Object-Oriented Software Engineering
Fall 2001

Professor: Glenn D. Blank Office: 328 Packard Lab Hours: TWTh 2:45-3:45PM
Phone: 610-758-4867 E-mail: glenn.blank@lehigh.edu

Web: http://www.cse.lehigh.edu/~glennb
Course Description: Design and construction of modular, reusable, extensible and portable software using statically typed object-oriented programming languages (Eiffel, C++, Java). Abstract data types; genericity; multiple inheritance; use and design of software libraries; persistence and object-oriented databases; impact of OOP on the software life cycle.

Prerequisites: some familiarity with the C++ programming language and data structures
Texts (first two highly recommended; others on reserve Fairchild-Martindale library or the web):
 Martin Fowler, UML Distilled, Addison-Wesley, 1999.
 Deitel and Deitel. How to Program: Java, 5th edition. Prentice-Hall, 2001.
 Good, popular resource for examples and explanations of Java code.
 Bruce Eckel, Thinking in Java, 2nd edition, Prentice Hall, 2000.
 IMO, a better written book for more experienced programmers.
 Available on the web: http://www.mindview.net/Books/TIJ/.
 Bruce Eckel, Thinking in C++, 2nd edition, Prentice Hall, 2000. (Also available on the web:
 http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html).
 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, Addison-Wesley, 1995.
 Bruce Eckel, Thinking in Design Patterns, preliminary version, http://www.mindview.net/Books/TIPatterns/.
 Pete Thomas & Ray Weedon, Object-Oriented Programming in Eiffel, Addison Wesley, 1995.
 Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 1997, 2nd edition, 1998.
 Peter Coad & Jill Nicola, Object-Oriented Programming, Yourdon Press, 1993.
 Scott Meyers, Effective C++, 2nd Edition, Addison-Wesley, 1997.
 Shari Pfleeger, Software Engineering: Theory and Practice, 2nd Edition, Prentice-Hall, 2001.
Requirements:
 Undo analysis, and analysis, design and implementation of "fruit" problem: 20%
 Inquiry-based research exercises and online post-test: 10%
 Project: substantial software development in Java or C++, 70%, apportioned by points as follows:
 Analysis and design: 30 points
 Program implementation and testing: 30 points
 Customer (requests a project, works with analyst, evaluates product): 10 points
 Librarian (tracks documentation, project minutes, test data, deliverables, maintenance manuals): 10 points
 Project manager (coordinates team, manages schedules and resources and meetings): 10 points
 Subcontractor (works on specified part of another project, negotiated with project manager): 10 points
 Every student must participate on an analysis/design and on a programming/testing team (2 per team).
 Every student must participate as either customer, librarian, project manager or subcontractor.
 Customer and analyst/designers may not work on the same project.
 Analyst/designers and programmers may not work on the same project.
 Subcontractors may be hired for specific tasks by either an analysis/design or programming/testing team.
 Each team will evaluate other teams in terms of criteria to be determined, using CourseInfo surveys.
 I will also review and modify student evaluations.
 Projects should tackle non-trivial problems (they may be prototypes), i.e., with at least a dozen distinct
 classes of objects and exploit inheritance and dynamic binding. Project ideas:
 Games (Monopoly, Battleship, Othello, children’s board games, etc.)
 Simulation systems (network configuration, finite state machine, OS, SimCity variants,
 Blocks world (an AI program responding to simple commands by moving blocks on a screen)
 Virtual reality systems, specialized language interpreters, etc.
 Requirements, analysis and design specifications due at dates specified during semester.
Extra credit: seminar presentation on a topic related to the course
 (i.e., interesting issues with project, research topics)
Syllabus

	Week
	Topics
	Readings (assignments & project activities dates (tentative)

	1
	Software quality & life cycles
	Thomas&Weedon ch 1, B. Meyer ch 3-4

	2
	Classes & inheritance
	Eckel C++, ch 1 and 15 (customer proposals Thurs, 9/6)

	3
	Requirements and use cases
	Fowler&Scott, ch 1-3 (negotiate customer and analysis teams, Tues, 9/11)

	4
	Object-oriented analysis
	Coad&Nicola ch 1, Fowler 5 (project requirements, use cases Fri, 9/28)

	5
	Abstract Data Types
	Thomas&Weedon chapters 3&8 (undo, fruit analysis, Tues 10/2)

	6
	Object-oriented design
	Thomas&Weedon ch 15; Coad&Nicola ch 2 (project analysis, 10/12)

	7
	Java
	Deitel and Deitel or Eckel, Java (fruit design, date TDB)

	8
	Java AWT and Swing
	Deitel and Deitel or Eckel, Java

	10
	Issues for inheritance
	B. Meyer, ch 20, 24; Eckel C++ ch 22 (project design, date TBD)

	11
	Idioms and patterns
	S. Meyers; Gamma Design Patterns (fruit implementation, date TBD)

	11
	C++ templates & libraries
	Eckel C++, ch 17-21

	12
	Code reviews, testing, delivery
	Pfleeger, ch 8-10

	13
	Java Beans; persistence
	Eckel Java, ch 14-15, appendix A

	14
	Project presentations
	(project prototypes)

	

