Sample Requirements Specification

Line Editor with Multiple Undo/Redo
Purpose: Develop a simple text editor, whose most interesting feature will be multiple undo/redo, i.e., it should be possible to undo any sequence of commands that changes the state of the text in the editor and correspondingly redo them.

Scope: The line‑editor, loosely based on Unix ed, will have just a few commands, as described below. The emphasis is on undo rather than a full‑blown editor. This program will take a team of 2-3 students about two weeks to analyze, design and implement.

Definitions:

A line‑editor is a program that allows a user to examine or modify text files by entering commands on a line in response to a prompt.

A prompt is one or more characters emitted by a program letting the user know that a program is waiting for a command.

A command is a character that the user enters telling the editor to perform some operation, such as deleting a line.

Functional Specification: The line‑editor will run indefinitely, prompting the user for commands, until the user enters q. It will respond to the following commands:

r <filename>

Read a file into an editing buffer.

w

Write buffer back into the file (ask if no file read).

p

Print the file, with line numbers.

g <line‑num>
Go to line‑num, and print out that line.

i

Insert lines before current line, up to a line with just "."

d

Delete current line.

c

Delete current line and insert new ones.

u

Undo the previous command (that changed the buffer).

f

Forward to the previous command (redo).

q

Quit line‑editor (ask if file has not been saved)

Undo/redo apply to commands that actually change the buffer (r, i, d, c), for up to 25 commands. If user input is unrecognizable as a command, editor will prompt for another command.

System constraints: Will run on PCs under Windows or Sun Sparcstations under Unix.

Personnel: Sue (project coordinator), Joe (project secretary), Harry

Team assignment: Form teams of a customer and two analysts for each term project. The analysts will then develop a requirements specification. This document should address at least the above issues. Supplement your functional specification of system behavior by developing a few UML-style use cases (in written and/or graphical form). See Fowler and Scott, UML Distilled, chapter 3, and my lecture notes (http://www.cse.lehigh.edu/~glennb/oose/02requir.doc) for details.

OOSE tools: The course web page (http://www.cse.lehigh.edu/~glennb/oose/oose.htm) has links to a few free or trial versions of visual OOSE tools. Rational Rose and Plastic 1.1 are available from the campus install page or see http://www.plasticsoftware.com/ for the most recent version of the latter. Argo UML, a Java-based open source UML tool is available at http://argouml.tigris.org/.

Due: Tuesday, Sept 17, 2002 Email to me by Tues AM so I can take a look at them before class.

