for URLs, sockets and other networking features

Manipulating URLs

· URLs (Uniform Resource Locators) are the basis of the World Wide Web

· class URL stores the URL of a website:

· See http://www.eecs.lehigh.edu/~glennb/oose/java/netlinks.java
· This is the crucial code, using method getAppletContext to display a URL:

try { URL site = new URL(webURLs[index]);

 getAppletContext().showDocument(site);

 }

catch (MalformedURLException m){System.exit(1);}

· URL constructor determines a String represents a valid Uniform Resource Locator

· If not, it generates a MalformedURLException

· Applet’s method getAppletContext attempts to access the URL site

· If successful, AppletContext’s showdocument method displays the URL into an applet window

· Another version of showdocument takes a second String argument representing the target frame:

· Target frame “_blank” results in a new frame, “_self” results it into the same frame

· A URL can also be used to open an InputStream from a file on a server and read its content

public void actionPerformed(ActionEvent e) //respond to Enter key

{
try { URL url = new URL (e.getActionComand()); //from user

 input = new BufferedReader(

new InputStreamReader(url.openStream()));

 contents.setText(“Reading file…”);

 while ((line – input.readLine()) != null)

buffer.append(line).append(‘\n’);

 contents.setText(buffer.toString());

 input.close();

 }

· e.getActionCommand() gets String the user types into a TextField e

· URL method openStream() opens a network connection to this location
· Then chaining of stream objects kicks in, to give us the desired behavior:

· InputStreamReader constructor translates bytes into Unicode characters

· BufferedReader constructor buffers characters, reading one line at a time, with readline()
· By default, WWW browsers only allow a network connection to the applet server

· Recent versions of Java provide signed security features that allow applets to connect elsewhere

· If a browser determines that an applet is downloaded from a trusted source, it is given more access

Establishing a simple client-server system (using stream sockets)

See http://www.eecs.lehigh.edu/~glennb/oose/java/quiz.zip for an example

· Sets up a server managing quiz server, which clients on other machine can access

· Server maintains database of quizzes and scores

· Client prompts user for password, then runs quiz

· Server provides the passwords and quiz questions and records the answers from client

Components on socket-based network system:

· ServerSocket constructor registers a port number and a maximum number of clients:

ServerSocket s = new ServerSocket(port, queueLength());

· If the queue is full, client connections are automatically refused

· Once the ServerSocket is established, it listens (blocks) for clients attempting to connect

· This is accomplished with a call to ServerSocket accept method:

Socket connection = s.accept();

· class QuizServer (extending Frame) constructs a QuizClient for each accepted connection:

client = new QuizClient(server.accept(), qs);

· OutputStream and InputStream objects enable the server to connect with the client

· Server writes to an OutputStream and client reads from an InputStream, respectively

· class QuizClient sets up clients, communicating through streams

· output.writeUTF(“Connection successful”) sends a string to the client

· input.readUTF() reads a string from the client

· connection.close() closes a socket connection

· Class QuizAwt presents the quiz to the user, interacting with a QuizClient object on server

 public void openFilesThruSocket(String serverName)

 { try

 { client=new Socket(InetAddress.getByName(serverName),5000);

 quizInput = new DataInputStream(client.getInputStream());

 quizOutput=new DataOutputStream(client.getOutputStream());

 }

· Instantiates a Socket with two arguments to the constructor:

· InetAddress.getLocalHost() returns the Internet address of the local machine

· method InetAddress.getByName() can obtain the Internet address of another computer

· Second argument is the port number on the server (the handshake point)

· Once the connection is made, streams are created to connect with the streams in QuizClient

· QuizAwt and QuizClient interact to check passwords, then administer the quiz

· After the quiz is done, QuizClient stores the results:

//Update umscores.bin file, synchronized so different clients won't collide:

 synchronized (quizServer.studentScores)

 { quizServer.studentScores.writeFile(); }

Synchronized is a feature of multithreading, supported at the syntactic level in Java

· Why synchronize threads at this point?

Connection- vs. connectionless transmission

Connection-oriented transmission with streams is like the telephone system:

· You are given a connection to the telephone you wish to communicate with;

· The connection is maintained for the duration of your phone call, even if you’re not talking
Connectionless transmission with datagrams is more like the way mail is carried by the post office

· If a large message will not fit in one envelop, it is broken into separate message pieces (packets)

· Receiving end reassembles the message pieces into sequential order

· Even though they may not be received in sequential order

· Is a socket a connection-oriented or connectionless form of transmission?

· class DatagramPacket supports connectionless packets of bytes that may be sent and received

PAGE
3

