CSE 432: Object-Oriented Software Engineering

Spring 2004
Professor: Glenn David Blank
Phone: 758-4867

Office: 328 Packard Lab
Hours: WTh 2-3:45PM

E-mail:glenn.blank@lehigh.edu
http://www.cse.lehigh.edu/~glennb/oose/oose.htm
Course Description: Design and construction of modular, reusable, extensible and portable software using statically typed object-oriented programming languages (Eiffel, C++, Java). Abstract data types; genericity; multiple inheritance; use and design of software libraries; persistence and object-oriented databases; impact of OOP on software life cycle.

Prerequisites: Familiarity with a high-level programming language and data structures

Texts (first two strongly recommended; others available on reserve Fairchild-Martindale library or via the web):

 Martin Fowler, UML Distilled, 3rd edition, Addison-Wesley, 2004.

 Deitel and Deitel. How to Program: Java, 5th edition. Prentice-Hall, 2003. (Also How to Program: C++)

 Bruce Eckel, Thinking in Java, 2nd edition, Prentice Hall, 2002. (Available online at http://www.mindview.net/Books/TIJ/)

 Bruce Eckel, Thinking in C++, 2nd edition, Prentice Hall, 2002. (http://mindview.net/Books/TICPP/ThinkingInCPP2e.html)

 Shari Pfleeger, Software Engineering: Theory and Practice, 2nd Edition, Prentice-Hall, 2001.

 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, Addison-Wesley, 1995.

 Pete Thomas & Ray Weedon, Object-Oriented Programming in Eiffel, Addison Wesley, 1995.

 Scott Meyers, Effective C++, 2nd Edition, Addison-Wesley, 1997.

Requirements:

 Undo analysis, and analysis, design, and implementation of "fruit" problem:
8% each

 Project presentations:

6%

 Project: substantial software development in Java or C++:

70%, apportioned by points as follows:

· Projects should tackle non-trivial problems and exploit inheritance and dynamic binding.

· "Real world" projects, with customers outside of class, are recommended and will be evaluated more highly.

· Analysis and design: 30 points

· Program implementation and testing: 30 points

· Customer (requests a project, works with analyst, evaluates product; could represent outside customer): 10 pts

· Project manager (coordinates team participants by roles, manages schedules and resources): 10 points

· Librarian (documentation, project schedules and minutes, test data, deliverables and maintenance manuals): 10

· Subcontractor (works on a specified part of another project, negotiated with team and project manager): 10 pts

· Subcontractors may be hired for specific tasks by either an analysis/design or programming/testing team.

· Every student must participate on an analysis/design and on a programming/testing team (2 per team).

· Every student must participate as either customer, project manager, librarian, or subcontractor on one project.

· Customer and analyst/designers may not work on the same project.

· Analyst/designers and programmers may not work on the same project, though project manager role continues.

· Project manager should be one of the analyst/designers (to provide continuity for a project).

· Requirements, analysis and design specifications due at dates specified during semester (see syllabus below)

· Each team member evaluates other team members, by role, with Team role assessments.

Extra credit: seminar presentation on a topic related to the course, i.e., tools (Eclipse, Rose, Junit), research issues

Syllabus:

Date
Topics

Readings (assignments & project activities dates) & multimedia (Mm)

1/22
Team roles; Quality & modularity; Classes
Thomas ch 1
Mm: Why software engineering? Teams, Inheritance

1/29
Customer proposals; Life cycle models
Pfleeger, ch 2-3, Fowler ch 2 (proposals)

Mm: Life cycles

2/5
Requirements and use cases

Fowler ch 9 (form customer/analysts teams),
Mm: Use cases

2/12
Object-oriented analysis

Fowler ch 1-3 (project requirements, use cases),
Mm: CRC

2/19
Object-oriented design

Fowler ch 4-17 (undo, fruit analysis)

Mm: UML

2/26
Abstract data types; present analyses
Thomas ch. 3&8 (project analysis)

Mm: Abstract data types

3/1?
Introduction to Java

Deitel ch. 2-3, 6, 8-11 (Fruit problem design) Mm: Objects & classes

3/18
Java AWT, Swing, exceptions, threads
Deitel ch. 13-16 (project design #1; team role assessments)

3/25
Patterns, components and J2EE

Gamma et al. (fruit program)

Mm: Design patterns

4/1
Project designs; C++ templates & STL
Eckel C++ ch 17-22 (present project designs)

4/8
Extreme programming, testing, Junit
Pfleeger, ch 8-9

Mm: Regression testing, Extreme programming

4/15
Delivery & maintenance; C++ idioms
Pfleeger, ch 10-11, S. Meyers
4/22
Distributed objects: Java Beans, CORBA…
Eckel Java, ch 14-15, appendix A

4/29
Project presentations

(demo prototypes)

5/13
Final projects and team role assessments due by noon

