Homework #3: Chapters 7 and 8

Problem 1: [20 pts.]
a) [8 pts.] for truth table up to, and including, KB column

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>P ∨ R</th>
<th>P ∨ R ⇒ Q</th>
<th>¬Q</th>
<th>P ⇒ ¬Q</th>
<th>Q ∨ R</th>
<th>KB</th>
<th>¬Q ∧ R</th>
<th>P ⇒ R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

From the above table, we can conclude:

b) [4 pts.] Yes, KB does entail Q, i.e., KB |= Q
 Q is true in both models where the KB is true

c) [4 pts.] No, KB does not entail ¬Q ∧ R, i.e., KB |≠ ¬Q ∧ R
 It is false in both models where the KB is true (and must be true in all)

d) [4 pts.] Yes, KB does entail P ⇒ R
 It is true in both models where the KB is true

Give partial credit for wrong answers that are due to errors in the truth table, but would otherwise be a correct definition of entailment.
Problem 2:
[10 pts.] This is just one way to prove this, similar examples are acceptable. 5pts. each part. -2 each if only one direction is proven.

a) **First direction:** if $\alpha \models \beta$ then the sentence $(\alpha \Rightarrow \beta)$ is true in all models.

Proof: By definition, if $\alpha \models \beta$, then every model where α is true, then β is also true.
Thus, either α and β are both true, or α is false. In the first case, the truth table for \Rightarrow shows that $(\alpha \Rightarrow \beta)$ is true. For the second case, $(\alpha \Rightarrow \beta)$ is true regardless of the truth of β. Therefore, $(\alpha \Rightarrow \beta)$ is true in all models where $\alpha \models \beta$.

Second direction: if the sentence $(\alpha \Rightarrow \beta)$ is true in all models, then $\alpha \models \beta$.

Proof: By looking at the truth table of the sentence $(\alpha \Rightarrow \beta)$, it is only true if both α and β are true, or if α is false. When determining entailment, we can ignore those models where α is false. Since the only models where α is true, β is also true, $\alpha \models \beta$.

b) **First direction:** if $\alpha \models \beta$ then the sentence $(\alpha \land \neg \beta)$ is false in all models.

Proof: As above, if $\alpha \models \beta$, then every model where α is true, then β is also true.
Thus, either α and β are both true, or α is false. Consider the truth table for $\alpha \land \neg \beta$:

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>$\neg \beta$</th>
<th>$\alpha \land \neg \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

We have used cross-hatching to rule out the only model that is inconsistent with the premise $\alpha \models \beta$. In all three of the remaining models, $\alpha \land \neg \beta$ is false.

Second direction: If the sentence $(\alpha \land \neg \beta)$ is false in all models then $\alpha \models \beta$.

Proof: Consider the truth table above. There are three models where $\alpha \land \neg \beta$ is false. Of these models, there is only one where α is true (the last model in the table). Since β is also true in this model, every model in which α is true, β is also true. Thus, $\alpha \models \beta$.

Alternatively, we can prove part b) by noting that if P is false in all models, then $\neg P$ is true in all models (by the truth table for negation). $\neg(\alpha \land \neg \beta)$ is equivalent to $(\neg \alpha \lor \neg \beta)$ (by de Morgan’s law), which simplifies to $(\neg \alpha \lor \beta)$ which is equivalent to $(\alpha \Rightarrow \beta)$ by implication elimination (in the reverse direction). Thus, this statement is equivalent to “$\alpha \models \beta$ iff the sentence $(\alpha \Rightarrow \beta)$ is true in all models.” This is exactly what we proved in part a).
Problem 3:
[40 pts., 4 pts. each] There may be multiple right answers for each of these, especially since there are multiple ways to write semantically equivalent sentences.

∀d, p Daughter(d, p) ⇔ Child(d, p) ∧ Female(d)

∀s, p Son(s, p) ⇔ Child(s, p) ∧ Male(s)

∀w, h Wife(w, h) ⇔ Spouse(w, h) ∧ Female(w)

∀x, z Grandchild(x, z) ⇔ ∃y Child(x, y) ∧ Child(y, z)

∀a, d GreatGrandParent(a, d) ⇔ ∃b Parent(a, b) ∧ Grandparent(b, d)
 or
 ∀a, d GreatGrandParent(a, d) ⇔ ∃b, c Parent(a, b) ∧ Parent(b, c) ∧ Parent(c, d)

∀b, x Brother(b, x) ⇔ Sibling(b, x) ∧ Male(b)

∀s, x Sister(s, x) ⇔ Sibling(s, x) ∧ Female(s)

(Aunt is defined as the sister of one's father or mother, or the wife of one's uncle.)
∀a, c Aunt(a, c) ⇔ (∃p Sibling(a, p) ∧ Female(a) ∧ Parent(p, c)) ∨ (∃u Spouse(a, u) ∧ Uncle(u, c))
 or
 ∀a, c Aunt(a, c) ⇔ (∃p Sibling(a, p) ∧ Parent(p, c)) ∨ (∃u Spouse(a, u) ∧ Uncle(u, c))

(Uncle is defined as a brother of one's father or mother, or an aunt's husband.)
∀u, c Uncle(u, c) ⇔ (∃p Sibling(u, p) ∧ Male(u) ∧ Parent(p, c)) ∨ (∃a Spouse(u, a) ∧ Aunt(a, c))
 or
 ∀u, c Uncle(u, c) ⇔ (∃p Brother(u, p) ∧ Parent(p, c)) ∨ (∃a Spouse(u, a) ∧ Aunt(a, c))

(First cousin is defined as a child of one’s aunt or uncle.)
∀c, y FirstCousin(c, y) ⇔ ∃p, x Child(c, x) ∧ Sibling(x, p) ∧ Parent(p, y)
 or
 ∀c, y FirstCousin(c, y) ⇔ ∃x Child(c, x) ∧ (Aunt(x, y) ∨ Uncle(x, y))

 Note this definition is probably more lax than it should be. If someone who is an aunt or uncle by marriage to one of your blood-relations has a child by a prior marriage, then this definition considers that child to be your first-cousin (some dictionaries include a definition such as “Persons who have a grandparent in common are called first cousins” to rule this situation out). Nevertheless, I’ll accept this axiom as is. The stricter definition would be:

∀c, x FirstCousin(c, x) ⇔ c ≟ x ∧ ¬Sibling(c, x) ∧
 ∃g GrandParent(g, x) ∧ GrandParent(g, c)
Problem 4: [20 pts, 4 pts. each]

a) \(\exists x \ knows(x, \ Tim) \land \ loves(x, \ Tim) \)

b) \(\forall x \ knows(x, \ Sue) \Rightarrow avoids(x, \ Sue) \)

c) \(\exists x \ \forall y \ loves(y, x) \)

d) \(\neg \exists x \ \forall y \ knows(x, y) \) or
\(\forall x \ \neg \forall y \ knows(x, y) \) or
\(\forall x \ \exists y \ \neg knows(x, y) \)

e) \(\exists x \ loves(x, x) \land \ \forall y \ loves(x, y) \Rightarrow x = y \ or\)
\(\exists x \ loves(x, x) \land \ \forall y \ x \neq y \Rightarrow \neg loves(x, y) \)

Problem 5: [10 pts]

\(\forall s \ NearbyMines(s,2) \Rightarrow (\exists r,t \ r \neq t \land Adjacent(s,r) \land Mine(r) \land Adjacent(s,t) \land Mine(t) \land (\forall u \ u = r \lor u = t \lor \neg Mine(u) \lor \neg Adjacent(s,u))) \)

or

\(\forall s \ NearbyMines(s,2) \Rightarrow (\exists r,t \ r \neq t \land Adjacent(s,r) \land Mine(r) \land Adjacent(s,t) \land Mine(t) \land (\forall u \ Adjacent(s,u) \land Mine(u) \Rightarrow u = r \lor u = t)) \)

Other variations are possible.