“Still Life with Fruit”

CSc432: Object‑Oriented Software Engineering

An artist wants some software to represent objects he might manipulate in still life paintings. For our prototype, we want to design a system of classes that manipulate different kinds of fruit in a bowl. Fruit generally have the following attributes of interest: they have a color, a shape, and a center located in two‑dimensional space. To keep the prototype simple, colors will simply be strings, and shapes will be simple geometric attributes for different kinds of fruit. The artist wants to be able to manipulate these attributes: changing colors, growing or shrinking shapes, moving centers. However, different kinds of fruit have different default colors and shapes. Apples are (by default) red and 2" in diameter, bananas are yellow and 6" in length, grapes are purple and come in clusters, in which each grape is 1" in diameter. When an apple changes shape, its diameter grows or shrinks by some specified amount, but bananas grow longer or shorter, and grapes add or remove a subcluster (some number) of grapes to the main cluster. Finally, a bowl is a collection of fruit, to which the artist may add or remove individual fruit (apples, bananas and grapes), as well as print out the collection with their current attributes. For the prototype, we will defer most user interface concerns; all operations will be demonstrated by a simulated artist (a driver class).

Hand in: analysis for this problem, modeling the fruit “system” using at least two notations:

1. A class diagram (using either Coad & Nicola or UML notation), showing static structure.

2. Either CRC cards, sequence diagram and/or collaboration diagram, showing dynamic behavior.

Look for opportunities to exploit inheritance and dynamic binding (noting any abstract classes). You may assume the existence of collection and GUI classes from some library, but may want to refer to them as suppliers in your diagram(s) and/or cards.

Also, a class diagram for the “undo” problem (http://www.cse.lehigh.edu/~glennb/oose/undo.doc).

Due: Thursday, October 4.

Free or trial versions of tools for creating diagrams in Coad & Nicola or UML notation or available via links on the course web page. (Note: discussing the strengths and weaknesses of a tool or comparing tools might make for interesting class presentations.)

You will continue to work on the fruit problem, submitting a design (reworking the class diagrams, adding user interface design, and adding ADT specifications), by October 18 and an implementation (in either C++ or Java) by November 8. Your first cut at an analysis for your term project should be submitted between October 11 and 16.

