Midterm Study Guide

Midterm Time and Place:
- Wednesday, March 2, 1:10pm – 2pm
- Packard 466 (our usual room)

Format:
The test will be held in class. You can expect the following types of questions: true/false, short answer, and smaller versions of homework problems. It will be closed book and closed notes. However, you may bring one 8 ½ x 11” “cheat sheet” with handwritten notes on one-side only. Also, all calculators, PDAs, portable audio players (e.g., iPods) and cell phones must be put away for the duration of the test.

Coverage:
In general, anything from the assigned reading or lecture could be on the test. In order to help you focus, I have provided a partial list of topics that you should know below. In some cases, I have explicitly listed topics that you do not need to know. In addition, you do not need to reproduce the pseudo-code for any algorithm, but you should be able to apply the principles of the major algorithms to a problem as we have done in class and on the homework.

- Ch. 1 – Introduction
 o rationality
 o definitions of “artificial intelligence”
 o The Turing Test
 o you do not need to know:
 ▪ dates and history
- Ch. 2 - Agents
 o PEAS descriptions
 ▪ performance measure, environment, actuators, sensors
 o properties of task environments
 ▪ fully observable vs. partially observable, deterministic vs. stochastic vs. strategic,
 episodic vs. sequential, static vs. dynamic, discrete vs. continuous, single agent
 vs. multiagent, known vs. unknown
 o agent architectures
 ▪ simple reflex agents, goal-based agents, utility-based agents
 o state representations
 ▪ atomic, factored, structured
 o you do not need to know:
 ▪ learning agents
- Ch. 3 – Search
 o problem description
 ▪ initial state, actions, transition model, goal test, path cost/step cost
 o tree search
 ▪ expanding nodes, frontier
 ▪ branching factor
 o graph search
 ▪ explored set
 o uninformed search strategies
 ▪ breadth-first, depth-first, uniform cost
 ▪ similarities and differences / benefits and tradeoffs between strategies
 ▪ evaluation criteria
 ▪ completeness, optimality, time complexity, space complexity
o best first search
 ▪ evaluation function

o informed search
 ▪ heuristics
 ▪ greedy best-first, A*
 ▪ admissible heuristics
 ▪ similarities and differences / benefits and tradeoffs between strategies

o **you do not need to know:**
 ▪ depth-limited, iterative deepening or bidirectional search
 ▪ the exact $O()$ for any strategy’s time/space complexity *(but you should know relative complexity)*
 ▪ details of proof that A* is optimal if $h(n)$ is admissible
 ▪ memory bounded heuristic search
 ▪ learning heuristics from experience

- Ch. 5 - Game playing (Sect. 5.1-5.2, 5.4, 5.7-5.9)
 o two-player zero-sum game
 o problem description
 ▪ initial state, actions, transition model, terminal test, utility function
 o minimax algorithm
 o optimal decision vs. imperfect real-time decisions
 o evaluation function, cutoff-test
 o **you do not need to know:**
 ▪ alpha-beta pruning
 ▪ forward pruning
 ▪ details of any state-of-the-art game playing programs

- Ch. 7 – Logical Agents (Sect. 7.1-7.4, 7.7-7.8)
 o knowledge-based agents
 ▪ TELL, ASK
 o propositional logic
 ▪ syntax and semantics
 o entailment, models, truth tables
 o valid, satisfiable, unsatisfiable
 o model checking
 o **you do not need to know:**
 ▪ details of the Wumpus world
 ▪ circuit-based agents

- Ch. 8 – First-Order Logic
 o syntax and semantics
 ▪ be able to translate English sentences into logic sentences
 o quantification
 ▪ existential, universal
 o domain, model, interpretation
 o equality/inequality
 ▪ making statements about quantity (e.g., exactly two brothers)
 o **you do not need to know:**
 ▪ specific axioms from the domains given in class or the book