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The World Wide Web is an information resource with virtually unlimited potential. However,
this potentia isrelatively untapped because it is difficult for machines to process and integrate this
information meaningfully. Recently, researchers have begun to explore the potential of associating
web content with explicit meaning, in order to create a Semantic Web. Rather than rely on natu-
ral language processing to extract this meaning from existing documents, this approach requires
authors to describe documents using a knowledge representation language.

Although knowledge representation can solve many of the Web's problems, existing research
cannot be directly applied to the Semantic Web. Unlike most traditional knowledge bases, the Web
ishighly decentralized, changesrapidly, and contains astaggering amount of information. Thisthe-
sis examines how knowledge representation must change to accommodate these factors. It presents
a new method for integrating web data sources based on ontologies, where the sources explicitly
commit to one or more autonomously devel oped ontol ogies. 1n additionto specifying the semantics
of aset of terms, the ontologies can extend or revise one another. This technique permits automatic
integration of sourcesthat commit to ontol ogies with acommon descendant, and when appropriate,
of sources that commit to different versions of the same ontology.

The potential of the Semantic Web isdemonstrated using SHOE, a prototype ontology language
for the Web. SHOE is used to devel op extensible shared ontol ogies and create assertions that com-
mit to particular ontologies. SHOE can be reduced to datalog, allowing it to scale to the extent
allowed by the optimized algorithms developed for deductive databases. To demonstrate the fea-
shility of the SHOE approach, we describe a basic architecture for a SHOE system and a suite of
general purposetoolsthat allow SHOE to be created, discovered, and queried. Additionally, we ex-
amine the potential uses and difficulties associated with the SHOE approach by applying it to two
problemsin different domains.
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Chapter 1

| ntroduction

The World Wide Web is the greatest repository of information ever assembled by man. It con-
tains documents and multimedia resources concerning almost every imaginable subject, and all of
this data is instantaneously available to anyone with an Internet connection. The Web's successis
largely dueto its decentralized design: web pages are hosted by numerous computers, where each
document can point to other documents, either on the same or different computers. Asaresult, in-
dividuals all over the world can provide content on the Web, allowing it to grow exponentialy as
more and more people learn how to use it.

However, the Web's size has also become its curse. Due to the sheer volume of available in-
formation, it is becoming increasingly difficult to locate useful information. Although directories
(such as Yahoo!) and search engines (such as Google and Alta Vista) can provide some assistance,
they are far from perfect. For many users, locating the “right” document is still like trying to find
aneedlein a haystack.

Furthermore, users often want to use the Web to do morethan just locate adocument, they want
to perform sometask. For example, a user might want to find the best price on a desktop compuiter,
plan and book a romantic vacation to a Caribbean island, or make reservations at a moderately-
priced Italian restaurant within five blocks of the movie they plan to see that evening. Completing
these tasks often involves visiting a series of pages, integrating their content and reasoning about
them in some way. Thisisfar beyond the capabilities of contemporary directories and search en-
gines, but could they eventually perform these tasks?

The main obstacle is the fact that the Web was not designed to be processed by machines. Al-
though, web pagesinclude special informationthat tellsacomputer how to display aparticular piece
of text or whereto go when alink is clicked, they do not provide any information that hel psthe ma-
chineto determine what the text means. Thus, to process aweb page intelligently, acomputer must
understand the text, but natural language understanding is known to be an extremely difficult and
unsolved problem.

Some researchers and web devel opers have proposed that we augment the Web with languages
that make the meaning of web pages explicit. Tim Berners-Lee, inventor of the Web, has coined
the term Semantic Web to describe this approach. Berners-Lee, Hendler and Lassila[4] providethe
following definition:

The Semantic Web is not a separate Web but an extension of the current one, in which
information is given well-defined meaning, better enabling computers and people to
work in cooperation.



Before we delve more deeply into just what the Semantic Web is, we will examine some of the
problemsthat it is meant to solve.

1.1 Why SearchisLacking

Users have two main toolsto help them locate relevant resources on the Web, catal ogs and search
engines. Catalogs are constructed by human experts, thus they tend to be highly accurate but can
be difficult to maintain as the Web grows. To keep up with this growth, search engines were de-
signed to eliminate human effort in cataloging web sites. A search engine consists of amechanism
that “crawls’ the Web looking for new or changed pages, an indexing mechanism, and a query in-
terface. Typically, the indices store information on the frequency of words and some limited posi-
tional information. Usersquery the system by entering afew keywordsand the system computesits
response by matching the entries against the index. Although many contemporary search engines
now also use link analysisto some degree, thisonly helpsto identify the most popular pages, which
may or may not be related to the relevance of the pages for a particular query.

Although search engines are able to index large portions of the Web, users often experience one
of two problems: they either get back too many irrelevant resultsor noresultsat al. Thefirst prob-
lem arises because the same word can have different meaningsin different contexts and keyword
indices do not preserve the notion of relationships between words. Although rarer, the second prob-
lem is due to the use of a term (or set of terms) that does not appear in the web pages. Although
queries can sometimes be improved by either adding more specific words to the query (in the for-
mer case) or synonyms (in the latter case), many useful queriesare still beyond the capabilities of
contemporary search engines.

Let us use an example to illustrate some of the problems with contemporary web search. Con-
sider aquery to find the chair of MIT’'s computer science department. A reasonable set of search
terms might be “MIT computer science chair.” Asshown in Figure 1.1, even Google, one of the
most acclaimed search engines does not return the desired information. *

Why wasthis query unsuccessful ? In thefirst result, the string “MIT” ismatched to the German
word “mit.” Asaresult, information from a German computer science department isreturned. The
second result is for the Committee on the Status of Women in Computing Research. This page
talks about the chairs of the committee, who are both members of computer science departments,
and lists members, one of which is affiliated with MIT. Thus, the problem is that the search engine
isnot aware of the desired relationship between theterms “chair,” “MIT,” and “ computer science.”
Similarly, thethird resultisaperson who received their degreefrom MIT, isaprofessor of computer
science at another ingtitution, and was chair of another organization.

Thelack of an ability to understand the context of wordsand rel ationshi ps between search terms
explains many of the false positives identified by the search engine, but why was the desired doc-
ument missed? Asit turns out, instead of achair, MIT has a department head, which isa smilar
but not identical notion. Our lack of knowledge about the department prevented us from providing
the search engine with a query that would alow it to find the correct result. However, if we had
asked a person the same query, they might assume that we meant the the head of MIT’s computer
science department, or at least ask us to clarify our intention. If a search engine could understand

1Since search engines are constantly changing, you may get different resultsif you try this query yourself.
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the intended meaning of the words, or even better, the semantic relationships between them, then
more accurate searches would be possible. Thisis one of the goals of the Semantic Web.

1.2 Other Applicationsof the Semantic Web

Improved search is only one of the many potential benefits from a Semantic Web. Internet agents,
which are autonomous programsthat interact with the I nternet, can al so benefit. In order to accom-
plish some goal, an internet agent can request and perceive web pages, and execute web services.
Theoretically, such agents are capable of comparison shopping, participating in an auction, or ar-
ranging a complete vacation. For example, an agent might be asked to make reservationsfor atrip
to Jamaica, and the agent would book a flight, arrange for arental car, and reserve a hotel room, all
based on the cheapest rates available. Although there are aready agents that can perform some of
these tasks, they are built to handle only a predefined set of web pages and are highly dependent on
the structure of these pages. Thus, they are very brittle; if aweb page changes, the agent may no
longer be ableto locate information or interact with it. Agentsthat could consider the semantics of
aweb page instead of its layout would be much more robust.

The Semantic Web could also make push systems more practical. A push system changes the
way that users are connected with data: instead of forcing information consumers to find relevant
web pages, the web pages areinstead “pushed” to them. Such systems require a profile of the user
and amethodto evaluateif aweb pageisrelevant to agiven profile. However, unlessthisevaluation
method isvery accurate, the systemwill keep “pushing” unwanted informationto the user, reducing
itsutility. Suchresultswill tend moreto annoy than to help the user, and are usually turned off. Web
pages with semantic content can be evaluated and pushed more accurately.

Finally, the Semantic Web may allow users to organize and browse the Web in ways more suit-
able to the problems they have at hand. The Semantic Web could be used to impose a conceptual
filter to aset of web pages, and display their relationships based on such afilter. This may also al-
low visualization of complex content. With HTML, such interfaces are virtually impossible since
it is difficult to extract meaning from the text.

1.3 Knowledge Representation on the Web

The Semantic Web depends on the ability to associate formal meaning with content. The field of
knowledge representation (discussed in Section 2.2 provides a good starting point for the design
of a Semantic Web language because it offersinsight into the design and use of languages that at-
tempt to formalize meaning. However, the nature of the Web challenges many of the assumptions
of traditional knowledge representation work, and requires us to look at the problem from a new
perspective. The impact of some of the most significant characteristics of the Web are discussed
below:

e The Web isdistributed. One of the driving factors in the proliferation of the Web is the
freedom from a centralized authority. However, since the Web is the product of many in-
dividuals, the lack of central control presents many challenges for reasoning with its infor-
mation. First, different communitieswill use different vocabularies, resulting in problems of
synonymy (when two different words have the same meaning) and polysemy (when the same



word is used with different meanings). Second, the lack of editorial review or quality con-
trol means that each page’s reliability must be questioned. An intelligent web agent ssimply
cannot assume that all of the information it gathersis correct and consistent. There are quite
a number of well-known “web hoaxes” where information was published on the Web with
theintent to amuse or mislead. Furthermore, since there can be no global enforcement of in-
tegrity constraints on the Web, information from different sources may be in conflict. Some
of these conflicts may be due to philosophical disagreement; different political groups, reli-
gious groups, or nationalities may have fundamental differences in opinion that will never
be resolved. Any attempt to prevent such inconsistencies must favor one opinion, but the
correctness of the opinion is very much in the “eye of the beholder.”

e The Web isdynamic. The web changes at an incredible pace, much faster than a user or
even an intelligent web agent can keep up with. While new pages are being added, the con-
tent of existing pages is changing. Some pages are fairly static, others change on a regular
basis and still others change at unpredictable intervals. These changes may vary in signifi-
cance: athough the addition of punctuation, correction of spelling errors, or reordering of a
paragraph does not affect the semantic content of adocument; other changes may completely
alter meaning, or even remove large amounts of information. A web agent must assume that
its data can be, and often will be, out of date.

The rapid pace of information change on the Internet poses an additional challenge to any
attempt to create standard vocabularies and provide formal semantics. As understanding of
agiven domain changes, both the vocabulary may change and the semantics may be refined.
It isimportant that such changes do not adversely alter the meaning of existing content.

e TheWeb ismassive. Intheyear 2000, estimates placed the number of indexable web pages
at over 2 billion, and predicted that this number would double in 2001. Even if each page
contained only a single piece of agent-gatherable knowledge, the cumulative database would
be large enough to bring most reasoning systems to their knees. To scale to the size of the
ever growing Web, we must either restrict the expressivity of our representation language or
use incomplete reasoning algorithms.

e TheWeb isan open world. A web agent is not free to assume it has gathered all available
knowledge; infact, inmost cases an agent should assumeit has gathered rather little available
knowledge. Even the largest search engines have only crawled about 25% of the available
pages. However, in order to deduce more facts, many reasoning systems make the closed-
world assumption. That is, they assume that anything not entailed in the knowledge base is
not true. Yet it isclear that the size and evolving nature of the Web makesit unlikely that any
knowledge base attempting to describe it could ever be complete.

In thisthesis, we will analyze these problems, provide a method for integrating web data, and
introduce SHOE, a prototype language that demonstrates the potential of the Semantic Web.

1.4 Contributions

Inthisdissertation, | will describe three significant contributions| have madeto the field of knowl-
edge representation as it applies to the Semantic Web:



e | provide anew formal definition of ontologiesfor usein dynamic, distributed environments,
such as the World Wide Web. In addition to specifying the semantics of a set of terms, on-
tologies are objects that can extend or revise one another. An ontology can also specify com-
patibility with earlier versions of itself.

¢ | develop anew method for integrating distributed data sources. In this method, sources ex-
plicitly commit to one or more autonomously developed ontologies. This technique permits
automatic integration of sources that commit to ontol ogies with a common descendant, and
when appropriate, of sources that commit to different versions of the same ontology.

¢ | introduce SHOE, aweb-based knowledge representation language that allows machinesto
automatically process and integrate web data. Authors provide datain an XML format and
explicitly commit to one or more shared ontol ogiesthat provide semanticsfor theterms. Us-
ing the method described above, SHOE can automatically integrate web data, even when on-
tologies evolve independently from the data sources that commit to them.

Additionally, | demonstrate the feasibility and potential use of SHOE as a semantic web lan-
guagein two ways:

¢ | designed and implemented a basic architecturefor semantic web systems. Theimplementa-
tionincludestwo reusable libraries, and four general purpose SHOE tools, totaling morethan
20,000 lines of code. Included in this suite are toolsto help users create SHOE documents, a
web-crawler that gathersinformation from pages and storesit in arepository, and a powerful
user interface for querying the repository.

¢ | developed and deployed two applications to show how SHOE can be used in practice. For
thefirst application, | used avariety of techniques to rapidly create nearly 40,000 SHOE as-
sertionsfrom the web pages of 15 different computer science departments, and then deployed
anew meansfor searching these pages. For the second application, | worked with ateam of
doctorsand scientiststo create afood safety ontology with over 150 categoriesand relations,
and developed a special tool that uses SHOE assertions to solve an important problemin this
domain.

1.5 ThesisOverview

The next chapter of this thesis surveys work from a number of related fields. The Semantic Web
is an emerging research area, but builds on existing technologies for the World Wide Web and the
literature of knowledge representation. Additionally, deductive databases provide algorithms and
insightsfor usinglogic inlarge-datasituations such asthe Web and the work in distributed databases
has considered the problem of managing information in decentralized environments. In addition to
introducing the reader to these diverse areas, the chapter discusses their relevance to the topic of
thethess.

Chapter 3 formally examines the problems of the Semantic Web and describes various meth-
ods for integrating data in this unique environment. The approach begins with a first-order logic
language, and adds various notions of ontologies to cope with the problem of integration of au-
tonomous sources that commit to different ontol ogies or different versionsof ontologies. This may



be skipped by those who are only interested in the pragmatics of the Semantic Web, but is essential
for anyone who is designing a Semantic Web language.

The next three chapters describe the design and use of SHOE, thefirst ontology-based semantic
web language. Chapter 4 describes the syntax and semantics of the language. These semantics are
grounded in the framework presented in Chapter 3. Chapter 5 discusses the issues of implement-
ing the SHOE language and provides a basic system architecture. It then describes a number of
specific tools that have been developed to demonstrate the use of SHOE. Chapter 6 discusses the
practical issues of using the language by describing two case studies. These examples demonstrate
how SHOE can be used by both general search systems and specia purpose query tools.

The remainder of the thesis is a comparison to other languages and the conclusions. Chapter
7 compares SHOE to the other leading Semantic Web |anguages, which include Ontobroker, RDF,
and OIL. It also describesDAML+OIL, an international effort to combine the best features of these
languages. Chapter 8 providesan analysis of the language and discusses futuredirections of the Se-
mantic Web. Appendix A providesboth SGML and XML DTDsthat precisely define the grammar
of the SHOE language.



Chapter 2

Background

The Semantic Web is an emerging research area which builds on the foundations of diverse prior
work. First, since the Semantic Web will be built on top of the existing Web, it isimportant to have
aclear understanding of existing Web standards, and to anticipate how the Semantic Web will in-
teract with other Web technologies. Second, thefield of knowledge representation is directly con-
cerned with the issue of semantics, and has resulted in many languages from which ideas can be
drawn. However, scalability is a problem for many traditional KR systems. Thus, work in deduc-
tive databases, which has studied reasoning with large amounts of data, may help us design infer-
ence algorithms that can scale to the size of the Web. Finaly, it is possible to view the Web as a
collection of autonomous databases. Thuswork on distributed databases, particularly in the area of
semantic heterogeneity, is highly relevant. In this chapter we will discuss each of these areas and
how they relate to the Semantic Web. We leave the discussion of various Semantic Web languages
until Chapter 7.

2.1 TheWorld WideWeb

In order to understand the World Wide Web, we will first look at the Internet, the infrastructure
upon which it was built. Then we will examine the Hypertext Markup Language (HTML), which
is the language used to describe the majority of existing web pages. Finally, we will discuss the
eXtensible Markup Language (XML), which may serve as a foundation for the Semantic Web.

2.1.1 Thelnternet

The Internet’s roots begin with ARPANET, a project commissioned by the Advanced Research
Projects Agency (ARPA) to study country-wide data communication. In 1969, ARPANET con-
sisted of four computers (called hosts) in different cities, but connected by anetwork. ARPANET
grew over the years and electronic mail became a popular early application. In 1973, ARPA intro-
duced the “Internetworking” program, with the goal of developing an open architecture network,
where different networks might have different architectures, but could interwork via a meta-level
“Internetworking Architecture.” A new network protocol was needed to support this architecture,
which led to the creation of the Transmission Control Protocol (TCP) and Internet Protocol (IP),
jointly known as (TCP/IP). TCP/IP is the low-level protocol used by most traffic on the Internet
today. High level protocols such as the File Transport Protocol (FTP), TELNET, the Simple Mail



Transfer Protocol (SMTP), and the Hypertext Transfer Protocol (HTTP), al rely on TCP/IPin or-
der to transfer files, perform remote logins, transfer electronic mail, and exchange Web documents
using the Internet.

2.1.2 Development of the Web

In 1990, Tim Berners-Lee developed the first version of his World Wide Web program at CERN.
The concept behind Berners-Lee's invention was to use hypertext as a means of organizing adis-
tributed document system. Hypertext refersto acollection of documentswith cross-references(also
known as links) between them that enable readersto peruse the text in a nonsequential manner. In
order to make the Web work on the Internet, Berners-L ee had to develop a mechanism for address-
ing documents on different machines, a protocol that allowed computersto request documents, and
a smple language to describe the documents.

The mechanism for addressing objects is the Uniform Resource Locator (URL). A URL con-
sists of a scheme followed by a colon and a scheme-specific part. The scheme specifies a protocol
by which the object is accessed and determines the form of the scheme-specific part. The most
commonly used scheme is http, in which the scheme-specific part consists of the name of the host
machine, pathname of afile, and an optional reference to an anchor inthe file. Sometimes, the term
URL isused interchangeably with theterm Uniform Resource | dentifier (URI), although technically
URI isabroader term used to indicate stringsthat may identify web resourceswithout specifying the
primary access mechanism. Many URI schemes, including the http one, set up hierarchical names-
paces. These schemes often use the Domain Name System (DNS) to identify the authority for the
namespace. DNS, which is a hierarchical namespace itself, has been successfully used to name
hosts on the Internet. The use of hierarchical namespaces allow new URIs to be created without
need for approval by a single central authority, while guaranteeing that URIs created by different
authorities are distinct.

The Hypertext Transport Protocol (HTTP) is used to request documents. These requests are
received by programs called web servers that run on the host machine. A web server uses a URL
provided in the request to determine which file to deliver. Often, thisfile is a Hypertext Markup
Language (HTML) document. A program on the requesting machine called a browser rendersthe
HTML for presentation on the screen.

HTML is essentially atext stream with special codes embedded. These codes, called tags, are
identified by having angle-brackets that surround them. An example HTML document isgivenin
Figure 2.1. The most important tag in HTML is the anchor tag, indicated by <A>. With the <A
HREF=...> form, anchor tags create a hypertext link to another document by specifying a URL.
These tags indicate that a web browser should retrieve the document represented by the URL if the
link isactivated. Most of HTML's other tags were concerned with organization and presentation of
the document. Thefirst version of the language included tagsto indicate headings (<H1>, <H2>,
etc.), paragraphs (<P>), and lists (<UL> and <LI>). Later versions added tags for special for-
matting such as bold and italics, forms that allowed pages to be interactive, tables, and text-flow
around images.

Although HTML'stagsare mostly presentation oriented, some tags were added to provide weak
semantic information. HTML 2.0 [3] introduced the META element and the REL attribute. The
META element specifies meta-datain the form of aname/value pair. A popular usefor META wasto
indicate keywords, for example <META name="keywords” content="Semantic Web">, that could



<HTM_>
<HEAD>
<TlI TLE>Acne CD Store</ Tl TLE>
</ HEAD>

<BODY>
<H1>Acne CD Store</Hl>
<P>\W&l come to our CD store!</P>

<H2>Cat al og</ H2>
<UL>
<LI>1. Cracker - Kerrosene Hat: $15.99
<LI>2. Phair, Liz - Exile in Quyville: $15.99
<Ll >3. Soul Coughing - Irresistible Bliss: $15.99

</ UL>
<P><A HREF="order. htm ">Pl ace your order!</A></P>

</ BODY>
</ HTM.>

Figure2.1: An example HTML document.

help search enginesindex the site. However, many sites began abusing the keywords by including
popular keywordsthat did not accurately describethe site (thisisknown askeyword spamming). As
aresult, many search engines now ignorethistag. The REL attribute of the anchor (<A>) and link
(<LINK>) elements names arelationship from the enclosing document to the document pointed to
by a hyperlink; the REV attribute names the relationship in the reverse direction. HTML 3.0 [80]
added the CLASS attribute, which coul d be used within almost any tag to create semantic subclasses
of that element, Unfortunately, the semantic markup elements of HTML are rarely used, but even
if they were, the semantics they provideis limited.

To address the semantic limitations of HTML, Dobson and Burrill [24] attempted to reconcile
it with the Entity-Relationship (ER) database model. Thisis done by supplementing HTML with
asimple set of tags that define “entities’” within documents, labeling sections of the body text as
“attributes’ of these entities, and defining relationships from an entity to outside entities. Thiswas
the first attempt to formally add structured data to web pages and thus presented an approach to a
problem that was also a significant motivation behind the design of XML.

213 XML

Degpite its popularity, HTML suffered from two problems. First, whenever someone felt that
HTML was insufficient for their needs, they would ssimply add additional tags to their documents,
resulting in a number of non-standard variants. Second, because HTML was mostly designed for
presentation to humans, it was difficult for machinesto extract content and perform automated pro-
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<?xm version="1.0"?>
<cat al og>
<cd>
<artist>Cracker</artist>
<titl e>Kerosene Hat</title>
<price currency="USD'>15. 99</ pri ce>
</ cd>
<cd>
<artist>Phair, Liz</artist>
<title>Exile in CQuyville</title>
<price currency="USD'>15.99</ pri ce>
</ cd>
<cd>
<artist>Soul Coughing</artist>
<title>lrresistible Bliss</title>
<price currency="USD'>15. 99</ pri ce>
</ cd>
</ cat al og>

Figure 2.2: An example XML document.

cessing on the documents. To solve these problems, the World Wide Web Consortium (W3C) de-
veloped the Extensible Markup Language (XML) [15].

XML is essentially a subset of the Standard Generalized Markup Language (SGML) [35], a
standard used by the text processing community. SGML is a meta-language, in the sense that it
can be used to define other languages, called SGML applications. The benefits of SGML include
platformindependence, separation of content from format, and the ability to determineif documents
conformto structural rules. XML kept these features, but |eft out those that were infrequently used,
confusing, or difficult to implement.

XML'’s syntax will seem familiar to users of HTML. This is not surprising, since HTML is
an application of SGML, XML's parent language. Like HTML (and SGML), XML allows angle-
bracketed tags to be embedded in atext data stream, and these tags provide additional information
about the text. However, unlike HTML, XML does not provide any meaning for these tags. Thus,
the tag <P> may mean paragraph, but it may mean partinstead. An XML version of our CD store
exampleisgivenin Figure 2.2.

There are three kinds of tagsin XML: start tags, end tags, and empty-element tags. A start tag
consists of aname and aset of optional attributes, surrounded by angle-brackets. Each attributeisa
name/value pair, separated by an equal sign. Inthe example, each price tag has acurrency éttribute.
An end tag consists of the name from a previous start tag, but preceded by adash (“/”) and cannot
have any attributes. Every start tag must have exactly one matching end tag. Empty-element tags
are like start tags, but don’t have a matching end tag. Instead, an empty element isindicated by a
slash just before the closing bracket. For example, <IMG SRC="photo.jpg” /> would be an empty-
element tag.

The data from a start tag to an end tag comprises an element. An element can contain other
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elements, freetext, or acombination of the two between its start and end tags. A well-formed XML
document contains exactly one top-level element, but can have an arbitrary nesting of elements
within that element.

Although XML's flexibility makes it easy for authorsto describe arbitrary content quickly and
easily, this flexibility can be problematic for machine processing. Since XML cannot express the
meaning of tags, most processing applications require tag sets whose meanings have been agreed
to by some standard or convention. To help with machine processing, XML alows grammars to
be defined for XML tags. Thisinformation is contained in a document type definition (DTD) that
specifies valid elements, the contents of these elements, and which attributes may modify an ele-
ment. We will not discuss the details of DTDs, which can be quite complicated, but suffice to say
that they essentially define acontext free grammar. An XML document that has an associated DTD
and conformsto the rules defined in it is said to be valid.

Although aDTD providesasyntax for an XML document, the semanticsof aDTD areimplicit.
That is, the meaning of an elementinaDTD iseither inferred by a human due to the name assigned
to it, is described in a natural-language comment within the DTD, or is described in a document
separate from the DTD. Humans can then build these semanticsinto tools that are used to interpret
or trand ate the XML documents, but software tools cannot acquire these semantics independently.
Thus, an exchange of XML documents works well if the parties involved have agreed to aDTD
beforehand, but becomes problematic when one wants to search across aset of DTDs or to sponta-
neously integrate information from multiple sources.

One of the hardest problems in any integration effort is mapping between different represen-
tations of the same concepts — the problem of integrating DTDs is no different. One difficulty
is identifying and mapping differences in naming conventions. As with natural language, XML
DTDs havethe problemsof polysemy and synonymy. For example, the elements <PERSON> and
<INDIVIDUAL> might be synonymous. Similarly, an element such as <SPIDER> might be poly-
semous: in one document it could mean apiece of software that crawls the World Wide Web while
in another it means an arachnid that crawls aweb of the silky kind. Furthermore, naming problems
can apply to attribute names just as easily as they apply to e ement names. In general, machines do
not have access to the contextual information that humans have, and thus even an automated dic-
tionary or thesaurus would be of little help in resolving the problems with names described here.

Aneven moredifficult problemisidentifying and mapping differencesin structure. XML'sflex-
ibility gives DTD authorsanumber of choices. Designers attempting to describe the same concepts
may choose to do so in many different ways. In Figure 2.3, three possible representations of a per-
son's name are shown. One choice involves whether the name is a string or is an element with
structure of its own. Another choice iswhether the name is an attribute or an element. One of the
reasons for these problemsisthelack of semanticsin XML. Thereisno special meaning associated
with attributes or content elements. Element content might be used to describe properties of an ob-
ject or group related items, while attributes might be used to specify supplemental information or
single-valued properties.

Once humans have identified the appropriate mappings between two DTDs, it is possible to
write XSL Transformations (XSLT) stylesheets[18] that can be used to automatically translate one
document into the format of another. Although thisis a good solution to the integration problem
when only afew DTDs arerelevant, it is unsatisfactory when there are many DTDs, if thereare n
DTDs, then there would need to be O(n?) different stylesheets to allow automatic transformation
between any pair of them. Furthermore, when aDTD was created or revised, someone would have
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<l-- The NAME is a subelenent with character content -->
<PERSON>

<NAMVE>John Smi t h</ NAME>
</ PERSON>
<l-- The NAME is a subelenent with el enent content -->
<PERSON>

<NAME><FNAME>John</ FNAME><LNAME>SM t h</ LNAVE></ NAMVE>
</ PERSON>

<l-- The NAME is an attribute of PERSON -->
<PERSON NAME="John Smith">

Figure 2.3: Structural differencesin XML representation.

to createor revisethen stylesheetstotransformit to all other DTDs. Obvioudly, thisisnot afeasible
solution.

Of course, the problems of mapping DTDswould go away if we could agree on asingle univer-
sal DTD, but even at the scale of asingle corporation, data standardization can be difficult and time
consuming — data standardization on a worldwide scale would be impossible. Even if a compre-
hensive, universal DTD was possible, it would be so unimaginably large that it would be unusable,
and the size of the standards committee that managed it would preclude the possibility of extension
and revision at the pace required for modern data processing needs.

Recently, the W3C has released an alternative to DTDs called XML Schema [85, 6]. XML
Schemas provide greater flexibility in the definition of an XML application, even allowing the def-
inition of complex datatypes. Furthermore, XML Schemas use the same syntactic style as other
XML documents. However, XML Schema only gives XML an advanced grammar specification
and datatyping capability, and still suffersfrom the same semantic drawbacks as DTDs.

The lack of semanticsin XML DTDs and XML Schemas makes it difficult to integrate XML
documents. In the next section, we discuss the field of knowledge representation, which has been
concerned with semantic issues. In Section 7.2, we will discuss the Resource Description Frame-
work (RDF), aW3C standard that attempts to address some of the semantic problems of XML.

2.2 Knowledge Representation

Many of the problemswith processing and integrating XML documents could be solved if wecould
associate machine understandable meaning with the tags. This meaning could be used to trans-
late from one DTD to another, or reason about the consequences of a given set of facts. Knowl-
edge representation, an important sub-field of artificial intelligence, can provideinsightsinto these
problems. A knowledge representation scheme describes how a program can model what it knows
about theworld. The goal of knowledge representation isto create schemes that allow information
to be efficiently stored, modified, and reasoned with. Research in the field has spawned a number
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of knowledge representation languages, each with its own set of features and tradeoffs. These lan-
guages differ in the way that knowledge is acquired, the extent of the descriptions they provide,
and the type of inferences that they sanction. An understanding of knowledge representation can
provide key insights into the design of a language for the Semantic Web. In this section, we will
consider a number of representations and formalismsthat are particularly relevant.

2.2.1 Semantic Networksand Frame Systems

One of the oldest knowledge representation formalisms is semantic networks [79]. In a semantic
net, each concept is represented by a node in a graph. Concepts that are semantically related are
connected by arcs, which may or may not be labeled. In such arepresentation, meaning isimplied
by the way a concept is connected to other concepts.

Many semantic networks use special arcs to represent abstraction, although as Brachman [10]
pointsout, the semantics of these linkswere often unclear. Now it israther common to use two arcs
for this purpose. Anis-a arc indicates that one concept is subclass of another, while an instance-of
arc indicatesthat a concept is an example of another concept. These arcshave correlationsin basic
set theory: is-aislike the subset relation and instance-of is like the element of relation.

The collection of is-a arcs specifies a partial order on classes; this order is often called a tax-
onomy or categorization hierarchy. The taxonomy can be used to generalize a concept to a more
abstract class or to specialize a class to its more specific concepts. As demonstrated by the popu-
larity of Yahoo and the Open Directory, taxonomies are clearly useful for aiding a user in locating
relevant information on the Web. However, these directory taxonomies often deviate from the strict
subset semantics followed by modern knowledge representation systems, making them less useful
for automated reasoning.

In the 1970's, Minsky [73] introduced frame systems. In the terminology of such systems, a
frameisanamed dataobject that has aset of dots, where each slot representsa property or attribute
of the object. Slots can have one or more values (called fillers), some of which may be pointersto
other frames. Since each frame has a set of dots that represent its properties, frame systems are
usually considered to be more structured than semantic networks. However, it has been shown that
frame systems are isomorphic to semantic networks.

KRL [7] is an early knowledge representation language based on frame systems. The funda-
mental entitiesin KRL are units, which consist of aunigue name, a category type, and one or more
named slots, each of which can have its own description. Each class has a prototype individual
which represents a typical member of the class. The language supports operations to add knowl-
edge to a description, to determine if two descriptions are compatible and to find a referent that
matches a given description. An interesting, but somewhat forgotten feature of KRL, was the abil-
ity to view an individual from different perspectives. For example, (the age from Person G0043)
might be an integer, while (the age from Traveler G0043) might be an element from the set {Infant,
Child, Adult}.

KL-ONE [13] continued the tradition of frame systems, while spawning the family of descrip-
tion logic systems, including Classic [12], LOOM [67], and FaCThorrocks:fact. Description logics
focus on the definitions of termsin order to provide more preci se semantics than semantic networks
or earlier framesystems. Term definitionsare formed by combining conceptsand rolesthat can pro-
vide either necessary and sufficient conditions or just necessary conditions. A descriptionissaid to
subsume another if it describesall of the instances that are described by the second description. An
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important feature of description logic systemsisthe ability to perform automatic classification, that
is, automatically insert a given concept at the appropriate place in the taxonomy. The advantages
of descriptionslogics arethey have well-founded semantics and the factorsthat affect their compu-
tational complexity are well understood, but it is unclear whether their inferential capabilities are
the right ones for the Web.

Semantic netsand frame systems providean intuitive basisfrom which to design asemantic web
language. The SHOE language, whichwill be describedin thisthesis, makes extensive uses of class
taxonomies. Although many knowledge representation systems cannot scal e to the sizes needed for
the Web, our applications have made extensive use of a scalable, high-performance system called
Parka[27, 84], which will be described in detail in Section 5.2.7.

2.2.2 First-Order Logic

First-order logic (FOL), also known as predicate calculus or predicate logic, is a well-understood
formalism for reasoning. Although the logic and knowledge representation communities are dis-
tinct, the expressivity of FOL neverthelessmakesit apowerful knowledge representation language.
From the perspective of FOL, theworld consists of objectsand therelationsthat hold between them.

A FOL language consists of logical and non-logical symbols. The logical symbols represent
quantification, implication, conjunction and digunction; while the non-logical symbols are con-
stants, predicates, functions, and variables. Constant, variable and function symbols are used to
build terms, which can be combined with predicatesto construct formulas. A subset of the possible
formulas that obeys certain rules of syntactic construction are called well-formed formulas.

The semantics of FOL are given by Tarski’s model theory, referred to as model-theoretic or
denotational semantics. Inthistreatment, an interpretation is used to relate the symbols of the lan-
guage to the world. An interpretation consists of aset D of individuals called the domain of dis-
course, afunction that maps constants symbolsto 1, afunction that maps function symbolsto func-
tionson D, and afunction that maps predicate symbolsto relationson D. If aformulaistrue under
some interpretation, then that interpretation isamodel of the sentence. Likewise, if aset of formu-
lasistrue under some interpretation, then the interpretation isamodel of the formulas. Given a set
of formulasT', if some formula ¢ is necessarily true, then we say that I entails ¢, written I' |= ¢.
Typically, thereis a special interpretation, called the intended interpretation that accurately reflects
the desired meaning for a set of sentences. A theory 7 isaset of sentencesthat are closed under log-
ical implication. Thus, forall ¢ suchthat 7 = ¢, ¢ € 7. A good introductionto FOL can befound
in Genesereth and Nilsson’s textbook [39], while LIoyd [65] provides a more detailed treatment.

An inference procedure is an algorithm that can compute the sentences that are logically en-
tailed by a knowledge base. FOL has a sound and complete inference procedure called resolution
refutation. A sound procedure only generates entailed sentences, while a complete procedure can
find a proof for any sentence that is entailed. However, refutation is intractable, making it a poor
choice for reasoning with large knowledge bases.

The Knowledge Interchange Format (KIF) [41] is a standard language that can be used to ex-
change FOL sentences between different programs. However, KIF does not explicitly address the
problemsinherent in the decentralized definition of symbols needed on the Web. In order to define
domain specific vocabularies, we need ontologies.

FOL isan extremely expressive representation, and can be used to describe semantic networks
and frame systems. Due to this flexibility, when we describe aformal model of the Semantic Web
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in Chapter 3, we will use FOL as our basis.

2.2.3 Ontology

In order for information from different sources to be integrated, there needs to be a shared under-
standing of the relevant domain. Knowledge representation formalisms provide structures for or-
ganizing this knowledge, but provide no mechanismsfor sharing it. Ontologies provide acommon
vocabulary to support the sharing and reuse of knowledge,

Asdiscussed by Guarino and Giaretta[45], the meaning of the term ontology is often vague. It
was first used to describe the philosophical study of the nature and organization of reality. In Al,
the most cited definition is due to Tom Gruber [42]: “An ontology is an explicit specification of a
conceptualization.” In this definition, a conceptualization is an abstract view of the world, along
the lines of Genesereth and Nilsson [39]. In particular, itisatuple (D, R), where D isthe domain
of discourseand R isaset of relationson D. Anontology associates vocabulary termswith entities
identified in the conceptualization and provides definitions to constrain the interpretations of these
terms.

Guarino and Giaretta [45] argue that Genesereth and Nilsson’s definition of conceptualization
should not be used in defining ontology, because it implies that a conceptualization represents a
single state of affairs (i.e., it is an extensional structure). However, an ontology should provide
termsfor representing all possible states of affairswith respect to agiven domain. Therefore, they
suggest that a conceptualization should be an intensional structure (W, D, R), where W isthe set
of possible worlds, D isthe domain of discourse, and R isaset of intensional relations, where an
n-ary intensional relationisafunction from W to 22" (the set of al possible n-ary relationson D).
In alater paper, Guarino refines thismodel and provides the following definition for an ontology.
[44]

Anontology isalogical theory accounting for the intended meaning of aformal vocab-
ulary, i.e, itsontological commitment to a particular conceptualization of the world.
The intended models of alogical language using such avocabulary are constrained by
its ontological commitment. An ontology indirectly reflects this commitment (and the
underlying conceptualization) by approximating these intended models.

Most researchers agree that an ontology must include a vocabulary and corresponding defini-
tions, but there is no consensus on a more detailed characterization. Typically, the vocabulary in-
cludes terms for classes and relations, while the definitions of these terms may be informal text,
or may be specified using aformal language like predicate logic. The advantage of formal defini-
tionsisthat they allow amachine to perform much deeper reasoning; the disadvantage isthat these
definitions are much more difficult to construct.

Numerous ontol ogies have been constructed, with varying scopes, levels of detail, and view-
points. Noy and Hafner [74] provide a good overview and comparison of some of these projects.
One of the more prominent themesin ontology research isthe construction of reusable components.
The advantages of such components are clear: large ontologies can be quickly constructed by as-
sembling and refining existing components, and integration of ontologiesis easier when the ontolo-
gies share components.

One of the most common waysto achievereusability isto allow the specification of aninclusion
relation that states that one or more ontologies are included in the new theory. If these relationships
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are acyclic and treat all elements of the included ontology as if they were defined locally then an
ontology can be said to extend itsincluded ontologies. Thisisthe case for most systems, however
Ontolingua[30] has even more powerful features for reusability: inclusion relations that may con-
tain cycles, the ability to restrict axioms, and polymorphic refinement.

Likean XML DTD or XML Schema, an ontology can provide astandard vocabulary for aprob-
lem domain. However, an ontology can also contain structures or axiomsthat define the semantics
of the vocabulary terms. These semantics can be used to infer information based on background
knowledge of the domain and to integrate data sources from different domains.

2.2.4 Context Logic

One of the problems with knowledge representation is that when we try to conceptualize some part
of the world, we must make some simplifying assumptions about its structure. If we then try to
combine knowledge bases (or logical theories), differences in their implicit, underlying assump-
tions may have unintended side-effects. Context logic [46, 68] proposes to solve this problem by
explicitly placing each assertion in acontext, where the context includes the assumptions necessary
for the assertion to be true.

The assumptions of a knowledge base often determine the structure of its vocabulary. For ex-
ample, an on-line retailer may choose to represent its catalog using product(X, P) where X isa
product identifier and P is its price. However, this representation assumes a standard currency,
perhaps U.S. dollars. If the retailer went international, they would need to change the representa-
tion to product(.X, P, '), where C' identifiesthe currency. This representation still has an implied
seller, and an intelligent shopping agent might want this information explicit, requiring instead a
representation such as sells(5, X, P, ('), where S identifies the seller. We could continue to iden-
tify assumptions and expand the representation ad infinitumif so desired. Nevertheless, it may be
more convenient for the retailer to provideits catalog in the product(.X, P) form. But in order to
do s0, it must be possible to use the assumptions implicit in the form to convert to the other forms
as necessary.

In context logic, contexts arefirst-class objectsthat can be used in propositions. Propositions of
theformist(c,p) are used to indicate that proposition p istruein context ¢. A particular individual ¢
can be excluded from the scope of a context ¢ by stating —presentin(c, ). Thereification of context
also makes it possible to combine information from many contexts. For example, one may wish
to reuse parts of one context in another or make statements that are smultaneoudy true in a set of
contexts. Statements that achieve these effects are called lifting axioms.

Another issue raised by context logic is that different contexts may contain mutually inconsis-
tent assertions. Such situations should not lead to inconsistency of the entire knowledge base. In-
stead, context logic only requires acontext to belocally consistent. Thisissueisof direct relevance
to the Semantic Web, where knowledgeisbeing provided by many userswho may haveinconsi stent
assumptions.

Context logic is implemented in Cyc [63, 64], an ongoing project with the ambitious goal of
encoding the entirety of common sense. Contexts are represented by microtheories, which parti-
tion the knowledge base, and can extend one another using standard ontology inclusion principles.
Since Cyc has an enormous ontology, microtheories are essential to its creation. They ssimplify the
encoding of assertions by knowledge engineers, avoid the inevitable contradictions that arise from
alarge knowledge base, and help guide inferencing mechanisms by grouping relevant statements.

17



Ontologies and context logic are closely related. Each context is an ontology, and ontology
inclusion could be one particular type of lifting axiom. Animportant aspect of context logic isthat
different contexts may be suitable for solving different problems. We will return to this point in
Section 3.8.

2.3 Deductive Databases

One problem with many of the knowledge representation techniques discussed in Section 2.2 is
that they do not scale well. However, if the size of the current web is an indication of the size the
Semantic Web, then we know that any practical reasoning method must scale to enormous sizes.
Deductive databases [ 72] extend traditional relational database techniques by alowing some of the
relations to be computed from logical rules. Thus they combine the ability to perform inference
with the ability to scale to large data sizes, both of which are required for the Semantic Web. De-
ductive databases address two deficiencies of logic programming languages such as Prolog [81].
First, Prolog’s depth-first evaluation strategy requires careful construction of programsto avoidin-
finite loops. Second, efficient access to secondary storage is required to cope with a large volume
of data

A common logic-based data model is datalog [86, Chapter 3]. It is similar to Prolog in that
it consists entirely of Horn clauses, but differsin that it does not alow function symbols and isa
gtrictly declarative language.r In datalog, relations that are are physically stored in the database
are called extensional database (EDB) relations and are identical to relationsin the relational data
model. The main difference between datalog and the relational model isthat it also allowsrelations
which are defined by logical rules, caled intensional database (IDB) relations. Datalog also has a
number of built-in predicates for standard arithmetic comparison. Any predicate that isnot built-in
iscalled ordinary.

Datal og relations are denoted by atomic formulas, which consist of apredicate symbol and alist
of arguments. A argument can be either a constant or a variable. IDB relations are Horn clauses,
which takethe form A :- b1, b5, ..., b,, where h and al b; are atomic formulas. The left hand side
h is called the head or consequent, and the right hand side is called the body, antecedents, or sub-
goals. The meaning of theruleisif the body is conjunctively true, then the head is also true. IDB
relations may depend on each other recursively by containing each other in their bodies. Programs
that contain such rules are called recursive.

In order keep relationsfinite, datal og definesthe notions of limited variablesand safety. A vari-
ableislimited if it appearsin an ordinary predicate of therule’sbody, appearsin an ‘=" comparison
with a constant, or appearsin an ‘=" comparison with another limited variable. A ruleis safeif al
of itsvariables are limited.

An important branch of research in deductive databases deal s with the optimization of queries.
The standard methods for evaluating queries in logic are backward-chaining (or top-down) and
forward-chaining (or bottom-up). In backward-chaining, the system uses the query as agoal and
creates more goals by expanding each head into its body. This approach ensures that only poten-
tially relevant goals are explored but can result in infinite loops. Forward-chaining starts with the
EDB and repeatedly uses the rulesto infer more facts. As such, it avoids the problems of looping,

Prologis not strictly declarative because the order of the rules determines how the system processes them.
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but may infer many irrelevant facts. An important result from deductive databases is the magic
sets technique [87], which rewrites rules so that a forward-chaining evaluation will only consider
potentially relevant goals similar to those explored by backward-chaining.

Another prominent theme in deductive database research deals with allowing negation in the
model. When negated literalsare allowed, aprogram may not have aunique, minimal model, which
isused to definethe meaning of datal og programs. Oneform of negation that hasintuitive semantics
is stratified negation, in which negated subgoals are not used recursively.

Due to the focus of deductive databases on logic with large data sets, this work provides in-
sight into practical implementations of the Semantic Web. Thework described in thisthesis makes
extensive use of XSB [83], adeductive database that will be described in detail in Section 5.2.6.

2.4 Distributed Databases

If we can treat web pages as structured content, then it is possible to view the Web as a collection
of autonomous databases. From this perspective, research in distributed databases isimportant. In
this section, we will describe the themes of deductive database research and discuss how they might
be relevant to the Semantic Web.

The degree of coupling between the components of a multidatabase system can be used to clas-
sfy different architectures[9]. Global schema integration requires that the individual schemas of
each database be merged, so that a single schema can be presented to users. Federated database sys-
tems (FDBSs) alow component databases to retain some degree of autonomy, and export portions
of their schemasfor use by thefederation. Inatightly coupled FDBS, asingle schemaexistsfor the
federation, and methods exist to trand ate between each export schema and the federation schema.
Inaloosely coupled FDBS, users create their own views from the export schemas. When maintain-
ing the autonomy of the component databases is of chief importance, then the multidatabase lan-
guage approach isused. No modifications are made to the participating databases, instead a specia
guery languageisis used to access and combine results from the different databases.

The problems addressed by distributed database research include integrating heterogeneous
database management systems (DBM Ss), concurrency control and transaction management of dis-
tributed databases, ensuring consistency of replicated data, query planning for accessing distributed
data sources, and resolving the problems of semantic heterogeneity. We will discuss each of these
issues in turn to determine its relevance to the Semantic Web. For a more detailed discussion of
these issuesin their original context, see the book by Elmagarmid, Rusinkiewicz, and Sheth [25].

The problem of heterogeneous DBMSs is integrating data contained in databases designed
by different vendors that possibly use different data models (e.g., the relational model versus the
object-oriented model). Thisisnot aproblem for the Semantic Web because the Web has a standard
access protocol (HTTP) and ideally the Semantic Web will have a single language for exchanging
knowledge (most likely based on XML).

Concurrency control and transaction management are core issues for al DBMSs. Concurrency
control deals with alowing simultaneous access to a database while ensuring consistency of the
database in the presence of potentially multiple writers. Transactions are used to ensure that a se-
guence of operations are treated as a unit. For example, when transferring money from one bank
account to another, atransaction can be used to ensurethat if the database failed in themiddle of the
transfer, money would not belost or gained. Theseissuesare very difficult for distributed databases
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due to the heterogeneity and autonomy of the component databases. Fortunately, they do not have
much of an impact on the Semantic Web, since most operationsareread-only. That is, typically the
only updates to web pages are performed by their owners. Furthermore, each HTTP request is a
separate transaction. However, if the Semantic Web is eventually used as a general infrastructure
for e-commerce, then it may become necessary to treat aseries of HT TP operations as atransaction.

When different copies of the same data are maintained in different locations, the data is said
to bereplicated. The problem with replication in distributed databases is that all updates must be
made to each copy to ensure that the data is kept consistent. On the Web, it is certainly possible,
even probable, that data will be replicated, but due to the autonomy of web sites, it isimpossible
to ensure that this dataiis consistent. In fact, since the Web is meant to represent the viewpoints of
many, it isundesirable to treat it as asingle, consistent database.

Of the problems faced by distributed databases, the most significant to the Semantic Web is
semantic heterogeneity. Different database designers can model the world in many different ways,
resulting in differencesin naming, structure, and format. The autonomy of web sites will lead to
similar problems with the Semantic Web.

Kashyap and Sheth [56] provide an overview of approaches to classifying and evaluating the
semantic similarity of objects from different databases. An important component to many of these
approaches is identifying a context. However, the contexts used are not necessarily the same as
thosein context logic. Inthe semantic proximity approach, the semantic similarity of two concepts
isisdefined by the kindsof contextsin which they are smilar and the differencein the abstractions
of their domains. However, the information provided is insufficient to automatically integrate two
databases. In the context building approach, a set of interschema correspondence assertions (1S
CAys) define a context. An ISCA states whether two terms are synonymous or polysemous, what
difference in abstraction they represent and what kinds of structural differences exist. An ISCA
can be used to perform some integration automatically, but lacks the expressive power to describe
afull trandation from one schemato another. The context i nterchange approach associates contex-
tual metadata with attributes, and has conversion functions that can trand ate data from an export
context to an import context by using the appropriate function to resolve the difference indicated
in the metadata. In general, these approaches seem limited to resolving only some (if any) of the
problems of semantic heterogeneity.

Other resourceintegration approaches use knowledge bases to perform schemaintegration. The
Carnot [19] architecture uses the Cyc knowledge base as a global schema. A separate context is
created for each component schema, and articul ation axioms are used to state equivalence between
objectsin these schemas and the global one. Farquhar et a. [28] expand upon the use of contexts
and articulation axioms, arguing that they can be used to achieve either aloosely-coupled federated
database approach, or a global schema approach as needed. The advantage is that multidatabase-
style access can be achieved quickly, and integration can be performed incrementally by adding
more lifting axioms.

Closely related work in information integration focuses on building systems that can combine
information from many different types of sources, including file systems, web pages, and legacy
systems. Information integration systems typically have a mediator architecture [90], where me-
diators are components that serve as an interface between user applications and data sources. The
mediator receives queries from the applications, determines which data sources contain the data
necessary to answer the queries, and issues the appropriate queriesto the sources. The data sources
are encapsulated by wrappers[78, 82] which provide auniforminterface for the mediators. TSIM-
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MIS[37], Ariadne[58], Infomaster [40], and Garlic [82] all follow this basic architecture. Most of
these systems use some sort of logic language to describe data sources and transl ate between them.
For example, TSIMMI S specifies mediators, wrappers, and queriesusing avariant of datalog, while
Infomaster uses KIF to specify trand ations. With the appropriatewrappers, information integration
systems can treat the Web asa database. However, the heterogeneity of the Web requiresthat amul-
titude of custom wrappers must be developed, and it is possible that important relationships cannot
be extracted from the text based solely on the structure of the document. Semi-automatic gener-
ation of wrappers [60, 2] is a promising approach to overcoming the first problem, but is limited
to data that has a recognizable structure. Another problem with existing mediator systems is that
they require a single schema for specifying application queries. However, this means that if data
sources begin providing new kinds of information, it will not become available in the system until
the mediator and wrapper is updated.

2.5 Other Related Work

Querying the Web is such an important problem that a diverse body of research has been directed
towardsiit. In the previous sections we tried to focus on the research that was most relevant to the
topic of thisthesis. Inthissection, we giveabrief overview of different approachesto the problem.

Some projects focus on creating query languages for the Web [1, 59], but these approaches are
limited to queries concerning the HTML structure of the document and the hypertext links. They
alsorely onindex serverssuch as AltaVistaor Lycos to search for words or phrases, and thus suffer
from the limitations of keyword search.

Work on semistructured databases[ 70] isof great significanceto querying and processing XML,
but the semistructured model suffersthe same interoperability problemsas XML. Even techniques
such as data guides will be of little use when integrating information developed by different com-
munitiesin different contexts.

In order to avoid the overhead of annotating pages or writing wrappers, some researchers have
proposed machine learning techniques. Craven et a. [20] have trained a system to classify web
pages and extract relations from them in accordance with a ssimple ontology. However, this ap-
proach is constrained by the time-consuming task of developing atraining set and has difficulty in
classifying certain kinds of pages due to the lack of similarities between pages in the same class.
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Chapter 3

A Logical Foundation for the Semantic Web

In this chapter, we will develop a framework for reasoning about the Semantic Web. We will start
with abasic logic approach and gradually refineit to deal with the problems of representing knowl-
edge on the Web.

3.1 AnInitial Approach

A requirement for the Semantic Web is the ability to associate explicit meaning with the content
of resources. We will do this by embedding a logical language in the resources and providing a
denotational semantics for it. Many of the knowledge representation languages and structures dis-
cussed in Chapter 2, such as semantic networks, frame systems, and datal og, can al be formulated
infirst-order logic. For thisreason, and because first-order logic is well-understood, we will useit
asour basis. Inorder to use thisframework with systemsthat cannot be described infirst-order logic
(e.g., probabilistic logics, temporal logics, higher-order logic), one must reformulate what follows
to correspond to the desired logic.

First we must define our domain of discourse. Themain objectsof interest areinternet resources
and entities that are described by them. An internet resource is anything that providesinformation
viathelnternet, such asaweb page, newsgroup, or e-mail message. We will use R torefer to the set
of these resources. The domain of discourse, on the other hand, is the collection of things that are
described or mentioned by internet resources, including potentially internet resources themselves.
We will use D to refer to this set.

We will assume that we have afirst-order language £ with a set of non-logical symbols S. The
predicate symbols of S are Sp C S5, the variable symbolsare Sy C 5, and the constant symbols
are S¢ C 5. For smplicity, we will not discuss function symbols, since an n-ary function sym-
bol can be represented by an+1-ary predicate. The well-formed formulas of £ are defined in the
usual recursive way. We will use IV to refer to the infinite set of well-formed formulas that can be
constructed in L.

Let K : R—2" beafunction that maps each resource into a set of well-formed formulas. We
call K the knowledge function because it extracts the knowledge contained in a resource and pro-
vides an axiomatization for it.

We will define an interpretation Z in the standard way. It consists of the domain of discourse D
(asdefined above), afunctionZq : S — D that maps constant symbolsto elements of the domain,
and aset of functionsZp, : Sp — D™ that map n-ary predicate symbolsto sets of »-tuplesformed
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from the domain. If aformula ¢ is true with respect to an interpretation Z, then we write Z = ¢
and say that 7 satisfies ¢ or that 7 isamodel of ¢. Given a set of sentences I, if an interpretation
7 satisfiesevery ¢ € I' thenwewriteZ = T.

Oneway to consider the Semantic Web isto think of each resource as specifying an independent
theory, that is, there is no interaction between the theories. In this approach, each resource must
specify the complete theory that is needed to reason about it. For example, a genealogy web page
that containsinformation on one'sancestors should include thefollowing axiomsthat provide basic
semantics for the ancestorO f predicate:

parentOf(x,y) — ancestorO f(x,y)
ancestorO f(x,y) A ancestorO f(y, z) — ancestorO f(x, z)

However, a disadvantage of the independent theory approach isthat all other genealogy pages
must replicate the axioms that define the basic geneal ogy predicates. Furthermore, if one resource
contained thefact ancestorO f(alice, bill) and another contained thefact ancestorO f(bill, carol),
then we would be unable to conclude ancestorO f(alice, carol ), because we cannot combine the
theories.

In order to prevent the Semantic Web from becoming a billion unrelated idands, there needs to
be away to combinethe information contained in the resources. We will state this as afundamental
principle of the Semantic Web:

Principle 3.1 The Semantic WWeb must provide the ability to combine information from multiplere-
Sources.

Given this proposition, let us consider an approach to combining the resources. We define a
naive integrated theory N7 asthe union of the well-formed formulas generated by the set of re-
SOUrces.

Definition 3.2 Given a set of resources R, a naive integrated theory is:

NIT(R) = |J K(r)

reR

At first glance, this seems to be a sufficient approach. Since the formulas of al resources are
combined, the axiomatization of any domain needs only to be expressed in a single resource, and
it is possible to deduce things that require premises from distinct resources. However, upon closer
inspection, problems with this approach begin to emerge.

Recall that the Web is a decentralized system and its resources are autonomous. As a resullt,
different content providers are free to assign their own meanings to each nonlogical symbol, thus
itislikely that multiple meanings will be assigned to many symbols. Different axiomatizationsfor
the same symbolsmay result from the polysemy of certain words, poor modeling, or even malicious
attemptsto break thelogic.

To resolve the problem of accidental name conflicts, we will assume that the constants S« of £
are URIs. Since URIs provide hierarchical namespaces (as described in in Section 2.1.2), they can
be used to guarantee that constants created by different parties will be distinct.

Other problems are more complex. As pointed out by Guha[46, Section 2.6], atheory usually
has an implied background theory that consists of its assumptions. To combine a set of theories
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accurately, we need to make some of these assumptions explicit. For example, if one theory about
stock prices assumed that the day was yesterday and another assumed that the day was today, an
integrated theory should attach the date to each assertion. Guha calls this process relative decon-
textualization. Relative decontextualization may also involve mapping synonymous terms, or in
the more complex case, different representational structuresthat have the same meaning. Note that
in order to perform relative decontextualization, one must first know the contexts associated with
the two theories. We will distinguish between simple combination, in which no relative decontex-
tualization is performed, and integration, in which it is performed.

Principle 3.3 Semantic web resources can only be integrated after they have undergone relative
decontextualization.

Oneway toavoid theneed for relative decontextualizationisto create astandardized vocabul ary
with official definitionsfor each symbol, However, to handle all expressions that might appear on
the Web, the vocabulary would have to be enormous, making it nearly impossible to standardize,
comprehend, and later change as necessary.

3.2 An Ontology-Based Approach

Recall from Section 2.2.3 that an ontology provides a common vocabulary to support the sharing
and reuse of knowledge. When two parties agree to use the same ontology, they agree on the mean-
ingsfor all termsfrom that ontology and their information can be combined easily. Unfortunately,
thereis no widely accepted formal definition of an ontology. In this section and the next two, we
will formally define ontologies that are applicable to the Semantic Web.

3.2.1 Ontology Definitions

Let us think of an ontology as smply a set of symbols and a set of formal definitions, along the
lines of Farquhar, Fikes, and Rice [30]. We will assume that the formal definitions are written in
the language £. We can now define an ontology:

Definition 3.4 Given a logical language £, an ontology is a tuple (V, A), where the vocabulary
V' C Sp issome subset of the predicate symbols of £ and the axioms A C W are a subset of the
well-formed formulas of L.

Asaresult of this definition, an ontology definesalogical language that is a subset of the language
L, and definesacore set of axiomsfor thislanguage. Since the ontology defines alanguage, we we
can talk about well-formed formulas with respect to an ontology.

Definition 3.5 A formula ¢ iswell-formed with respect to an ontology O = (V, A), iff ¢ isawell-
formed formula of a language £’, where the constant symbols are S and the variable symbolsare
S, but the predicate symbolsare V.

We can also define what it means for an ontology to be well-formed.
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Definition 3.6 An ontology O = (V, A) iswell-formed if every formula in A is well-formed with
respect to O.

We will now provide meaning for ontologies by defining interpretations and models for them.
First, we define a pre-interpretation that maps each constant symbol of the language to the domain
of discourse.

Definition 3.7 A pre-interpretation of £ is a structure that consists of a domain /) and a function
that maps every constant symbol in S¢ to a member of D.

Every £-ontology uses the same pre-interpretation. Since the symbols from S are URIs, their
intended interpretation is fixed by the URI scheme or by their owners. For this reason, it is as-
sumed that these interpretationsare universal. Aninterpretation of an ontology consists of the pre-
interpretation and a mapping of the predicate symbols of £ to relations on the domain.

Definition 3.8 Aninterpretation of an ontology consists of a pre-interpretation and a function that
maps every n-ary predicate symbol in Sp to an n-ary relation on D.

We can now define amodel of an ontology.

Definition 3.9 A model of an ontology O=(V, A) isan interpretation that satisfies every axiomin
A

Thus an ontology attempts to describe a set of possibilities by using axioms to limit its models.
Some subset of these models are those intended by the ontology, and are called theintended models
of the ontology. Note that unlike afirst-order logic theory, an ontology can have many intended
models because it can be used to describe many different states of affairs.

Note that we chose to have the interpretation of an ontology assign relationsto every predicate
symbol in the language £, not just those in the ontology. This makes it possible to compare the
models of different ontologies that may have separate vocabularies. Since we are treating ontolo-
gies as digoint, thisis not significant now. However, it will become important when we begin to
discuss ontologies that can extend other ontologies and reuse their vocabulary. Also note that the
intended interpretations of an ontology will limit the relationsthat directly or indirectly correspond
to predicatesinitsvocabulary, whilealowing any of the possibilitiesfor predicate symbolsin other
domains.

3.2.2 Resource Definitions

Now we need to associate an ontology with each resource. If we let O be the set of ontologies,

then we can create afunction C' : R — O, which maps resources to ontologies. We call this the

commitment function because it returnsthe ontology that a particular resource commitsto. When a

resource commitsto an ontology, it agreesto the meanings ascribed to the symbol s by that ontol ogy.

Because (' isafunction, aresource can only commit to a single ontology, but in Section 3.3.3 we

will show how a single ontology can combine multipleontol ogies, thus overcoming this limitation.
The vocabulary that a resource may useis limited by the ontology to which it commits.
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Definition 3.10 A resource r iswell-formed if C'(r) = O and K (r) iswell-formed with respect to
0.

That is, aresourceiswell-formedif thetheory given by the knowledge functioniswell-formedwith
respect to the ontology given by the commitment function.

We now wish to define the semantics of aresource. When aresource commitsto an ontology, it
has agreed to the terminology and definitions of the ontology. Thus every interpretation of an on-
tology is an interpretation of the resources that commit to it, and an interpretation that a so satisfies
the formulas of aresource isamodel of that resource.

Definition 3.11 Amodel of aresource r, where C'(r) = O, isamodel of O that also satisfies every
formulain K (r).

3.2.3 Simple Ontology Per spectives

Using the definitions above, we could once again create a separate theory for each resource, know-
ing that the ontologies provide reusable sets of axioms that do not need to be repeated for each
resourcein the same domain. However, this approach would still prevent us from combining infor-
mation from different resources, and thus bein conflict with Principle 3.1. Instead, wewill consider
away to create larger theoriesthat combine resources which share ontologies. We will attempt to
divide the Semantic Web into sets of resourcesthat share a context, and thus can be combined with-
out relative decontextualization. We will call these divisions perspectives, because they provide
different views of the Semantic Web.

We need some guidelines for determining how to construct the perspectives. Each perspective
will be based on an ontology, hereafter called the basis ontology or base of the perspective. By
providing a set of terms and a standard set of axioms, an ontology provides a shared context. Thus,
resources that commit to the same ontology have implicitly agreed to share acontext. To preserve
the semantics intended by the author of each ontology and resource, wewill requirethat the models
of each perspective be a subset of the models of its basis ontology and of each resourceincluded in
the perspective. Thus, the perspective must contain the axioms of the ontology and the formulas of
each resource that commitsto it.

Definition 3.12 Given a set of ontologies O = {04,0,,...,0,} where O; = (V;, A;), asmple
ontology per spective based on ontology O; is.

SoP(R) =AU | K(r)
{reR|C(r)=0;}

With this approach, we have a separate logical theory for each ontology. Each of these theories
includes the axioms of the ontology that serves as its basis and the theories of each resource that
commits to that ontology. Since each resource in the perspective agrees to the meanings ascribed
to the symbols by the perspective's ontology, there will be no name conflicts between different re-
sources in the perspective. Additionally, since only one ontology isused in each perspective, there
isno possibility of axiomsfrom another ontology having unintended side effects.

Although the smple ontology perspective approach solves many problems, it greatly restricts
interoperability of resources. The only resources that can be integrated are those that commit to the
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same ontology. Obvioudly, thisistoo restrictive; some content providers may find that an existing
ontology would be suitable if only afew minor additions were made. It would be unfortunate if a
new, incompatible ontology had to be created for this purpose. Furthermore, if information con-
cerning adomainis provided independently from different sources, then it islikely that the sources
will want to use the terminology that is convenient for them. These needs can be summed up in a
single principle.

Principle 3.13 A semantic web ontol ogy should be able to extend other ontol ogies with new terms
and definitions.

This principlerequiresthat ontologies be able to reference other ontologies, and to provide axioms
that relate new termsto the terms in these other ontologies.

3.3 Ontology Extension

Two prominent themesin ontology research are reusability and composability. Itisrecognized that
ontology construction isadifficult and time-consuming task, so the ability to create standard mod-
ulesfor specific purposesis appealing. In theory, if standard ontologies existed for common tasks,
much of the ontology design process could occur by assembling a number of existing modules, and
smply modeling the unique aspects of the domain as needed. A useful consequence of ontology
reuse is that all ontologies that reuse a given module will use the same vocabulary and axiomsto
model similar concepts. In the previous section, we described how different resources can reuse
ontologies, but now we will consider ontologies that reuse other ontologies.

In most existing ontol ogy work, reuseishandled by providing amechanism that allowsan ontol -
ogy to extend another ontology (see Section 2.2.3). Essentially, when an ontol ogy extends another,
it includes the axioms and vocabulary of that ontology and any ontology extended by the second
ontology. Using thisframework, it is possible to design taxonomies of ontologies, with high-level
generic ontologies at the top, and more specific ontologies at the bottom. Thusit ispossibleto have
atop-level ontology that defines common concepts such as Person and Organization, which is ex-
tended by industry specific ontologies, that are in turn extended by corporation specific ontologies,
and so on.

Unlike work in schemaintegration, ontology extension integrates ontol ogies at schema (ontol-
ogy) designtime. When anew ontology iscreated, itsrel ationshipsto other ontol ogiesare specified.
This process greatly reduces the semantic heterogeneity of the ontologies, while accommodating
differences where necessary. When an existing term is needed, it is ssmply borrowed from another
ontology; when the terms from other ontologies are unsuitable, a new term can be created and ax-
ioms can be used to describe its relationship to existing terms. Section 3.5 discusses the practical
problems of such an approach.

3.3.1 Ontology Extension Definitions

We can formally define ontology extension as follows:

Definition 3.14 Given ontologies O, and O,, O, issaid to extend O, iff all models of O, are also
models of O,.
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Note that this definition depends on the ability to compare the models of two different ontologies.
Recall from Section 3.2.1 that the predicate interpretation function of an ontology is defined for all
predicate symbols of £, not just those in the ontology’s vocabulary. Thus since every interpreta-
tion of every ontology has a set of tuples associated with each predicate symbols, it is possible to
compare the tuples for each predicate symbol and determine whether one interpretation is a subset
of another.

Now let us add the concept of ontol ogy extension to our formalism. Wewill refineour definition
of an ontology to include the set of ontologies extended by it. Definition 3.4 can be thought of asa
special case of thisdefinition, where O = (V. A, 0).

Definition 3.15 Givenalogic £, anontologyisathree-tuple (V, A, £'), where thevocabulary V' C
Sp is some subset of the predicate symbols, the axioms A C W are a subset of the well-formed
formulas, and £ C O isthe set of ontologies extended by O.

This new ontology definition requires us to reconsider the definitions from Section 3.2. Many
of the definitions are unchanged, but well-formedness with respect to an ontology, the well-
formedness of ontologies, and the models of an ontology need to be redefined. However, before
we can discuss the new definitions, we need to consider the uniqueness of the vocabulary symbols
used by ontol ogies and define the concept of ancestor ontologies.

When different ontologies are used, they may assign different meaningsto the same symbol. In
the previous section, weignored thisfact because each ontology was used to form a separate theory.
However, when ontol ogiesinclude other ontol ogies, reasonersthat assume that a symbol meansthe
same thing when used in different contextsrisk incorrect inferences. Thereforewe will assume that
unless otherwise stated, identical symbolsin different ontologies represent distinct concepts, as ad-
vocated by Wiederhold [92]. In our framework, we will achieve this by prefixing each predicate
symbol with its source ontology and a colon, for example ont:symbol. When we refer to symbols,
wewill use either qualified names or or unqualified names, where aqualified nameincludesthe pre-
fix, while an unqualified name does not. To prevent ambiguity, al unqualified names have exactly
one corresponding qualified name, which is the name formed by adding the prefix of the ontology
in which the name appears, or in the case of resources, the ontology committed to by the resource.
The function ) : name — gname performs this mapping, where ¢gname C name C Sp and
Va,x € gname < @Q(x) = x. For convenience, we will write the set of names resulting from
applying ¢ to each member of aset N asQ (V).

An ancestor of an ontology is an ontology extended either directly or indirectly by it. If O; is
an ancestor of O, wewrite Oy € anc(0O;). Inthiscase, we may also say that O, is a descendant
of O,. Theformal definition of an ancestor is:

Definition 3.16 Given ontologies O; = (Vi, Ay, Fy) and Oy = (Va, Az, Fs), Oy € anc(Oy) iff
Oy € F; or thereexistsan O, = (V;, A;, E;) suchthat O; € E; and Oy € anc(O;).

An ontology should have access to all symbols defined in its ancestors, and likewise aformula
of that ontology should still be well-formed if it uses symbols from the ancestor ontologies. Thus,
we need to redefine what it means to be well-formed with respect to an ontology. First, we must
identify the vocabulary accessible to an ontology. Thisisthe union of its own vocabulary and that
of all of itsancestors. The vocabulary of an ontology isaset of unqualified names, but the extended
vocabulary can be a mixture of qualified and unqualified names. This is because we must use the
qualified names of the ancestor ontol ogiesto guarantee that there are no name conflicts.
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Definition 3.17 The extended vocabulary V* of an ontology O; = (V;, A, FE;) is 'V, U
Uji0;canc(0yy @(V5)-
Now we modify Definition 3.5 to say that aformulaiswell-formedwith respect to an ontology if

it iswell-formed with respect to alanguage where the predicate symbols are given by the extended
vocabulary of the ontology.

Definition 3.18 A formula ¢ is well-formed with respect to an ontology O = (V, A, E) iff ¢ isa
well-formed formula of alanguage £’, where the constant symbols are S and the variable symbols
are Sy, but the predicate symbols are V*.

We also need to modify the definition of a well-formed ontology. In addition to using the new
definition of well-formednesswith respect to an ontology, we must consider aspects of the extended
ontologies. Besides requiring that they be well-formed, we also must prevent cycles of ontology
extension.

Definition 3.19 Anontology O = (V, A, F) iswell-formed iff A iswell-formed with respect to O,
all ancestors of O are well-formed, and O is not an ancestor of O.

Finally, let us redefine amodel of an ontology. In particular, al models of an ontology should
also be models of every ontology extended by it.

Definition 3.20 Givenanontology O = (V, A, ), if £ = () then amodel of O isan interpretation
that satisfies every formulain A, otherwise amodel of O isa model of every ontologyin £ that also
satisfies every formulain A.

3.3.2 Exampleof Ontology Extension

In Figure 3.1, we demonstrate how ontology extension can be used to relate the vocabularies of dif-
ferent domains, thus promoting interoperability. When two ontologies need to refer to a common
concept, they should both extend an ontology in which that concept is defined. In this way, con-
sistent definitions can be assigned to each concept, while still allowing communities to customize
ontologies to include definitions and rules of their own for specialized areas of knowledge.

The problems of synonymy and polysemy can be handled by the extension mechanism and use
of axioms. An axiom of theform Py (x4, ...,x,) < Py(x1,...,2,) can be used to state that two
predicates are equivalent. With thisidiom, ontologies can create aliases for terms, so that domain-
specific vocabul aries can be used. For example, in Figure 3.1, theterm DeptHead in O, meansthe
samething as Chair in Oy dueto an axiomin Oy,. Although this solves the problem of synonymy
of terms, the sametermscan still be used with different meaningsin different ontologies. Thisisnot
undesirable, aterm should not be restricted for use in one domain ssimply because it was first used
in a particular ontology. As shown in the figure, different ontologies may also use the same term
to define a different concept. Here, the term Chair means different thingsin Oy and O because
different axioms are used to defineit.

Figure 3.1 is easier to understand when shown graphically asin Figure 3.2. In thisfigure, we
have assigned meaningful names to each ontology and used arcs to indicate two common types
of axioms: renames is used for axioms that state two predicates are equivalent and isa is used for
axioms of theform C'(z) — P(x), to go along with the intuition that this means that all members
of aclass C' are also members of aclass . We will say more on the usage of idiomsin asemantic
web language in Chapter 4.
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Oc

Ou

Or

Ous =

Opz =

({Thing, Person,Object},
{Person(z) — Thing(x),
%ibject(x) — Thing(x)},
({Chair},

{Chair(x) — Og : Person(x)},
{0c})

({Chair},

{Chair(x) — Og : Object(x)},
{0c})

({DeptHead},

{DeptHead(x) < Oy : Chair(z)},
{Ov})

({Seat},

{Seat(x) < Op : Chair(x)},
{Or})

Figure 3.1: Example of ontology extension.
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Figure 3.2: Graphical depiction of Figure 3.1.

30



3.3.3 Extended Ontology Per spectives

If we include ontology extension in our semantic web language, then how does that affect interop-
erability? Often, traditional ontology work has assumed that reuse was a mechanism to ease the
construction of asingle unified ontology. It had not considered that a number of related ontologies
might be used to structure different data sets. For example, if two resources commit to different
ontologies, where one ontology is an ancestor of the other, then it should be possible to integrate
data from these sources.

However, since different ontologies can be provided by different sources, it is important that
new ontologies do not automatically require a reinterpretation of existing data. Thus an extending
ontology should provide the ability to reason about existing resourcesin new ways, but should not
supersede the ontology that it extends. Otherwise, accidental or malicious ontologies could have
serious side effects on existing portions of the Web. This point is important enough to deserve a
principle.

Principle 3.21 Each ontology should provide a different perspective on a set of resources, and no
ontol ogy should change the per spective of another.

Given this principle and our new definition of an ontology, how can we define a perspective
that maximizes integration? We will assume that an ontology which includes another does not at-
tempt to change the intended meaning of the ontology and will contain any axioms necessary for
decontextualization with respect to it. Thus, we can refine our ontology perspectives from Section
3.2 toinclude resources that commit to any ontologies that are ancestors of the perspective'sbasis
ontology. We wish for our perspectivesto be the intersection of the models of the ontology and all
included resources. In the case of an ontology, its models are determined by its axioms and those
of its ancestors, while the models of a resource are determined by its knowledge function and the
ontology to which it commits. Thus, anew kind of perspective an be defined as follows:

Definition 3.22 Given a set of ontologiesO = {01, O, ...,0,} where O, = (V;, A;, E;), thenan
extended ontology per spective based on ontology O; is.

EOPZ(R) == AZ U U AJ‘ U U [X’(T)
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(O;)}

With extended ontology perspectives, there is a separate theory for each ontology, but some
theories may have overlapping axioms and ground atoms, depending on how the basis ontologies
arerelated. A perspective containsthe axioms of its basis ontology, the axioms of all of itsancestor
ontologies, and the formulas from all resources that commit to the defining ontology or one of its
ancestors. Thus, two perspectives that are based on ontologies with a common ancestor will have
that ancestor’s axioms in common, and will have the formulas of al resources that commit to that
ancestor in common as well.

A desirable property of these perspectivesisthat a perspective based on an ontology entails all
of the sentences that are entailed by any perspectives based on ancestors of the ontologies. This
ensures that any conclusions sanctioned by aresource are valid conclusionsin any perspective that
includes the resource. We will show that extended ontology perspectives satisfy this property.
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Theorem 3.23 Given two ontologies O; and O, suchthat O, € anc(O4),if EOPo,(R) | ¢, then
EOPs,(R) E ¢.

Proof Let O, = (V4, A1, E1) and Oy = (V3 Az, E>). We will prove the theorem by showing that
FEOPy, (R) isasuperset of each of the parts of FO Py, (R). First, because Oy € anc(O4), Ay €
FEOPy,(R). Second, due to Definition 3.16, anc(O1) D anc(Oz), thusthe A; of all ontologies
O; € anc(Oy) aredso € EOPy,(R). Finaly, since O, € anc(Oy) and anc(O1) D anc(Os),
al K(r)suchthat C'(r) = O, or C(r) € anc(O;) arein EOFy, (R). Therefore, EOPy, (R) 2
EOPy,(R). Since FOL ismonotonic, if EOFy,(R) = ¢,then EOPy, (R) |= ¢.

Asit turns out, smple ontology perspectives are a special case of extended ontology perspec-
tives. When no relevant ontol ogies extend any other ontol ogies, the two functions are equivalent.

Theorem 3.24 Givenasetof ontologiesO = {0y, Os,...,0,},whereV0O,; € 0,0, = (V;, A;, 1),

Proof If we substitute () for £; in Definition 3.22, then anc(O;) = () and the set of j such that
O; € anc(O;) isempty. Therefore, the corresponding union is (. Additionally, since C' isatota
function, the set of » such that C'(r) € anc(O;) is empty, which reduces the union condition to
{r € R|C(r) = O;}. Thusthe definition reduces to:

EOPZ(R) == AZ U U AJ‘ U U [X’(T)
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(0;)}
= A UDU UJ K(r)
{reRr|C(r)=0:}
== AZ U U [X’(T)
{reR|C(r)=0:}
— OPT/(R)

Extension isuseful in overcoming one of the limitationsimposed by the commitment function.
This function only allows each resource to commit to a single ontology, however with extension,
avirtual ontology can be created that represents multiple ontol ogies committed to by a single re-
source. For example, giventwo ontologies Oy = (V4, Ay, F1) and Oz = (Va, Az, E3), theontology
Ounion = (0,0,{0y, 05 }) isequivaent to their union. A resource that needed to commit to O, and
O, could instead commit t0 O 01, -

3.4 Ontology Evolution

The Web is adynamic place, where anyone can instantaneously publish and update information. It
isimportant that thisability isnot lost when we provide more structure for the information. People
must be able to publish semantic web ontologies as easily as other documents, and they must be
allowed to revisethese ontologiesaswell. While good design may prevent many ontological errors,
some errorswill not be realized until the ontology is put to use. Furthermore, pressing information
needs may limit the time that can be applied to design particular ontologies, resulting in the need
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to improve the ontologies later. More philosophical arguments concerning the need for ontology
revision are made by Foo [34].

Most ontology systems do not manage the problem of ontology change. Often thisis because
these systems are prototypes used for research purposes, and thus any dependencies are insignifi-
cant. For centralized systems, achange to the ontology can be synchronized with the corresponding
changes to any dependent information, making change management unnecessary.

The developers of Ontolingua, a language used in the distributed development of ontologies,
made the decision to ignore prior versions of an ontology. Farquhar, Fikes, and Rice [30] state that
theinclusion featurein Ontolinguadoes not result in a*“cut and paste” of the contents because “this
interpretation would result in unfortunate version dependencies.” However, thisignoresthe prob-
lem that theincluded ontol ogy could changein away that would makeall of itsincluding ontol ogies
invalid.

One area where the problem of ontology change has been examined are medical terminology
systems. Medical terminologies often consist of hierarchies of concepts, and sometimes include
synonyms and properties. A number of different systems are used for different purposes, and the
terminologies are frequently merged or mapped to each other, so that information from different
systems can be combined. However, due to a number of factors, such as new medical knowledge
and corrections of errors, the individual terminologies will continue to evolve. Since these termi-
nologies are used in real systems, management of ontology change is a critical issue. Oliver et
al. [77] discuss the kinds of changes that occur in medical ontologies and propose the CONCOR-
DIA concept model to cope with these changes. The main aspects of CONCORDIA are that all
concepts have a permanent unique identifier, concepts are given a retired status instead of being
physically deleted, and specia links are maintained to track theretired parentsand children of each
concept. However, this approach isinsufficient for managing change on the Semantic Web. In the
next sections, we will discuss the kinds of changes that might occur, and present arevised ontol ogy
definition that can describe these changes.

3.4.1 Ontology Evolution Examples

When we decide to change an ontol ogy, then we must consider that in adistributed ontol ogy frame-
work such as the one needed by the Semantic Web, there will often be dependencieson it. Wewill
illustrate the issues with examples of ontology change within our framework. In Figure 3.3, we
demonstrate what happens when a new term is added to the ontology. In the example, Oy, 1, and
ro represent a smple university ontology and two resources that commit to it. Recall that an on-
tology is three-tuple (V, A, E') where V' isits vocabulary, A isits set of axioms, and £ is the set
of ontologies extended by it. Also recall that K& is the knowledge function that maps resources to
formulas. Thus, Oy consists of a single term Faculty, while »; and r, are resources that use the
Faculty predicate. At somelater pointintime, Oy, r, r,, and % represent the state of rel evant web
objects. Here, the ontology Oy, represents a new version Oy which includes terms that represent
subclasses of Faculty. When an ontology designer adds terms in thisway, it islikely that he will
add axioms, such as Professor(z) — Faculty(x) to help define the terms. Note that »; and
arer; and r,, respectively at thelater point in time. Because K (r}) = K (r1) and K (r}) = K(r3),
these resources have not changed. Since the vocabulary V' of Oy, isasuperset of V/, vy and r, are
still well-formed with respect Oz;. Once Oy has been revised to Oy, we can create resources that
use the new termsin Oy;; r is an example of such a resource that contains an assertion about dr-
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Ov = {Faculty},

0,

0)
K(r) = {Faculty(drdoe)}
K(ry) = {Faculty(drsmith)}

Oy = ({Faculty, AssistProf, AssocProf, Professor},
{AssistProf(z) — Faculty(x),
AssocProf(z) — Faculty(z),
Professor(xz) — Faculty(z)}

0)
K(ry)) = {Faculty(drdoe)}
K(ry) = {Faculty(drsmith)}
K(ry) = {AssocProf(drjones)}

Figure 3.3: Adding terms to an ontology.

Ov= {{CdTape},

0,

0)

K(r) = {Cd(whiteAlbum)}
K(ry) = {Tape(darkSide)}

Oy = ({Cd},

0,

0)
K(ry) = {Cd(whiteAlbum)}
K(ry) = A{Tape(darkSide)}

Figure 3.4: Deleting aterm from an ontology.

jones. All of the resources can be integrated with an extended ontology perspective. For example,
if R = {r},r5, 3}, thenin FO Py, (R), Faculty(drdoe), Faculty(drsmith), and Faculty(drjones)
are all true. Since we are assuming a monotonic logic, if we add terms and axiomsto an ontol ogy,
then we know that the logical consequences of a perspective based on it will either be unchanged
or increased.

However, if atermisdeleted from the ontol ogy then existing resources may becomeill-formed.
An example of thisis presented in Figure 3.4. Here, we have a smple music store ontology that
defines the classes Cd and Tape. Resource r; makes an assertion about an instance that is a Cd,
while resource r, makes an assertion about an instance that isa Tape. Assumethat at some pointin
the future, tapes become obsolete, and the decision is made to remove Tape from the ontology. |1f
resourcer, isnot changed, then it becomesill-formed because the ontology it commitsto no longer
includesthe predicate used in itsassertion. Since theresource may be not be owned by the ontology
designer (for example, if it isaspecific record store that is reusing the ontology), it isimpossible to
ensure that it will be updated when the ontology changes.



Op = ({Class},
0,
0)
K(r) = {Class(ai)}
K(ry) = {Class(databases)}

Oy = ({Class,Course},

0,

0)
K(ry) = {Class(ai)}
K(ry) = {Class(databases)}
K(ry) = {Class(algFall2001)}
K(ry) = {Course(algorithms)}

Figure 3.5: Changing the meaning of aterm from an ontology.

This leads us to another principle:

Principle 3.25 The revision of an ontology should not change the well-formedness of resources
that commit to an earlier version of the ontol ogy.

In practice, strict deletion will probably occur rarely. It is more likely that a term will be re-
moved because it can be merged with another term, or a different name is preferred. If the mean-
ing of the term is changed, then a significant problem can arise. For example, consider Figure 3.5,
where Class used to mean “a subject matter of instruction,” but was changed to mean “a particular
offering of acourse,” so that Course could be used for the old meaning. In this case, old resources
such as | and r, that used the term would be using it incorrectly in the context of the new ontol-
ogy. However, since they would still be well-formed, there is no way to automatically detect the
problem. As aresult, false conclusions may be drawn from the information.

One possible solution to theontol ogy evolution problemisto requirethat revisionsof ontologies
be distinct ontologies in themselves. Then each resource can commit to a particular version of an
ontology. For example, if inFigure 3.4, C'(r}) = Oy and C(r,) = Oy, then both resources commit
to the version of the ontology that still has the term Tape. Since the ontology committed to by the
resources does not physically change, they cannot become ill-formed unless the ontology changes.

Although treating each ontology version as a separate ontology solvesthe problems with delet-
ing terms, it creates problemsfor integrating data from resources that commit to different versions
of the ontology. Consider the example in Figure 3.3. Here, C'(r}) = Oy, C(r,) = Oy and
C(ry) = Oy. Because Oy and Oy, are different ontologies, and neither extends the other, then
any resources that commit to them would be partitioned in separate theories. That is, the vocabu-
laries are treated as distinct even though in fact they are just different formalizations of the same
concept. We will formulate the need to integrate resources that commit to different versions of an
ontology as aprinciple.

Principle 3.26 Resources that commit to a revised ontology can be integrated with resources that
commit to compatible prior versions of the ontology.
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In this principle, we need to define what is meant by “compatible.” In cases such as the one
examined in Figure 3.3, the newer version of an ontology is usually a better formalization of the
domain than apreviousversion, (i.e., itisacloser approximation of the intended models). Thus, it
would be useful if we could use the new perspective to reason about resources that committed to
the older version. However, to do this, we need some way to indicate when the ontology revision
issmply arefinement of the original ontology. In the next section, we augment our definition of
ontology for this purpose.

3.4.2 Ontology Revision Definitions

We introduce the notion of backwards-compatibility to describerevisionsthat includeall termsde-
fined in the previous version and have the same intended meanings for them, although the axiom-
atizations may be different. This indicates that reasoners can safely assume that descriptions that
commit to the old version also commit to the revision.

Definition 3.27 An ontology O, is backwards-compatible with an ontology O; iff every intended
model of O, isan intended model of O, and V; C V5.

Since the definition of backwards-compatible depends on knowledge of the intended models of an
ontology, it cannot be computed automatically, instead it must be specified by an ontology’ s author.
Thisisdriven by thefact that ontologies only specify atheory partially, and that the intended mean-
ing of aterm may change even though the ontol ogy’s theory remains the same. Since the ontology
can only restrict unintended models, thereis no way to formally describe the intended models of an
ontology. For example, if an ontology with arather sparse axiomatization changed the term Chair
to mean something you sit on as opposed to the head of a department, then if no relations or rules
needed to be changed, any reasoning agent would be unaware that the term means different things
in different versions. Thus backwards-compatibility must be indicated in an ontology definition.
However, syntactic compatibility, such as whether V; C V3, can be checked automatically, and
when backward compatibility is specified, syntactic compatibility should be verified.

We will refine Definition 3.15 to include the concepts of an ontology revising another ontology
and for an ontology to be backwards-compatible with older versions.

Definition 3.28 Given alogic £, an ontology isafive-tuple (V, A, F, P, B), where the vocabulary
V' C Sp issome subset of the predicate symbols, theaxioms A C W are a subset of thewell-formed
formulas, £ C O isthe set of ontologies extended by O, P C O isthe set of prior versions of the
ontology, and B C P isthe set of ontologiesthat O is backwards compatible with.

Definition 3.15 is a special case of this definition, where P = () and B = (). All of the definitions
from Section 3.3 still hold, although thefive-tuple structure should be substituted for the three-tuple
one where necessary.

We will also name two special cases of ontologies.

Definition 3.29 A top-level ontology isan ontology O = (V, A, I/, P, B), where I = {).

Definition 3.30 A basic ontology isan ontology O = (V, A, £, P, B), where £ = P = B = {).

36



Thus top-level ontologies are ontologies that have no ancestors; they are at the top of the ontology
hierarchy. Every ontology must have at least one top-level ontology as an ancestor. Basic ontolo-
gies are top-level ontologiesthat have no prior versions.

Note that backwards-compatibility does not require that the revision contains a superset of the
axioms specified by the original version. This allows axioms to be moved to a more general in-
cluded ontology if needed.

3.4.3 Compatible Ontology Per spectives

Given the new definition of ontology, we can define a method of integration that incorporates
backward-compatibility.

Definition 3.31 Given a set of ontologies O = {04, 0,,...,0,} where O, = (V,, A, E;, P;, B;),
then a compatible ontology per spective based on ontology O; is:

COPZ(R) = AU U AJ‘ U U [X’(T)
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(O;)}

)
U U K(r)U U K(r)

{reR|C(r)eB;} {reR|35,0;€anc(0;) AC(r)EBy}

Like extended ontology perspectives, this method creates perspectives based upon different on-
tologies. Each perspective contains the axioms of its basis ontol ogy, the axioms of itsancestors, and
the assertions of all resources that commit to the basis ontology or one of its ancestors. However,
these perspectivesal so include the assertions of resources that commit to any ontologieswith which
the basis ontology is backwards-compatible, and those of any resources that commit to ontologies
that the base's ancestor ontol ogies are backwards-compatible with.

It should be mentioned that this method does not ensure that the perspectiveislogically consis-
tent. Theword compatibleisused hereinthe sense of backward-compatibility, asdefined in Section
3.4.2. The problem of inconsistency is discussed in Section 3.6.

As with extended ontology perspectives, a desirable property of compatible ontology perspec-
tivesisthat a perspective based on an ontology entails al of the sentences that are entailed by any
perspectives based on ancestors of the ontologies. Wewill show that compatible ontology perspec-
tives satisfy this property.

Theorem 3.32 Given two ontologies O; and O, suchthat O, € anc(O,),if COPo,(R) | ¢,then
COPo,(R) E ¢.

Proof Let O; = (Vi, A1, E1) and Oy = (Vs, A, E2). We will prove the theorem by showing
that CO P, (R) isasuperset of each of the parts of C'O P, (R). Since compatible ontology per-
spectives build on extended ontology perspectives, the proofs for the first three sets are identical.
Since O, € ane(01), then every r such that C'(r) € B, isaso in the fifth set of COPy,. Fi-
naly, since anc(0y) D anc(0O,), then for each r such that O; € anc(O2) A C(r) € B;, thenadso
O; € anc(O1) NC(r) € B;. Therefore, thefifth set of C'O Py, subsumesthat of CO Pp,. Sinceall
sets that form C'O Py, are subsets of the sets that form CO Py, , COFo,(R) O COPFo,(R). Since
FOL ismonotonic, if COPo,(R) = ¢,then COPy, (R) E ¢.
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Also, if no ontologies revise any other ontologies, then compatible ontology perspectives are
equivalent to extended ontology perspectives.

Theorem 3.33 Given a set of ontologies O = {04,0,,...,0,}, where VO, € 0,0; =
(Vi, As, Ei,0,0), then COP(R) = EOP(R).

Proof If wesubstitute ) for B; in Definition 3.31, thentheset of » € R suchthat C'(r) € B; isempty
because there are no r such that C'(r) € (). Therefore, the corresponding unionis §). Likewise, the
set of r € R suchthat O; € anc(0O;) A C(r) € B; must be empty, and the corresponding union is
0. Thus the definition reduces to:

COPZ(R) = AZ'U U AJ‘U U [((T)U@U@
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(O;)}
= AU U AJ‘ U U [X’(T)
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(O;)}
— EOP(R)

Technically, the Semantic Web should not allow ontologiesto arbitrarily revise other ontologies.
Unlike, ontology extension, revision implies that a change has been authorized by the ontology’s
owner. Potential mechanisms for ensuring this include requiring older versions to point to their
revisions, requiring revisions to be placed in the same directory of the same server as the ontology
being revised, or to be signed by the same entity.

3.5 Ontology Divergence

As discussed earlier, an important aspect of this framework is that interoperability is achieved
through ontology reuse. That is, the preferred method of ontology development is to extend ex-
isting ontologies and create new definitions only when existing definitions are unsuitable. In this
way, all concepts are automatically integrated. However, when there is concurrent development of
ontologiesin alarge, distributed environment such as the Web, it is inevitable that new concepts
will be defined when existing ones could be used. Even when ontology authors have the best in-
tentions, they may be unaware of similar effortsto describe the same domain, and their ontologies
may be widely used by the time the problem is noticed. Asaresult therewill be atendency for the
most specific ontologies to diverge and become less interoperable. I1n these situations, occasional
manual integration of ontologiesis needed.

This section discusses the types of semantic heterogenity that may occur in ontologies and
presents amethod for resolving ontology divergence within the framework presented earlier inthis
chapter. The ideas described here are a refinement of those presented in an earlier paper [52].

3.5.1 Domain Differences

The divergence of ontol ogiesincreases the semantic heterogeneity (see Section 2.4) of the Semantic
Web. However, the use of first-order logic as our model results in amore restricted set of possible
differencesthan thosetypically described by work in database schemaintegration. Wiederhold[91]
describes four types of domain differences, which we paraphrase here:
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context: atermin one domain has acompletely different meaning in another
terminology: different names are used for the same concepts

scope: similar categories may not match exactly; their extensions intersect, but each may havein-
stances that cannot be classified under the other

encoding: thevalid valuesfor a property can be different, even different scales could be used

Each of these differences can be resolved within our semantic web framework. Context differ-
ences are due to polysemousterms, and are handled by treating termsin each ontology as distinct.
The other differences require the use of articulation axioms[19, 28], which are similar in purpose
to lifting rules [46, Section 3.2]. An articulation axiom is ssimply an axiom that describes how to
relate terms from two different ontologies. We will now demonstrate how to resolve the domain
differences described above using axioms.

Terminological differences are synonyms, and as such can be handled using the equivalence
idiom described in Section 3.3.2. For example, if it was determined that Employeein Oy, meant
the same thing as SaffMember in O,.1..4-¢, then the articulation axiom would be:

Okmart : Employee(x) < Oyaimart : StaffMember(x)

Scope differences require mapping a category to the most specific category in the other domain
that subsumes it. Thus, if we knew that every FighterPilot in O, is aJetPilot in Oy,,, then we
would create the articul ation axiom:

Ouy : Fighter Pilot(x) — Oyqq : Jet Pilot(x)

Encoding difference are somewhat trickier. The problemisthat different sets of valuesare used
to describe the same data. These sets may have different cardinalities or may be infinite. An exam-
ple of value sets with different cardinalities may be two rating schemes for movies. One scheme
uses {Poor,Fair,Excellent} while the other uses integers 1-5. In this case, individual values could
be mapped asin:

Oysiskel = Rating(x, Excellent) < Ogpert = Rating(x, )

Other differencesmay be due to different units, such as metersversusfeet. Articulation axioms
to resolve these sorts of encodings would require the use of arithmetic functions, asin:

Ocngiish = Foot(x,1) = Operric =+ Meter(x,+(1,0.3048))

Notethat arithmetic functionsare ssmply functionswhose domainsrange over integersor real num-
bers, and thus do not require any special treatment in first-order theory. However, such functions
can be problematic in reasoning algorithm implementation. For example, unit conversion may in-
troduce inaccuracies dueto floating point arithmetic and rounding. This can get compounded if on-
tologies have rules for trandating both ways. For example, if areasoner transated 3 feet to 0.914
meters, it better not then apply the opposite rule and get alength of 2.999 feet as well. Such apro-
cess could go on ad infinitum. An even moredifficult encoding differenceisdueto different textual
representations. Consider “Smith, John” versus “John Smith.” An articulation axiom to establish
name correspondences in general would require a function that can take the last-name-first form
and convert it to the first-name-first form. Although thisiseasy in theory, in practice it requires a
large list of pre-defined functions or a complex language for defining functions.
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Figure 3.6: Methods for resolving ontology divergence.

3.5.2 Resolving Ontology Diver gence

Ontology integration typically involves identifying the correspondences between two ontologies,
determining the differences in definitions, and creating a new ontology that resolves these differ-
ences. The processfor aligning ontol ogiescan be performed either manually or semi-automatically.
Chimaera [69] and PROMPT [75] are examples of tools that help usersto align ontologies. How-
ever, it isimportant to note that s mply creating a new integrated ontol ogy does not solve the prob-
lem of integrating information on the Web. When the web community has synthesized the ontolo-
gies(that is, other web pages and ontol ogies come to depend on them), all of the dependent objects
would haveto berevised to reflect the new ontology. Sincethiswould be animpossibletask, wein-
stead suggest three ways to incorporate the results of an ontology integration effort, each of which
is shown in Figure 3.6. In thisfigure, we assume that O, and O, are two ontologies which have
some domain overlap and need to be integrated.

In the first approach, we create a third ontol ogy, called a mapping or articulation ontology, that
can trandate the terminologies of the two ontologies. In the example, the mapping ontology is
Oxs. In order to map the terminologies, O,; must extend both O; and O,, and provide a set of
articulation axioms 1" as described above. Note that O, does not add any vocabulary terms, thus
On = (0,7,{01,0,},0,0). The advantage of a mapping ontology is that the domain ontologies
are unchanged; thus, it can be created without the approval of the owners of the original ontology.
However, sinceit islike any other ontology, it can be made publicly available and used by anyone
who would like to integrate the ontologies. The disadvantages are that the integration only occurs
in the perspective that is based on the mapping ontology, if the source ontologies are revised then
anew mapping ontology must be created, and a set of articulation axioms are needed for each ad-
ditional ontology that covers the domain.

Another approach to implementing integrationisto revise each ontol ogy to include mappingsto
the other. First, we create anew version of each ontology, called amapping revision. Each revision
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extendsthe original version of the other ontology and includes aset of articulation axioms, alowing
it to translate the terms from that ontology. Since each revision leaves the original vocabulary un-
changed, and (assuming the articulation axioms are correct) does not change the intended models,
itis backward-compatiblewith the original version. Thus, in the examplewhere O isthe mapping
revision of O, and O, isthe mapping revision of O,, if 77 isthe set of articulation axiomsfrom the
vocabulary of O, tothat of O, and T; isthe set of articulation axiom from the vocabulary of O; to
Oz, then O] = (Vi, Ay U T, {02}, {01},{01}) and O} = (Vi, Ay U T5,{O1},{0:},{02}). This
ensures that perspectives based on 07 and O}, will integrate resources that commit to O; and O.
The advantage of this approach is that the articulation axioms are inserted into the latest versions
of the ontologies, ensuring that they will apply to later backward-compatible revisons. The main
disadvantage is that due to the nature of revision (see page 38), it can only be performed by the
owners of the original ontologies.

A common disadvantage of the mapping ontology and mapping revision approachesisthat they
ignore a fundamental problem: the overlapping concepts do not belong in either domain, but are
more general. The fact that two domains share the concept may mean that other domains will use
it aswell. If thisis so, then each new domain would need a set of articulation axioms to map it
to the others. Obvioudly this can become unwieldy very quickly. A more natura approach isto
merge the common items into a more general ontology, called an intersection ontology, which is
then extended by revisionsto the domain ontologies. First, we create aset of termsand axiomsthat
standardize the commonalitiesbetween O, and O,, referredto asViy and A v, respectively. Wethen
create anew ontology Oy, where On = (Viv, An, 0,0, 0). Then we determine a set of articulation
axioms 7 and T, that trandate from Oy to O, and O,, respectively. When combined with Ay,
these will allow us to conclude some formulas aready in A; and A,; we will refer to the sets of
these formulasas D, and D,. Formally, ¢ € D iff ¢ € A; and Ay U T} = ¢ (Smilarly for D).
Now we can define the revised ontologies O} and O),. O] = (Vi, Ay — D1,{On},{O1},{0O1})
and O, = (Va, Ay — D2, {On},{02},{O2}). Note that as with the mapping revisions approach,
the revised ontologiesretain the vocabulary and do not change the intended models, so they can be
backward-compatible.

3.6 Inconsistency

If the logical language used by the Semantic Web is rich enough to express incons stency, then an
inconsistency within a single resource or one that exists between a pair of resources will result in
one or more perspectives that are inconsistent. For example, since first-order logic is monotonic,
if K(r1) = {A} and K(ry) = {—A} then any perspective which contains both r; and r, isin-
consistent. Asiswell known, such an inconsistency trivializesfirst-order logic, allowing anything
to be proven. However, the distributed nature of the Web makes it impossible to guarantee that
inconsistencies will not be stated. This resultsin another principle of the Semantic Web:

Principle 3.34 An inconsistency due to a single resource or a pair of resources should not make
an entire perspective incons stent.

Although perspectives solve some of the problems of handling distributed ontologies, logical
inconsistency is still a danger. A perspective can become inconsistent in three ways:. if the basis
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ontology is inconsistent with one of its ancestors, if aresource isinconsistent with the basis ontol -
ogy (or an ancestor), or if two resources areinconsi stent with each other. If an ontology is designed
carefully, then inconsistency between it and one of its ancestors can be prevented. We will require
that avalid ontology must be consistent with all of its ancestors. When a resource commitsto an
ontology, it implicitly agreesto theintended models of the ontology. If the resourceincludes an as-
sertion that isinconsistent with the ontology, then thisagreement isviolated. Therefore, itissafeto
assume that such resources are invalid and can be excluded from all perspectives. However, there
is still the problem that two resources which commit to the same ontology could be inconsistent.
If so, any perspective that included this ontology’s resource would be inconsistent. Due to the dy-
namic nature of resources, aresource’svalidity should not depend on any other resource. However,
given thedistributed nature of the Web, it isimpossibleto prevent two resources from contradicting
each other. Thus, perspectives created using the approaches described above will likely becomein-
consistent, and cannot be easily fixed. Indeed, this could even be the form of a new, insidious, and
incredibly simple denial of service attack: publish an inconsistency and watch the Semantic Web
grind to ahalt. Clearly, there must be away to prevent or resolve potential inconsistencies.

A common way to handle inconsistencies is through some form of nonmonotonicity. In non-
monotonic logics, certain statements are considered defaults, and are only true if it they are not
inconsistent with more explicit information. Often, an implicit assumption in these theoriesis that
the most recent information is correct and that it is prior beliefsthat must change. On the Web, this
assumption cannot be made; if anything, more recent information that conflicts with prior beliefs
should be approached with skepticism. Additionally, inconsistencies on the Web will often be due
to fundamental disagreements, and thus neither statement can be considered the “default.”

The (primarily philosophical) field of belief revision [38] focuses on how to minimizethe over-
all changeto aset of beliefsin order to incorporate new inconsistent information. A representation
of an agent’s knowledge at some point intimeis called an epistemic state, and a change of knowl-
edge leads to a new epistemic state via an epistemic change. The three types of epistemic changes
are expansions, revisions, and contractions. An expansion adds an assertion that is consistent with
the existing epistemic state. A revision adds an assertion that isinconsistent with existing beliefs,
and requires that some knowledge be retracted in order to determine the new epistemic state. Fi-
nally, a contraction removes an assertion, which may lead to the removal of other assertions that
depend on it. Gardenfors[38] presents aseries of postul ates describing epistemic changes. Anim-
portant criterion is that of minimal change, that is, the only changes made to the epistemic state
are those required to accommodate the new information. In the case of revision, this may require
choosing between equally adequate alternatives. 1n such cases, the rel ative epistemic entrenchment
of the beliefs (which determines how important they are), may be used to choose an epistemic state.
However, on the Semantic Web, it isunclear how the epi stemic entrenchment of an assertion should
be determined. Furthermore, it is unclear that maintaining a single consistent set of beliefs makes
sense in adistributed knowledge system.

The chief problemwith nonmonotoniclogic and theoriesof belief revision ischoosing which set
of assertions should constitute the “beliefs’ of the Semantic Web. Assumption-based truth mainte-
nance systems (ATMSs) [21] present an alternative. Inan ATMS, multiple contexts are maintained,
where each context represents a set of consistent assumptions. Thus it isis possible to consider
the truth of a formula with respect to a particular context, or to determine the set of contexts in
which aformulaistrue. If we assume that each ontology and resource must be internally consis-
tent, then there can be contexts that assume that each isindividually true. More complex contexts
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can be formed from these by assuming that multiple ontologies or resources are true at the same
time. However, if there are n ontol ogies and resources, then there could be as many as 2" possible
contexts. Although contradictions can automatically be propagated from simpler contexts to the
complex contexts that contain them, management of contexts would be a serious problem on the
Semantic Web. The Web already contains over a billion resources (web pages), and many more
resources are added every day. Each new resource would have to be compared with every existing
context to determine which new consistent contexts can be formed.

A different solution is to limit the language so that it is not possible to express logical incon-
sistencies. In first-order logic, this can be done by omitting negation.! Other logics, particularly
description logics, include features such as cardinality constraints and the specification of digoint
classes, which can lead to inconsistency. The main argument against limiting the language to pre-
vent logical inconsistency is that inconsistency can be a sign that two theories should not be com-
bined. Still, the advantage of limiting the language is that it does not have the computational or
philosophical problems associated with the other methods.

Unlikethe previous sections, we do not suggest a solution to the problem of inconsistency here.
We have discussed the relative benefits of variousalternatives, but believe that only futureresearch
will determine the best choice for the Semantic Web. In Section 4.1, we will discuss the choice
made for the SHOE language.

3.7 Scalability

Throughout this chapter, we have used first-order logic asthe basisfor our discussion of the Seman-
tic Web. However, sound and complete reasoning in first-order logic is intractable, meaning that
thereis no polynomial-timealgorithm that solves the problem. Thus, first-order logic systemswill
not scale to the quantity of formulasthat would be expected on the Semantic Web. So then how can
the problem of scalability be handled in apractical setting?

One approach is to use reasoning methods that are not sound and complete. Resource-bounded
reasoning agorithms (that limit the computation time, number of steps, etc.) are quite common
and would be applicable for many Semantic Web applications. In many cases, it is not necessary
to know al of the answers on the Semantic Web, only ahandful of correct oneswill suffice. Given
the extent of the Web, it is unlikely that any reasoner will have accessto al of the assertions, so it
isimprobable that even one which used a sound and complete agorithm would be truly complete
in the global sense.

Another approach to scalability is to reduce the expressivity of the language. This has been
an important direction for the knowledge representation community which has tried to character-
ize the computational complexity of languages with various features. Starting with Brachman and
Levesque [11], the complexity of different formsof description logics has been computed, and lan-
guages have been developed that attempt to maximize expressivity while minimizing complexity.
Even so, subsumption is intractable in many description logics.

An aternativeto description logicsisto use Horn logic. It has been shown that although Horn-
logic and the most common description logics can express things the other cannot, neither is more

IHere we mean only omission of the logical operator, and not of other logical connectives that can be rewritten by
using negation, such asimplication.
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expressivethan theother [8]. Thustherelative advantages of the two languages depend on the kinds
of constructsviewed as most useful to the Semantic Web. In Section 3.6, we discussed the problems
inherent in languages that include negation or other features that may lead to inconsistency; most
description logicsface these problems due to the presence of cardinality restrictions. Hornlogic on
the other hand can not belogically inconsistent. Furthermore, if we restrict the language to datal og,
whichisaminor variant of Horn logic, then polynomial reasoning algorithms such asthe magic sets
technique can be used.

As in Section 3.6, we do not provide a solution to scalability problem here. This is another
difficult issue, and only future use of the Semantic Web will determine the right combination of
language features and query methods. In Section 4.1 wewill explain the choice madefor the SHOE
language, and in Section 5.2 will discuss the use of reasoning systems with different inferential
capabilities.

3.8 Semantic Web Queries

The design of a semantic web language requires consideration of how the language will be used.
The Semantic Web can be used to locate documentsfor people or to answer specific questions based
on the content of the Web. These uses represent the document retrieval and knowledge base views
of the Web.

The knowledge base view uses the logical definition of queries. a query isaformulawith ex-
istentially quantified variables, whose answers are a set of bindings for the variables that make the
formula true with respect to the knowledge base. But what is a knowledge base in the context of
the Semantic Web? In order to resolve a number of problemsfaced by the Semantic Web we have
extensively discussed means of subdividing it. Theoretically, each of these perspectives represents
asingle model of theworld, and could be considered a knowledge base. Thus, the answer to a se-
mantic web query must be relative to a specific perspective.

Consider the set of ontologies and resources presented in Figure 3.7. There are three compati-
ble ontology perspectives generated from thisdata: CO P (R), COPy(R), and COPr(R). Based
on Definition 3.31, different ontologies and resources appear in each perspective. For example,
C'OPg(R) includes the axioms from O and the knowledge from r, and r,. It does not include
rs or r4 because these commit to other ontologies. C'O Py R) includes the axioms from Oy and,
because O¢; is an ancestor of Oy, those of O;. It also includes the resources 4, 2, and s, which
commit to these ontologies. On the other hand, C'O Pr( R) includes axioms from O and O, and
the resources rq, r,, and r,. Asaresult, the answer to any particular query depends on which per-
spectiveit isissued against. Asshownin Figure 3.8, the answer to Person(x) in COPg(R) isjust
{bob} because from this perspective the axioms and resources of O, are irrelevant. However, in
COPy(R), theanswer is {bob, kate} because we have the axiom from Oy that tellsus every Chair
isaPerson. Also notethat in CO Pr(R), the answer is {bob} because O includes O. When we
ask aquery such as C'hair(z), thenthe variety in answersiseven greater. In CO Py ( R) the answer
is{kate} whilein COPr(R) itis{recliner29}. Thisisbecause the perspectives decontextualize
the term Chair differently. Also notethat in C'O P ( R), the query isill-formed with respect to the
ontology that serves asthe basis of the perspective (i.e., the ontology does not include Chair in its
vocabulary), and thus there can be no answers.

From the point of view of most agents, the Semantic Web can be seen asread-only. Thisisbe-
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Figure 3.7: Example ontologies and resources,
Perspective

Query COPs(R) | COPy(R) | COPp(R)
Person(z) || bob bob, kate | bob
Object(x) | sofad2 sofab?2 sofab2,recliner29
Chair(xz) || n/a kate recliner29

Figure 3.8: Query answers for different perspectives.
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cause most web pages can only be updated by their ownersviathe file mechanismson their servers.
A fileiseither saved or unsaved, and only saved files are available viaHTTR. Thus, the update of a
file becomes a single transaction and many issues that are important to databases, such as concur-
rency and serializability are not significant. Although web pages usually have asingle writer, there
are many web pagesthat change frequently. If the agent reaccesses such pages in the middle of the
guery, it may be presented with adifferent set of assertions. For these reasons, it is recommended
that for the duration of each query, reasoning systems cache the assertions of all resources used in
the query.

Document retrieval queries can locate a document that represents a concept, which may or may
not be partially defined, or locate a document that has specified metadata. Here, metadata is data
about the document itself, such asitsauthor or modification date. When the domain of thelanguage
includes resources, then the knowledge base view subsumes the the document retrieval view. That
is, we can specify the relationship between a document and the concept that it represents, and we
can describe both the document and the concept independently.

3.9 Summary

In this chapter, we have gradually developed aformal model for describing the Semantic Web. The
foundation for this model is first-order logic, but we found that we needed ontol ogies to represent
common background knowledge and provide reusable vocabularies. We then presented a method
of partitioning ontol ogies and resources to ensure that only those that shared the same context were
integrated. We extended this model with the ability to specify ontology inclusion, so that content
providers could describe their own information needs while still reusing existing ontologies. This
allowsustoincrease theintegration of distributed resources, asisdonewith extended ontology per-
spectives. We further extended the model to deal the problem of ontology evolution, and discussed
the issue of backward-compatibility. This resulted in compatible ontology perspectives which can
integrate resources that commit to any ancestors of an ontology as well as resources that commit
to forward-compatible prior versions of the ontology. We discussed how extension alone would be
insufficient for integrating resourcesin adistributed ontol ogy environment, and discussed the prob-
lem of ontology divergence. Another important issue in distributed environmentsisthe inability to
preserveintegrity constraintsand thelikelihood of global inconsistency. The size of the Web makes
scalability animportant issue and possi ble approacheswereal so discussed. Finally, we talked about
gueries on the Semantic Web, and how they depend on perspectives.
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Chapter 4

The SHOE Language

In the previous chapter, we examined the problem of the Semantic Web and devel oped aframework
that handlessome of these problems. Inthischapter, wewill present SHOE, an actual Web language
based on these concepts. SHOE [66, 48], which stands for Simple HTML Ontology Extensions,
was originally developed by the PLUS Group at the University of Maryland in 1995. Since then,
the PLUS Group has refined the language and experimented with its use.

SHOE combinesfeatures of markup languages, knowledge representation, datal og, and ontol o-
giesin an attempt to address the unique problems of semantics on the Web. It supports knowledge
acquisition by augmenting the Web with tags that provide semantic meaning. The basic structure
consists of ontologies, which definerulesthat guide what kinds of assertionsmay be made and what
kinds of conclusions may be drawn from these assertions, and instances that make assertions based
on those rules. As aknowledge representation language, SHOE borrows characteristics from both
predicate |ogics and frame systems.

4.1 Design Rationale

Although we have developed a formal model in Chapter 3, an actual language needs to address
issues such interoperability with existing technology, language expressivity, performance, and us-
ability. In this section, we will make a number of choices regarding these issues and explain the
rationale behind these choices. Note that in many cases there is no clear right answer, so some
choices are based on intuition and experimentation.

First, we will address the issue of syntax. Although the standard languages of knowledge rep-
resentation are Lisp-based and Prol og-based, the Web isdominated by HTML and XML. Sincethe
Web community is much larger than the knowledge representation one, there is a strong reason to
choose a Web-like syntax over atraditional knowledge representation one. Such alanguage could
embedded in HTML documents, allowing it to be added to legacy web pages with minimal hassle,
or it could be embedded in XML documents. An XML syntax can be analyzed and processed us-
ing the Document Object Model (DOM), which can be parsed and manipulated by anumber of free
and commercial libraries, providing a strong foundation upon which devel opers can build Seman-
tic Web tools. Additionally, software which is XML-aware, but not SHOE-aware, can still use the
information in more limited but neverthel ess powerful ways. For example, some web browsersare
ableto graphically display the DOM of a document as atree, and future browsers will allow users
to issue queries that will match structures contained within the tree. A second reason for using an
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XML syntax is that SHOE documents can then use the XSLT stylesheet standard [18] to render
SHOE information for human consumption, or trandate it into other XML formats. We chose to
give SHOE both an HTML and an XML syntax, thus allowing it to be used by the entire web com-
munity, regardless of whether or not they have migrated to XML.

In Chapter 3 we described the need for ontologies, and presented a model of how ontologies
could be used on the Semantic Web. Ontologies are a critical component of SHOE, although they
are formulated somewhat differently than the five-tuples of Definition 3.28. First, a SHOE ontol-
ogy has both an identifier and a version number, where it is assumed that all ontologies with the
same identifier are different versions of the same ontology. This approach avoids the problem of
having to list every previous version of the ontology, since these can be determined by comparing
identifiersand version numbers. Additionally, backwards-compatible revisions can be specified by
version number only. In Section 4.3, we will explicitly describe how SHOE ontol ogiesrelate to the
framework presented in Chapter 3.

SHOE has a feature for ontology inclusion, and the included ontology is specified by a com-
bination of the ontology’s identifier and version number. In adistributed environment such as the
Web, few agents will know every ontology. To help agents locate an unfamiliar ontology, SHOE
also alowsthe URL of anincluded ontology to be specified. To handle potential name conflicts be-
tween ontologies, every SHOE ontology hasits own namespace, and a special prefixing mechanism
is used to refer to the components of another ontology.

Since SHOE is meant to be used by ordinary web authors, it is unrealistic to expect them to
provide complex first-order logic formulas to describe their content. SHOE follows the strategy
of the OKBC API [17] and the Ontolingua language [42], which both have first-order logic based
foundations, but provide frame-based idiomsfor convenience. A frame-based paradigm tendsto be
easier to use, because it has similarities to object-oriented programming languages and databases,
which have become quite popular for software development. SHOE has categories (commonly
called classes in the knowledge representation literature), which can be thought of as frames, and
relations, which determine the dots of those frames. Categories can have supercategories, with the
semantics of an isa link. The arguments of SHOE relations are typed, and SHOE provides some
basic data types for this purpose. These basic data types can be used to check the syntax of values
and to provide an interpretation for the value. To handle the common case of synonyms, SHOE
also has an aliasing feature. Finally, for advanced ontology designers, SHOE provides additional
axiomscalledinferencerules. All of SHOE' sfeatures have equivalent first-order logic expressions,
which ensure that the framework from Chapter 3 till applies.

Asdiscussed in Section 3.7, the kinds of axioms that can be expressed in alanguage determines
its scalability. Recall that sound and complete reasoning in first-order logic is intractable and thus
of little use on real-world problems such as those presented by the Semantic Web. It is expected
that on the Web, facts will vastly outnumber axioms. Since deductive database research operates
under the same assumptions, we chose to base SHOE's semantics on datalog, and make use of the
algorithms and systems developed for it. Note that the categories, relations, and alias features can
all be expressed in datalog, so the only consequence of this decision is that we must restrict the
axioms to Horn clauses. In Chapter 7, we will discuss some Semantic Web |anguages that have
made different choices,

SHOE associates knowledge with resources by declaring instances. These instances contain
assertions about themselves and other instances, and the assertions may describe membership in
particular categories, or relationsthat hold. Every instance commitsto at least one ontology, which
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defines the categories and relations used.

Every instance must have a key, which is used to referenceit, but creating and assigning such
keys can be problematic in distributed environments. However, URLS provide a good mean for
identifying resources on the internet, and can be used as the basis for forming instance keys. It is
assumed that each key identifiesexactly oneentity, but no assumptions are made about whether two
distinct keys might identify the same entity. This is because many different URLS could be used
to refer to the same resource (due to the facts that a single host can have multiple domain names
and operating systems may allow many different paths to the same file). To solve these problems
in apractical setting, a canonical form can be chosen for the URL; an example rule might be that
the full path to the file should be specified, without operating systems shortcuts such as’”’ for a
user’'s home directory. Even then, there are still problems with multiple keys possibly referring
to the same conceptual object. Thus, this solution ensures that the system will only interpret two
objects as being equivalent when they truly are equivalent, but ensuring that two object references
are matched when they conceptually refer to the same object is an open problem.

Finally, we must address the issue of potential inconsistency. As discussed in Section 3.6, if
inconsistency is not managed, then any theory formed by combining resources can be easily trivi-
alized, degrading the usefulness of the language. Althoughit is possible to create perspectives that
only include maximally consistent sets of ontol ogiesand resources, the processiscomplex and i nef-
ficient. Instead, we chose to keep SHOE easy to understand and implement, and have carefully de-
signed the language to eliminate the possibility of contradictions between agent assertions. SHOE
doesthisin four ways:

1. SHOE only permits assertions, not retractions.
2. SHOE does not permit logical negation.

3. SHOE does not alow relationsto specify a cardinality, and thus limit how many relation as-
sertions of a particular kind can be made for any single instance.

4. SHOE does not permit the specification of digoint classes.

Clearly, this restricts the expressive power of the language; it could be argued that without these
features, agents cannot recognize when resources are inherently incompatible and should never be
combined. While thisis true, accidentally combining a few resources incorrectly and drawing a
few false conclusionsis more appealing than having to check every resourcefor inconsistency with
every other resource, or worse, accidentally combining two inconsistent resources to create atriv-
ialized theory. However, research into pragmatic ways to handle semantic web inconsistencies is
deserving of future work.

We have explained the basic decisionsin the design of the SHOE language. In the next section,
we describe the resulting language in detail.

4.2 Language Description
This section describes the SHOE language, which provides away to incorporate machine-readable

semantic knowledge in World Wide Web documents. We will describe the syntax and semantics of
ontologies, instances, and their components.
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42.1 A Comment on Syntax

SHOE has two syntactical variations. The first syntax is an SGML application that extends the
HTML syntax with additional semantic tags. This syntax can be used to embed SHOE in ordinary
web documents. To indicate conformancewith SHOE, HTML documents must include thefollow-
ing text in the HEAD section of the document:

<META HTTP- EQUI V="SHOE" CONTENT="VERSI ON=1. 0" >

The CONTENT of the meta-tag indicates that the document is compliant with version 1.0 of the
SHOE language.

Sections4.2.3 and 4.2.4 describe the elements of SHOE and present the remainder of the SGML
syntax. The syntactic descriptions in these sections use a sans serif font to indicate key words of
the language and italicsto indicate that the author must supply aparameter or expression. Brackets
([ or’]") are used to indicate optional portions of the syntax. Since SGML is not case-sensitive,
the element and attribute names can appear in any case. Arbitrary white space is allowed between
attributeswithin atag and between tags. Also, the quotes around attribute values may be omitted if
the value does not contain white space. A complete and concise specification of the syntax isgiven
by the SGML DTD for SHOE, which is provided in Appendix A.1,

The second SHOE syntax is an XML application. While the SGML syntax alows SHOE to
be easily embedded in the numerous existing HTML web pages, the XML syntax allows SHOE to
leverage emerging web standards and technologies. Since XML isbasically asubset of SGML, the
XML syntax for SHOE is very similar to the SGML one. The SHOE XML DTD is presented in
Appendix A.2.

The XML version of SHOE can either stand aone, or be included in another XML document.
A stand-alone SHOE XML document must begin with the appropriate XML prolog:

<?xm version="1.0"7?>
<! DOCTYPE shoe SYSTEM
"http://ww. cs. und. edu/ proj ect s/ pl us/ SHOE/ shoe_xm . dtd" >

The root element of this document must be shoe, and it must contain a version attribute with
value“1.0", as shown below:

<shoe version="1.0">

All SHOE elements must be between thistag and a closing </shoe> tag.

Alternatively, SHOE can be embedded in other well-formed XML documents. When docu-
ments combine different element sets, they must use XML namespaces [14] to prevent accidental
name clashes. The simplest way to do this with SHOE isto set the default namespace within the
shoe element.

<shoe xm ns="http://wwm. cs. und. edu/ proj ect s/ pl us/ SHOE/ "
versi on="1.0">
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Note that most of the Web's HTML is not well-formed XML. However, the Extensible Hyper-
Text Markup Language (XHTML) [89] provides a variation of HTML that is compatible. Thus,
an HTML document could be converted to XHTML, and then SHOE can be added to it.

Although the syntax presented in sections 4.2.3 and 4.2.4 describe the elements of SHOE using
the SGML syntax, most of itisstill applicableto the XML variation. However, since XML ismore
restrictive, the following additional rules must be applied:

e All empty elements, i.e., elements which have no content and no end tag, must end with a
'[>" instead of a’>’". Specificaly, this applies to the USE-ONTOLOGY, DEF-CATEGORY,
DEF-ARG, DEF-RENAME, DEF-CONSTANT, DEF-TYPE, CATEGORY, and ARG elements.

e No attribute minimization is allowed. In SGML attribute minimization allows the names of
some attributes to be omitted and only their valuesto be specified. In the SGML syntax, this
isusually used to specify VAR within the subclauses of an inference rule (see page 58). In
the XML syntax, the attribute name USA GE must be explicitly provided, e.g. USAGE="VAR”"
instead of VAR.

e Since XML is case-sensitive, all dement and attribute names must bein lower case.

o All attribute values must always be quoted, including those which are numeric as well asthe
FROM and TO keywords.

4.2.2 TheBase Ontology

The base ontology isthe ultimate ancestor of all other ontologies. There isaone-to-one correspon-
dence between versions of the SHOE language and versions of the base ontology, thus the version
number of the META tag or the version attribute of the shoe element indicates which version of the
base ontology is applicable.

The base ontology provides some fundamental categories, relations, and data types. It defines
the categoriesEntity and SHOEEntity, wherethelatter isasubcategory of theformer. SHOEEntity is
the superclass of all classes defined in other SHOE ontologies. The relationsname and description
can be used to provide names and definitions for any instance. Finaly, the base ontology defines
four basic datatypes, which can constrain the values used in relation assertions. The datatypesare:

STRING A sequence of ASCII characters, including but not limited to letters, digits, and punctua-
tion. Strings have an implicit alphabetical ordering.

NUMBER A floating-point numeric literal. These can be provided as integers, decimals, or in the
standard exponential notation, i.e., they have the form:

[+]-] digit+ ["." digit+] [(("e |"E)[+-]digit+)]
The standard ordering applies to al numbers.

DATE A date and time, based on RFC 1123. Values may have the following form:

WW DD MW YYYY HH MM SS TZD
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where WWW isathree | etter abbreviation for the day of week, DD isthe day of month, MMM
isthe three letter abbreviation of the month, YYYY isthe four digit year, HH is the two digit
hour (from O to 23), MM is the two digit minute, SS is the two digit second, and TZD isthe
time zone designator. Dates are ordered chronologically.

TRUTH (Boolean) A booleanvalue, either YES or NO, case-insensitive. For comparison purposes,
NO isconsidered less than YES.

4.2.3 Ontology Definitions

SHOE uses ontologies to define the valid elements that may be used in describing instances. An
ontology isstored in an HTML or XML fileand is made available to document authors and SHOE
agents by placing it on aweb server. The ontology can include tags that state which ontologies (if
any) are extended, and define the various elements of the ontology, such as categories, relations,
and inference rules. Figure 4.1 shows an example of a SHOE ontol ogy.

Each ontology has an identifier and aversion number that uniquely definesit. Accidental reuse
of ontology identifiers can be avoided by including the domain name of its author in thisidentifier.
Ontologies with the same identifier but different version numbers are considered to be different
versions of the same ontology. An ontology is arevision of another ontology if it has the same
identifier but a later version number.

A SHOE document may contain any number of ontology definitions. Many of the definitions
within an ontology have an associated name, and these are collectively called named components.
The named components are categories, relations, constants, and types. The names of these compo-
nentsare all subject to the samerestrictions: they must begin with aletter, may only contain letters,
digits, and hyphens; cannot contain whitespace, and are case-sensitive. Thereisasingle namespace
for all named components, and thusitisinvalid for an ontology to define two componentsthat have
the same name.

In HTML documents, the ONTOLOGY element must be a subelement of the BODY element; in
XML documents, it must be a subelement of the shoe element. Only the SHOE elements described
in therest of this section may be nested inthe ONTOLOGY element. An ONTOLOGY element has
the following form:

<ONTOLOGY ID="id"
VERSION="version”
[BACKWARD-COMPATIBLE-WITH="bcwy bcw, ...bcw,"]
[DESCRIPTION="text"]
[DECLARATORS="decy decy ...decy,"] >

content

</ONTOLOGY >

ID (mandatory) Specifiesthe ontology’sidentifier. This must begin with aletter, contain only let-
ters, digits, and hyphens; and may not contain whitespace. Identifiers are case-sensitive.

VERSION (mandatory) Specifiestheontology’sversion number. Version numbersmay only con-
tain digits and dots.
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<l-- Declare an ontology called "university-ont". -->
<ONTOLOGY | D="uni versity-ont" VERSI ON="1.0">

<!-- Extend the general ontology, assign it the prefix "g." -->
<USE- ONTOLOGY | D="general -ont" VERSI ON="1. 0" PREFI X="g"
URL="ht t p: // ww. ont ol ogy. org/ general 1. 0. htmi ">

<l-- Create local aliases for sone terns -->
<DEF- RENAME FROVE"(g. Person" TO="Person">
<DEF- RENAME FROME"g. Organi zati on" TO="Organi zati on">
<DEF- RENAME FROMWE"(g. nane" TO="nane">

<!-- Define sone categories and subcategory rel ationships -->
<DEF- CATEGORY NAME="Facul ty" | SA="Person">
<DEF- CATEGORY NAME="St udent" | SA="Person">
<DEF- CATEGORY NAME="Chair" | SA="Facul ty">
<DEF- CATEGORY NAME="Department" | SA="COrgani zation">

<l-- Define sonme relations; n-ary relations are also allowed -->
<DEF- RELATI ON NAME="advi ses" >
<DEF- ARG POS="1" TYPE="Facul ty">
<DEF- ARG POS="2" TYPE=" St udent">
</ DEF- RELATI ON\>

<DEF- RELATI ON "hasGPA" >
<DEF- ARG POS="1" TYPE="Student">
<DEF- ARG POS="2" TYPE=". NUVMBER' >
</ DEF- RELATI ON\>

<!-- Define a rule: The head of a Departrment is a Chair -->
<DEF- | NFERENCE>
<I NF-| F>
<RELATI ON NAME="g. headOf " >
<ARG PCS="1" VALUE="x" USAGE="VAR'>
<ARG PCS="2" VALUE="y" USAGE="VAR'>
</ RELATI ON>
<CATEGORY NAME="Departnent" FOR="y" USACE="VAR'>
</ I NF- I F>
<| NF- THEN>
<CATEGORY NAME="Chair" FOR="x" USAGE="VAR'>
</ | NF- THEN>
</ DEF- | NFERENCE>

</ ONTOLOGY>

Figure 4.1: An example university ontology.
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BACKWARD-COMPATIBLE-WITH Specifiesawhitespace-delimited list of previousversions
that this ontology subsumes. Each bcw; must be avalid ontology version number.

DESCRIPTION A short, human-readabl e description of the purpose of the ontology.

DECLARATORS Specifies awhitespace-delimited list of URLS for content resources the ontol-
ogy has associated with itself. Ordinarily, an ontology cannot assert relationships or catego-
rizations, only define the rulesthat govern such assertions. This mechanism allows an ontol-
ogy to state that one or more resources contain important standard assertions associated with
the ontology. See Section 4.2.4 for information on specifying assertions.

content All of an ontology’s definitions and extensions must appear between the open and close
ONTOLOGY tags. Thisincludesthe USE-ONTOLOGY, DEF-CATEGORY, DEF-RELATION,
DEF-RENAME, DEF-INFERENCE, DEF-CONSTANT, and DEF-TYPE elements. The ele-
ments are described in the rest of this section.

Extending An Existing Ontology

An ontology can extend one or more ontologies so that it may use their el ements and sanction their
rules. The extended ontology is indicated by its identifier and version number. If an agent cannot
locate the ontology, it isfreeto ignoreit. Although it is expected that there will be certain standard
ontologies which are known to all agents, it is good practice to provide an optional URL for the
ontology.

To distinguish between its el ements and those of the included ontology, an ontology must pro-
vide a unique prefix for each ontology it extends. When the including ontology references a com-
ponent from the extended ontology, it must concatenate the prefix and a period with the name
of the component. For example, if the general-ontology defines the category Person, and the
university-ontology ontology included it and assigned the prefix g, then the reference to Person
from university-ontology would be g.Person. Prefixesmay also be attached to already-prefixed ref-
erences, formingaprefix chain. For example, if the university-ontology wasin turn extended by the
cs-dept-ontology which assigned it the prefix u, then that ontology could refer to the Person cate-
gory asu.g.Person. A valid referenceis one whereremoval of thefirst prefix, resultsin areference
that isvalid in the ontology indicated by that prefix.

The base ontology isimplicitly extended by all other ontologies. To refer to its categories, re-
lations, and data types, an ontology can smply use a prefix that isa single period, asin .NUMBER.
Such references are said to contain empty prefix chains. Of course, ontologies that explicitly in-
clude the base ontol ogy are also free to use the prefixing mechanism defined above when referring
to components defined in the base ontol ogy.

Ontology extension is specified with the USE-ONTOLOGY tag, which has the following form:

<USE-ONTOLOGY ID="ontid”
VERSION="ontversion”
PREFIX="prefix"
[URL="url"]>

ID (mandatory) Specifiesthe extended ontology’s uniqueidentifier. Thismust be avalid ontology
identifier, as specified above.



VERSION (mandatory) Specifies the extended ontology’s version number. This must be avalid
ontology version number, as specified above.

PREFIX (mandatory) Assigns alocal prefix for referring to the components in the extended on-
tology. When the ontology refers to these components, this prefix must be appended before
the component’sname. Itisillegal for aUSE-ONTOLOGY tag to specify aprefix that is used
in another USE-ONTOLOGY tag of the same ontology.

URL A URL that pointsto adocument which contains the extended ontology. This allows agents
that do not know of the ontology to locate it and incorporateit into their knowledge base.

Category Definitions

A category (or class) is a set of objects that share some common properties. Categories may be

grouped as subcategories under one or more parent categories (superclasses), specifying the is-a

relation that is commonly used in semantic networks and frame systems. The use of categories

allows taxonomies to be built from the top down by subdividing known classes into smaller sets.
A category definition has the following form:

<DEF-CATEGORY NAME="catname”
[ISA="pcatre fi pcatrefs ...pcatref,"]
[DESCRIPTION="text"]
[SHORT="text">

NAME (mandatory) The name of the defined category. This must be a letter followed by a se-
guence of letters, numbers, and hyphens; it may not contain any whitespace. The nameis
case-sensitive and must be distinct from the names of al other components defined by the
ontology. It isrecommended that the name be of mixed capitalization (for example, Educa-
tionallnstitution).

|SA A whitespace-delimited list of valid category references. Each of these specifies aparent cat-
egory for the defined category.

DESCRIPTION A short, human-readable definition of the category.

SHORT A phrase which an agent may use to display the category to a user in amore understand-
ablefashion than the category’s name. 1n English ontologies, SHORT should beasingular or
mass noun, lower-case unless it is a proper noun. For example, the category Educationalin-
stitution might have SHORT="educational institution”.

Relation Definitions

A relation isacomponent used to describe a relationship between instances and other instances or
data. A relation is composed of zero or more elements called arguments, and is equivalent to an
n-ary predicate. If arelation isdefined for some set of arguments, this permits SHOE documentsto
assert that the relation holds for certain instances of those arguments. The arguments of arelation
are explicitly ordered, so each has a numbered position. Many relations are binary (have exactly
two arguments).
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A relation definition has the following form:

<DEF-RELATION NAME="relname”
[DESCRIPTION="text"]
[SHORT="text">
arguments

</DEF-RELATION>

NAME (mandatory) The name of the defined relation. This must be a letter followed by a se-
guence of letters, numbers, and hyphens; it may not contain any whitespace. The nameis
case-sensitive and must be distinct from the names of al other components defined by the
ontology. It is recommended that this name be of mixed capitalization with the first |etter
uncapitalized (for example, “isMemberOf”).

DESCRIPTION A short, human-readable definition of the relation.

SHORT A phrasewhich an agent may useto display therelationto auser in amoreunderstandable
fashion than the relation’s name. In English ontologies, SHORT should be alower-case verb
phrase for singular subjects, such that it makes some sense when appearing after thefirst ar-
gument but before the remaining arguments. For example, therelation “isMemberOf” might
have SHORT="is a member of".

arguments A sequence of two or more arguments. Each argument is defined by:

<DEF-ARG POS=("posint" | "FROM”" | "TO")
TYPE="datatype”
[SHORT="text"]>

POS (mandatory) The position of the argument being defined. One of two formats should
be followed. N-ary relations must use a positive integer to specify which argument is
being defined. For the first argument, POS must equal 1 and each successive argument
should be assigned the next greatest integer. Itisillegal to re-use an integer or skip a
number. Alternatively, binary relations (those consisting of exactly two arguments) can
usethe FROM and TO valuesto definethe positions of thefirst and second argument, re-
spectively. If arelation definesan argument with POS="FROM" then it must also define
exactly one other argument with POS="TO". The reverseisalso true.

TYPE (mandatory) Thetype of the argument. This must be avalid referenceto abasic data

type, category, or ontol ogy-defined type. Basic data types are those defined in the base
ontology, that is .STRING, .NUMBER, .DATE, and .TRUTH. These types are described
in Section 4.2.2. If acategory referenceis provided, then the argument is considered to
have an instance datatype, and relation assertions may use any instance in thisargument
position. Ontol ogy-defined typesare described under Data Type Definitions, later inthis
section. The format of data stored under these typesis implementation-specific.
The data type assigned to the argument determines how values used in relation asser-
tions are interpreted. For example, if thetypeis .STRING, then the value 2345 will be
interpreted as the string “2345”, whileif thevalueisaNUMBER, it will be interpreted
asthe integer 2345.
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SHORT A description of each argument intherelation. Thisshould bealower-casesingular
or mass noun.

Renaming Components

Ontologies can provide aliases for other components via renaming. Any named component (i.e.,
category, relation, constant, type, or another rename) in the ontology or one of its ancestors can be
renamed. Renaming is usually used to indicate synonyms or to reduce the length of prefix chains
when referencing a component defined in a distant ancestor. For example, an ontology could re-
name the category cs.junk.foo.person to ssimply person, so long as person is not defined el sewhere
in the ontol ogy.

A renaming has the following form:

<DEF-RENAME FROM="compre f”
TO="newname">

FROM (mandatory) A reference to component being renamed. This must be a valid reference,
meaning its prefix chain can be followed to locate the component in its source ontology.

TO (mandatory) The element’s new name. Thismust be aletter followed by a sequence of |etters,
numbers, and hyphens, and may not contain any whitespace. The name is case-sensitive.
It is considered part of the component namespace, and must be distinct from the names of
all other components defined by the ontology. It is recommended that this name follow the
naming conventions that apply to the renamed component.

Inference Rules

An ontology can include additional axioms by defining inference rules. An inference rule consists
of aset of antecedents (one or more subclauses describing assertions that entitiesmight make) and a
set of consequents (consisting of one or more subclauses describing assertions that may be deduced
if the consequents are satisfied).

The antecedents and consequents are sets of one or more subclauses, each corresponding to a
logic atom. Antecedent subclauses are enclosed by <INF-IF> and </INF-IF> tags, while conse-
guent subclauses are enclosed by <INF-THEN> and </INF-THEN> tags. An antecedent may be
either arelation subclause, a category subclause, or acomparison subclause, but a consequent may
only be a relation subclause or a category subclause. An inference rule with no antecedents or no
consequentsisinvalid. The syntax of each type of subclause is described below.

The arguments in subclauses may either be constants or variables. An inference rule can
have multiple variables, al of which areimplicitly universaly quantified. Constants require exact
matches, but variables can be bound to any value that satisfies the expression. Within a particular
inference rule, all variables with the same name are the same variable and must always be bound
to the identical values. Variablesin different rules are aways considered distinct.

All variables must be limited (see Section 2.3), although a stricter definition of limited is used
than that defined for datalog. Every SHOE variable must:

e appear in an antecedent that is a category or relation subclause, or
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e appear with another limited variable in an antecedent that is an equal comparison subclause.
Also, each variable has a data type that can be determined from therule.

¢ If thethe variable appears in a category subclause, then it is of instance type.

e If the variable appears in arelation subclause, then it is of the type given by the relation’s
definition for that argument position. If the type isacategory, then the variableis of instance

type.

e |f the variable appears in a comparison subclause with another typed variable, thenit is as-
signed the type of that variable.

Note that this means that every SHOE limited variable can be assigned a data type. Any inference
rulethat hasan unlimited variable or assigns avariablemorethan onedatatypeisinvalid and may be
ignored. However, avariable of instance type does not have to be amember of the category which
specifies the argument’stype. This is because some categories subsume other and some instances
are members of multiple categories.

A SHOE inference has the form:

<DEF-INFERENCE
[DESCRIPTION="text"]>
<INF-IF>
antecedents
</INF-IF>
<INF-THEN>
consequents
</INF-THEN>
</DEF-INFERENCE>

DESCRIPTION A short, human-readable description for the rule.
antecedents Oneor more category, relation, or comparison subclauses as defined bel ow.

consequents One or more category or relation subclauses, as defined below.

A category subclause is satisfied if the instance denoted by some key or variableis a member
of the specified category. It has the form:

<CATEGORY NAME="catref”
FOR="val"
[[USAGE=]("VAR” | "CONST")]>

NAME (mandatory) A referenceto thecategory. Thismust be avalid reference, meaning its prefix
chain can be followed to |ocate the component in its source ontology.

FOR (mandatory) Specifiesaninstance key or avariableto be bound to an instance which has been
declared to belong to this category.
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USAGE Indicatesif val refersto the key of an actual instance (CONST) or to avariable (VAR). A
variable can be bound to any instance which has been declared to belong to this category. If
no USAGE is specified, it defaultsto CONST. Note that even when avalue is specified, the
USAGE= isoptional.

A relation subclause is satisfied if the relationship holds between al of its arguments. It has
the form:

<RELATION NAME="relre f">
arguments

</RELATION>

NAME (mandatory) A referenceto therelation asserted for theinstance. Thismust beavalid ref-
erence, meaning its prefix chain can be followed to locate the component’s definition in its
source ontology.

arguments Theset of argumentsfor the relation, specified one after another. There aretwo forms
of relation assertions, the general form and the binary form. The general form may be used
for relationships of any number of arguments. When using this form, the relation assertion
must have the number of arguments specified in the relation’s definition. Assertions with a
different number of arguments are invalid and may be ignored.

Alternatively, the binary form can be used for relations that are defined to have exactly two
arguments. In thisform, POS can be FROM or TO. If the relation’s definition specifies that
one of the argumentsisan instancetype, then it may be omitted aslong as the other argument
isspecified. Inthese cases, thevaluefor the argument isassumed to bethekey of thereference
instance. Thus, this form alows a shorthand for many common relationships, and allows
instances to be specified in more of a frame-like manner.

Regardless of form, if a relation assertion contains two or more arguments with the same
POS, thenitisinvalid and may be ignored.

Each argument has the form:

<ARG POS=("posint” | "FROM” | "TO")
VALUE="val”
[[USAGE=]('VAR” | "CONST")]>

POS (mandatory) The position of the argument being defined. A positive integer indicates
that this argument fits that position in the list of arguments defined for the relation.
FROM is synonymous with 1. TO is synonymous with 2. Rules for use of arguments
are specified below.

VALUE (mandatory) Specifies the term whose argument position is indicated by the POS
attribute. For example, <ARG POS="7" VALUE="George"> declares that the constant
“George’ isargument 7 intherelation. If the relation’s definition specifies that the type
isabasic datatype, then the value must be an element of that type. If thetypeisinstance,
then the value must be an instance key or a constant reference. A constant referenceis
prefixed with an exclamation point (*!"), aswill bediscussed under Constant Definitions
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on page 60. Finally, if the argument type is an ontol ogy-defined type, then itssyntax is
implementation dependent, but SHOE agents unfamiliar with the type may treat it as a
string.

The data type assigned to the argument in the relation’s definition determines how the
value is interpreted. For example, if the type is .STRING, then the value 2345 is in-
terpreted as the string “2345”, while if thevalueisaNUMBER, it isinterpreted as the
integer 2345.

USAGE Declares whether the element for this argument is a variable or constant, indicated
by VAR and CONST, respectively. For example, <ARG POS="7" VAR VALUE="X">
declaresthat thevariable X isargument 7 intherelation. If no valueisspecified, USAGE
defaultsto CONST. Note that even when a value is specified, the USAGE= isoptional.

A comparison subclauseisused to evaluateits argumentswith respect to equality and the stan-
dard ordering operators. A comparison must have exactly two arguments. It isincorrect for an on-
tology to declare comparison declaration subclauses that have any other number of arguments; if
this happens, the whole inference rule is incorrect and may be ignored. A comparison clause has
the form:

<COMPARISON OP="0p">
argy

args

</COMPARISON>

OP (mandatory) One of the operator key words. equal, notEqual, greaterThan, greaterThanOrE-
qual, lessThanOrEqual, or lessThan. These al evaluate whether ar¢, isequal, not equal to,
greater than, or less than arg,, depending on the types of the arguments. The ordering of the
basic datatypesisdescribed in Section 4.2.2. For instance types, the valuesare case-sensitive
and greaterThan/lessThan have no meaning.

arg, Thefirst operand of the comparison. The syntax and semantics is the same as for arelation
argument (see arguments above).

arg, The second operand of the comparison. The syntax and semanticsisthesame asfor arelation
argument (see arguments above).

Constant Definitions

A constant isaspecial instance defined inthe ontology. It can beused to provideastandard namefor
ashared individual, such asthe color red. Although red could technically be defined in an instance,
and the DECLARATORS attribute of the ONTOLOGY element could be used to specify that this
instance makes standard assertionsfor the ontol ogy, the key of the concept red would bea URL like
http://www.cs.umd.edu/ontology-associated-instance.html#red. However, by making it a constant,
the color can become an official component of the ontol ogy and can be referred to using the ontol ogy
prefixing mechanism.

A constant isreferenced by prepending a“!” and a prefix chain to its name. For example, if an
ontol ogy defined red asa constant, and some instance uses this ontology with the cs prefix, thenthe
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instance can reference red with the key Ics.red. Note that this means that there may be more than
one key that references the same constant instance, depending on the particular path of prefixes
chosen. All such keys should resolve to the same instance.

A constant definition has the form:

<DEF-CONSTANT NAME="constname”
[CATEGORY="catre f"]>

NAME (mandatory) The name of the constant instance. This must be a letter followed by a se-
guence of letters, numbers, and hyphens; it must not contain any whitespace. The nameis
case-sensitive and must be distinct from the names of al other components defined by the
ontology. It is recommended that the entire name be in lower case, so that constant names
can be easily distinguished from the names of other kinds of components.

CATEGORY A referenceto asingle category under which the constant is to be categorized. This
must be avalid reference, meaning its prefix chain can be followed to locate the component’s
definition in its source ontology.

Any additional assertions about the constant must be made in one or more content resources.
The DECLARATORS attribute can be used to specify that these contain standard assertions of the
ontology.

Data Type Definitions

Data types are sets that have specific syntactic restrictions and an implicit ordering theory associ-
ated with them. As described in Section 4.2.2, SHOE defines four basic data types: .NUMBER,
.STRING, .DATE, and .TRUTH. However, certain applications may require other datatypes. These
data types can be given names in SHOE ontologies, but SHOE does not associate any specific se-
mantics with them. Thus, adata type definition ssimply allows SHOE to be used in specialized ap-
plications, where custom processors handle the specific additional datatypes appropriately.

Unlikethe basic datatypes which can have empty prefix chains (that is, thereis no string before
the period), ontol ogy-defined types must bereferenced just as ontol ogy-defined categoriesare: with
aprefix chain that can be followed back to the ontology that originally defined the type.

A datatype definition has the form:

<DEF-TYPE NAME="typename”
[DESCRIPTION="text"]
[SHORT="text">

NAME (mandatory) The name of the newly defined datatype. Thismust be aletter followed by a
sequence of letters, numbers, and hyphens, and may not contain any whitespace. The name
is case-sensitive and must be distinct from the names of all other components defined by the
ontology. It isrecommended that the entire name be capitalized.

DESCRIPTION A short, human-readable definition of the data type.

SHORT A phrase which an agent may use to display the type to a user in amore understandable
fashion than the data type's name. In English ontologies, SHORT should be a lower-case
singular or mass noun.
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<I NSTANCE KEY="http://univ.edu/jane/">

<l-- Use the semantics fromthe ontol ogy "university-ont",
prefixed with a "u." -->
<USE- ONTOLOGY | D="uni versity-ont" VERSI ON="1.0" PREFI X="u"
URL="htt p://ww. ont ol ogy.org/univ1l. 0. htm">

<l-- Caimsone categories for this instance and others. -->
<CATEGORY NAME="u. Chair">
<CATEGCORY NAME="u. Student" FOR="http://univ.edu/john/">

<l-- Caimsone properties and rel ationships -->
<RELATI ON NAME="u. nane" >
<ARG PCS="TO' VALUE="Jane Snith">
</ RELATI ON>

<RELATI ON NAME="u. advi ses" >
<ARG PCS="TO' VALUE="http://univ. edu/john/">
</ RELATI ON\>

</ | NSTANCE>

Figure 4.2: An exampleinstance.

4.2.4 |Instance Assertions

In the previous section, we described how to define SHOE ontologies. In this section we will de-
scribe how to provide SHOE content that commits to these ontologies. An instanceisasinglein-
dividual or concept; it can be classified under particular categories, have properties, and be related
to other instances. SHOE content is provided by aresource called a source document. Each source
document contains one or more reference instances, that indicate the resource that the content is
related to. A reference instance contains many assertions, and the instances referenced in these as-
sertions (called subject instances) may differ from the reference instance. Usually, the reference
instance is the source document, but it can also be used to specify semantic content for other re-
sources. For example, SHOE cannot be added to a GIF image, but SHOE content in another re-
source can contain a reference instance that describes thisimage. An example reference instance
isshown in Figure 4.2.

All instances must have a unique key. If the instance is a resource, then this key is typically
some standard URL for the resource. If the instance is an entity described solely by that resource,
then the key may be formed by adding a unique pound-suffix to the resource’'s URL. For example,
http://www.jdoe.org/#Fido is avalid key for an instance located at http://www.jdoe.org/. It is good
style for this key to correspond with an actual anchor in the document.

All SHOE content must indicate areference instance using an <INSTANCE>> tag. If the source
document isan HTML document, then this tag may appear at the top level withinitsbody (i.e., it
may not be enclosed by any other tags within the BODY). In an XML document, the instance el-
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ement must be a subelement of the shoe element. Only SHOE tags, as described under content
below, may appear between the open and close INSTANCE tags. The assertions made within these
tags are considered knowledge relevant to the referenceinstance. Some documents may have mul-
tiple reference instances, each of which must have a unique key.

The syntax of areferenceinstanceis:

<INSTANCE KEY="key"
[DELEGATE-TO="del, del, ...del,"]>
content

</INSTANCE>

KEY (mandatory) The unique key for the instance. Keys must begin with a letter, may contain
only the characters allowed in URLS, and must not contain whitespace. They are also case-
sensitive. Keysthat begin with an exclamation point (“!”) and thekey “me”, in any case, are
reserved.

DELEGATE-TO Specifiesthe URLS of resourcesthat are permitted to make assertions on behal f
of thisinstance. This should be awhitespace-delimited list of valid keys. Typically, thedele-
gated resource will contain areference instance with the same key as the permitting instance.
Agents should consider al assertions made within that subinstance as if they were made by
the permitting instanceitself. Thismight be done to consolidate assertionsfor aweb siteinto
asingledocument, or to eliminate alarge number of assertionsfrom slowing down the down-
load time of a document. If the delegated instance does not declare this special subinstance,
then delegating declarative power is simply a pointer to an agent to look elsewhere for rele-
vant SHOE knowledge.

content The content of an instance can be a combination of <USE-ONTOLOGY>,
<CATEGORY>, <RELATION>, and <INSTANCE> tags. An <INSTANCE> tag that
appears within another is called a subinstance, and has the same syntax as other instances.
The valid syntax for the other kinds of content are described below.

Committing to an Ontology

Every SHOE reference instance must commit to one or more ontol ogies, which provide the seman-
ticsfor the knowledge about the instance. The ontol ogies committed to by an instance areindicated
with the <USE-ONTOLOGY> tag, which has the following form:

<USE-ONTOLOGY ID="ontid”
VERSION="ontversion”
PREFIX="prefix"
[URL="url"]>

ID (mandatory) Specifiesthe extended ontology’s uniqueidentifier. Thismust be avalid ontology
identifier, as specified in Section 4.2.3.

VERSION (mandatory) Specifies the extended ontology’s version number. This must be avalid
ontology version number, as specified in Section 4.2.3.
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PREFIX (mandatory) Assigns alocal prefix for referring to components defined in the ontology
committed to. When the ontology refers to these components, this prefix must be appended
before the component’sname. It isillegal for aUSE-ONTOLOGY tag to specify a prefix that
isused in another USE-ONTOLOGY tag of the same instance or an enclosing instance.

URL A URL that pointsto adocument which contains the ontology committed to by the instance.
This allows agents that do not know of the ontology to locate it and incorporateit into their
knowledge base.

Note that the syntax of the USE-ONTOLOGY tag for instancesisidentical to the one for ontolo-
gies.

Category Assertions

Instances may be classified, that is, they may be declared to belong to one or more categoriesin an
ontology, using the CATEGORY tag:

<CATEGORY NAME="catref”
[FOR="key"]>

NAME (mandatory) A reference to the category asserted for the instance. This must be avalid
reference, meaning its prefix chain can be followed to locate the category’s definition in its
source ontology.

FOR Containsthe key of theinstance which is asserted to be amember of the category. Thisvalue
must be an instance key, a constant reference, or the value “me”. A constant reference is
prefixed with an exclamation point (‘!"), as described under Constant Definitions on page 60.
Thevalue“me’ isashorthand for the key of thereferenceinstance. If the FOR attribute does
not appear, then the key is assumed to be that of the reference instance.

Relation Assertions

A reference instance may contain assertions about the properties and relationships of instances.
These take the following form:

<RELATION NAME="relre f">
arguments

</RELATION>

NAME (mandatory) A referenceto the relation asserted for theinstance. Thismust beavalid ref-
erence, meaning its prefix chain can be followed to locate the component’s definition in its
source ontology.

arguments Theset of argumentsfor the relation, specified one after another. There aretwo forms
of relation assertions, the general form and the binary form. The general form may be used
for relationships of any number of arguments. When using this form, the relation assertion
must have the number of arguments specified in the relation’s definition. Assertions with a
different number of arguments are invalid and may be ignored.
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Alternatively, the binary form can be used for relations that are defined to have exactly two
arguments. In thisform, POS can be FROM or TO. If the relation’s definition specifies that
one of theargumentsisan instancetype, then it may be omitted aslong as the other argument
isspecified. Inthese cases, thevaluefor the argument isassumed to bethekey of thereference
instance. Thus, this form alows a shorthand for many common relationships, and allows
instances to be specified in more of a frame-like manner.

Regardless of form, if a relation assertion contains two or more arguments with the same
POS, thenitisinvalid and may be ignored.

Each argument has the form:

<ARG POS=("posint” | "FROM” | "TO")
VALUE="val">

POS (mandatory) The position of the argument being defined. A positive integer indicates
that this argument fits that position in the list of arguments defined for the relation.
FROM is synonymous with 1. TO is synonymous with 2. Rules for use of arguments
are specified below.

VALUE (mandatory) Specifies the term whose argument position is indicated by the POS

attribute. For example, <ARG POS="7" VALUE="George"> declares that the constant
“George’ isargument 7 intherelation. If the relation’s definition specifies that the type
is a basic data type, then the value must be an element of that type. If the typeisin-
stance, then the value must be an instance key, a constant reference, or the value“me”.
A constant referenceis prefixed with an exclamation point (*!"), as described under Con-
stant Definitions on page 60. The value“me” isashorthand for the key of the reference
instance. In any of these cases, the specified instance is assumed to be of the category
specified by therelation definition. Finaly, if the argument type is an ontology-defined
type, thenits syntax isimplementation dependent, but SHOE agents unfamiliar with the
type may treat it as astring.
The data type assigned to the argument in the relation’s definition determines how the
value isinterpreted. For example, if the type is .STRING, then the value 2345 is in-
terpreted as the string “2345”, while if thevalueisaNUMBER, it isinterpreted as the
integer 2345.

4.3 Formal Semantics

Wewill now present aformal semanticsfor the SHOE language. These semanticsarebased on com-
patible ontology perspectives, as described in Section 3.4. That definition depends on ontologies
defined as tuples, a knowledge function that describes the content of resources, and a commitment
function that determines which ontology a resource commitsto. Thus, we need to describe how
SHOE ontologies map into the required ontology structure, and how to define the knowledge and
commitment functions based on the content of SHOE instances.
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431 Preliminaries

Before we present the formal semantics, we must define afew useful functionsand sets. Firg, it is
useful to know which symbols of £ correspond to what kinds of SHOE concepts. We will specify
certain subsets of the symbols S that correspond to SHOE categories, relations, types, and con-
stants. S.,; isthe set of category symbols, S,.; isthe set of relation symbols, S;,,.. iSthe set of type
symbols, and S..,.s: isthe set of constant symbols. S..:, S, and Sy,,. are subsets of the predicate
symbols, that is, S..: € Sp, S, € Sp, and Sy, € Sp. The ontology constant symbols are a
subset of the language’s constants symbols, that is S.... € Sc.

Additionally, we will use a set of functionsto trandate different aspects of the SHOE syntax to
concepts in our logical model. The following functions are used:

ont : I'd x Ver — O Maps pairs of SHOE ontology identifiers (/d) and version numbers (Ver)
to ontology structures. Since not al combinations of identifiers and version numbers have
associated ontologies, thisis a partial function.

res : Url — R Maps auniform resource locator (URL) from the set Ur[ to a specific resource in
R.

resolve : ShoeOnt x CompRef — S MapsaSHOE ontology from the set ShoeOnt and acom-
ponent reference from the set CompRe f to asymbol in S. This function has the following
properties:

e resolve(O, p.name) = resolve(O’, name) if O isthe ontology referenced by prefix p.

e resolve(O, p1.pa....py.name) = resolve(O’, ps. ... p,.name)if O'istheontology ref-
erenced by prefix p;.

atom : Shoe Exp — W Mapsan atomic SHOE expression (an element of Shoe Exp) tothe equiv-
alent well-formed formulain the set W. The semantics of thisfunction are specified in Table
4.2.

var : String — Sx Mapsastring to avariable symbol.

type : Sy X integer — St,e U Seqe Mapsarelation symbol and an integer argument position to
the type of the corresponding argument. In SHOE, arguments types can be data types or cat-
egories, thus S;,,c U Sea:.

literal : Syype x String — Sc Maps atype symbol and a string to the symbol representing that
string as interpreted by the type.

We will also assume that the logical language £ contains a set of built-in predicates. These are
the binary predicates =, #, <, <, >, and >. For convenience, we will write them in infix form.
The definitions of these predicates are as needed by the basic data types. Note, that we assume that
the symbols of the data types values are distinct. This can be done without loss of generality due
to simple renaming.

In the next two sections, we will provide semanticsfor acanonical form of SHOE. Inthisform,
all default values are made explicit, and any invalid components are assumed to be removed.
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4.3.2 Ontology Semantics

Recall that an ontology structureisatuple O = (V, A, E, R, B), where V' is a set of vocabulary
symbols, A isaset of axioms, £ isthe set of ontologies extended by O, R isthe set of ontologies
revised by O, and B isthe set of ontologies with which O is backwards-compatible. In Table 4.1,
we show how the tags in a SHOE ontology, identified by SO, can be used to construct an ontol-
ogy structure O. In this table, we ignore attributes that have no semantics, such as SHORT and
DESCRIPTION.

A SHOE <ONTOLOGY > tag indicates a new ontology O identified by an ID and VERSION.
The <ONTOLOGY > tagsof all ontologiesdeterminetheont() function. The use of aversion num-
ber implies that all ontologies with the same identifier but an earlier version number are prior ver-
sions of the ontology, and thus this information and the ont () function can be used to determine R,
the set of ontologiesrevised by O. The BACKWARD-COMPATIBLE-WITH tag listsall prior version
numbers with which the new ontology is backward-compatible, and can be used by the ont() func-
tion to identify the ontologiesthat form the set B. Finally, The DECLARATORS tag lists the keys
of resources that contain standard assertions associated with the ontology. Aswill be discussed in
detail in Section 4.3.3, an instance is associated with aresource - and the tags contained within the
set of instances define the knowledge function /. The knowledge of declarator instances can be
considered part of the axiomatization A of the ontology.

The <USE-ONTOLOGY> tag identifies an ontology extended by the current ontology, viaits
ID and VERSION. The set of <USE-ONTOLOGY > tagsfully determines £. Note that the PREFIX
attribute is only used to construct prefixed names which are used to disambiguate the vocabularies
of multiple included ontologies. The resolve() function depends on it, but otherwiseit is not used
in the semantics. The URL attribute provides alocation from which the ontology can be retrieved,
which may be helpful to agentsthat consume SHOE, but has no direct bearing on the semantics.

SHOE defines classes with the <DEF-CATEGORY > tag. In the semantics, classes are unary
predicates. The resolve() function associates the name of the category with a predicate symbol in
the logical language and this predicate symbol is an element of 1/, the ontology’svocabulary. The
ISA attributeis used to specify alist of superclasses for the new class. The resolve() function can
be used to obtain a predicate symbol from the component references to each superclass, and this
is used to construct aformulathat is added to the ontology’s axioms A. If the symbol for the new
classis ¢, and the symbol for the superclassis p, then thisaxiom is of theform Va ¢(z) — p(z).

A <DEF-RELATION> tag definesanew n-ary predicate, whose symbol is added to the vocabu-
lary V of the ontology. Thetag a so specifiestypesfor each argument of therelation. The semantics
of these types depend on what they are. If they are one of SHOE's data types, such as .NUMBER,
.DATE, .STRING, or .TRUTH, the type isonly a constraint on the syntax of assertions using the re-
lation. On the other hand, if the type is a category, then syntax cannot be used to determineif itis
valid. Infact, since the Web is an open world, there isno way to definitively determinethat agiven
instance is not amember of the specified category. Thus, inthiscaseit isassumed that the object is
of the correct type, which can be inferred by means of an additional axiom in the ontology. If the
relation correspondsto an n-ary predicate p and the category for argument : corresponds to symbol
t, thentheaxiomisof theformVaq, ..., 2, p(x1, 22,. .., x,) — t(x;).

A <DEF-RENAME>> tag provides an alias for another component used by the ontology. It can
be used to establish synonyms or shorten prefix chains. If the name identifies a category, relation,
or type, then abiconditional that establishes the equivalence between the symbol s representing the
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Tagsin Ontology SO

| Formal Semantics

< ONTOLOGY ID="id” VERSION="per”

BACKWARD-COMPATIBLE-WITH

="bcwy bewsy ... bew,”
DECLARATORS
="decy decy ... decy,">

ont(id,ver) =0 =

Yo, if v < ver and ont(id, v) =

Vi, 1 < i < n,if ont(id, bew;) = Oy,
thenO; € B

Vi, 1 < i< m,ifres(dec;) = r;, then K(r;)

(V,A,E,R, B)

Oy, then O, € R

cA

<USE-ONTOLOGY
ID="uid” VERSION="uver”
PREFIX="upre"
URL=""uurl">

O, thenO, € F

if ont(uid, uver) =

<DEF-CATEGORY NAME="catname”
ISA="pcat; pcat, ... pcat,”>

if resolve(SO, catname) = ¢, thenc € V, Sy
Vi, 1 < ¢ <mn,if resolve(SO pcat )=p

<DEF-RELATION NAME="relname”
DEF-ARG POS="1" TYPE="type "
DEF-ARG POS="2" TYPE="types"

DEF-ARG POS="n" TYPE="type,"
</DEF-RELATION>

)=
(
then [Vz e(z) — p(z)] €
if resolve(SO, relname) = p, thenp eV, Sre
Vil<i<n,
if resolve(SO, type;) =tandt € Seqr
then [Vay, ..., z, ple1,20,...,2n)
— t(x )] cA

<DEF-RENAME
FROM=

TO="newname">

"oldname”

if s = resolve(SO, oldname)
and s’ = resolve(SO, newname)
thens’ € V

if s € Sear OF 5 € Siype
then [Vz s(x) < s'(x)] € A

if s € S,.; then
Ver, ..., &2 s(21,22,. .., 2y) <
(@i, 02,...,25)] €A

if s € Seonss then[s=s]1€ A

<DEF-INFERENCE>
<INF-1F>
body, bodys ..
</INF-IF>
<INF-THEN>
heady heads ..
</INF-THEN>
</DEF-INFERENCE >

body,

.head,,

Vi, 1 < i< n,atom(body;) = IB;
Vi, 1 < i< m,atom(head;) = TH;
[V(IBy AIBy A---AIB, —

TH ANTHsN---ANTHp)] €A

<DEF-CONSTANT NAME=
CATEGORY="concat”>

"conname”

resolve(SO, conname) = k € S¢, Sconst
if resolve(SO, concat) = cthen[e(k)] € A

<DEF-TYPE NAME="typename”>

if resolve(SO, typename) =T
thenT € V, Stype

</ONTOLOGY >

Table 4.1: Semantics of SHOE ontologies.
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| SHOE Expressions (exp)

Forma Semantics |

<CATEGORY NAME="catname” if resolve(SO, catname) = ¢
FOR="forkey"> and resolve(SO, forkey) = k
then atom(exp) = c(k)
<CATEGORY NAME="catname” if resolve(SO, catname) = ¢
USAGE="VAR” FOR="forkey"> and var( forkey) =« € Sx
then atom(exp) = c(x)
<RELATION NAME="relname"> Vi, 1 < i< n,v; = resolve(SO, val;)
<ARG POS="1" VALUE="val," if resolve(SO, relname) = r
<ARG POS="2" VALUE="valy"> then atom(exp) = r(vi,va, ..., v,)
<ARG POS="n" VALUE="val,,">
</RELATION>
<COMPARISON OP="0p"> vy = resolve(SO, valy ), va = resolve(SO, valy)
<ARG POS="1" VALUE="val,"> if op=equal then atom(exp) = [v1 = va]
<ARG POS="2" VALUE="valy"> if op=notEqual then atom(exp) = [v1 # va]
</COMPARISON> if op=greaterThan then atom(exp) = [v1 > v2]

if op=greaterThanOrEqual
then atom(exp) = [v1 > vs]
if op=lessThan then atom(exp) = [v1 < va]
if op=lessThanOrEqual
then atom(exzp) = [v1 < vs]
<ARG POS="{" VALUE="val;" v; = var(val;) € Sx
USAGE="VAR">

Table 4.2: Semantics of the atom() function.

old name and the new name can be added to the ontol ogy’saxioms A. For example, the equivalence
of two n-ary predicates s and s’ isgivenby Vay, ..., x, s(x1,22,...,2,) < §'(2x1,22,...,2,). If
instead the name identifies a constant, then the equivalence of the instance is added.

A <DEF-INFERENCE> tag specifies an axiom to add to the theory. The axiom consists of an
implication with antecedents specified by the <INF-IF > tag and consequents specified by the <INF-
THEN> tag. The <INF-THEN> part can contain <RELATION> and <CATEGORY> tags, while
the <INF-IF> part can contain either of those tagsas well as <COMPARISON> tags. Note that by
only allowing comparison subclausesto appear in the <INF-1F> part of an inference, we prevent the
possibility of drawing conclusions that contradict the implicit theory of the basic data types. Each
of these subclauses trandlates to a single atom, as specified by the atom() function, that is used in
the axiom. The semantics of thisfunction are given in Table 4.2. An important point is that when
USAGE="VAR" is specified for a value, the resulting atom contains a variable (i.e., an element of
Sx) inthe appropriate place. When the axiom isformed, al variables are universally quantified.

The following restrictions apply to the axioms. First, when COMPARISON is used, both ar-
guments must be of the same type. Second, instance types can only be used with the equal and
notEqual comparisons. A variable used in a CATEGORY is always of type instance, while avari-
able used in a RELATION is of the type required by the argument. However, it isillegal for the
same variable to be used in two arguments of different basic types (althoughiit is legal to be used
in arguments that require two different categories).

A <DEF-CONSTANT>> tag specifies a constant that is identified by the ontology. The symbol
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Tagsin Instance ST

Formal Semantics |

<INSTANCE KEY="instkey" res(instkey) = r
DELEGATE-TO="del; dely ... del,"> | Vi, 1 <i < n,ifres(del;) =d
then K (r) D K (d)
<USE-ONTOLOGY if ont(uid, uver) = Oy thenC'(r) = O,
ID="uid” VERSION="uver”"
PREFIX="upre"
URL="uurl">
<CATEGORY NAME="catname” if resolve(ST, catname) = ¢
FOR="forkey"> and resolve(SI, forkey) = k
then [c(k)] € K(r)
<RELATION NAME="relname"> Let resolve(ST, relname) = r and
<ARG POS="1" VALUE="val,"> Vi, 1 < i< n,t; =type(r, i)
<ARG POS="2" VALUE="valy"> if t; € Stype thenv; = literal(t;, val;)
e otherwise, v; = resolve(ST, val;)
<ARG POS="n" VALUE="val,,"> then [r(vy, ve, ..., v,)] € K(r)
</RELATION>
</INSTANCE>

Table 4.3: Semantics of SHOE instances.

associated with the constant by resolve() isan element of the constant symbols S.,.s:. The constant
can be assigned a category, and if so, the appropriate ground atom is added to the ontology’ saxioms
A.

Finally,a<DEF-TYPE>> tag isused to specify anew datatype. Thistagisreserved asahook for
allowing users to customize SHOE. However, SHOE does not provide means to define the syntax
or semantics of this data type, any agents that use the type would need additional knowledge for
recognizing the datatype expressions and ordering of thevaluesfor usein <COMPARISON>. Any
agent that does not recognize the type can treat it as an additional category to which no instances
or subclasses can be added.

4.3.3 Instance Semantics

SHOE <INSTANCE> tags provide knowledge about resources. Recall from Chapter 3 that a re-
source is specified by a knowledge function A and a commitment function ¢'. SHOE reference
instances can be used to specify these functions. Table 4.3 summarizes the semantics for each of
these tags.

The <INSTANCE>> tag identifiesaresource viaaKEY. Theres() function returnsthe resource
associated with aparticular key. Therest of thetags specify the content of the knowledge and com-
mitment functionsfor that resource. If the instance includesa DELEGATE-TO attribute, it specifies
resources whose assertions are included by reference. Thusif an instance specifies that resource r
delegates to d, the knowledge function of » should be a superset of that for d.

A SHOE instance commitsto an ontology witha<USE-ONTOLOGY > tag. Aswiththe <USE-
ONTOLOGY > tag for ontologies, thistag specifies and identifier and version number for an ontol-
ogy. Thus, if theresourceisr and the ontology given by theont() functionis Oy, then C'(r) = Oy.
Note that in SHOE, an instance can commit to many ontologies. Although the formal model does
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not support this directly, we can create asingle virtual ontology which extendsall of the ontologies
committed to by the instance, and use this ontology in our commitment function.

The <CATEGORY > tag makes an assertion about the class of some instance. Thisassertion is
aunary ground atom formed by the category predicate and a constant. This ground atom is one of
the formulas returned by the knowledge function A" for the resource.

The <RELATION> tag makes an assertion that is an n-ary ground atom. Assuming the RELA-
TION element isvalid, thisatom is formed by applying the resolve() function to the relation name
and to each of its argument values. The terms of the atom depend on the types specified in the re-
lation definition. If the type is a data type, then the literal() function translates the value into an
appropriate symbol. Otherwise the resolve() function is used. This ground atom is one of the for-
mulas returned by the knowledge function i for the resource.
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Chapter 5

| mplementation

In this chapter, we will examine how the SHOE language can be implemented. A Semantic Web
system based on SHOE requires that a number of distinct tasks be performed. We begin with an
overview of these tasks and present a basic architecture for systems to support them. We then de-
scribe anumber of general purpose toolsthat have been designed for SHOE, and show how they fit
into this architecture.

5.1 Architectural I ssues

A system that uses the SHOE language must take into account a number of design issues. The
system must consider how ontol ogiesare designed and possibly providetool support for the process,
it must providetoolsto help users add assertions (called annotations) to their web pages, and it must
decide how these assertions are accessed and then processed. In this section we will discuss each
of these issues and present ageneral architecture.

5.1.1 Ontology Design

Before SHOE can be used, appropriate ontologies must be available. Ideally, the Semantic Web
will havevast librariesof reusable ontologies, and specific domain or task ontol ogiescan be quickly
assembled by extending these ontologies. However, when there are many ontol ogies, an ontology
author may find it difficult to locate the appropriate ontologies to reuse. An invaluable aid in this
task isan index of ontologies. Thisindex may be created by hand, as web directories are, or by a
web crawler, like standard search engines. A smpleindex may beaset of web pagesthat categorize
ontol ogies, while a more complex repository may associate a number of characteristics with each
ontology so that specific searches can be issued [88]. An example of aweb-based index containing
over 150 ontologiesis available from http: //mww.daml .org/ontol ogies .

If existing ontologies do not compl etely fulfill the needsfor a particular application, then anew
ontology must be constructed. This can be acomplicated and |abor-intensive process, and requires
the cooperation of ontology engineersand subject matter experts. A SHOE ontology issimply atext
file, and as such atext editor isal that isrequired to create one. However, due to the complexity of
ontology design, SHOE cannot have widespread success without tools that assist usersin creating
and editing ontologies. However, due to the focus of the SHOE project on tools that would have
the highest immediate impact, a SHOE ontology editor has not been designed yet. Still, therearea
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number of ontology editors that can create ontologiesin other languages, such as Protégé [76] and
the Ontolingua Server [29], and these can provide insightsinto what a SHOE ontol ogy editor might
look like.

When a SHOE ontology iscompleted, it can be placed on the Internet so that it can be accessed
by intelligent agents and SHOE-enabled search engines. It is also possible to create SHOE on-
tologies solely for use on intranets. These proprietary ontologies may even extend public ontolo-
gies, thusmaintaining acertain level of compatibility with therest of the Semantic Web. However,
proprietary ontologies are discouraged for all except the most sensitive applications, as they hide
ontology constructs that could be reused by others and thus lead to greater ontology divergence
throughout the Semantic Web.

5.1.2 Annotation

One way of using SHOE is to add it directly to the web pages it describes; this processis called
annotation. The first step isto choose or create an appropriate ontology, as discussed in the previ-
ous section. Then the user must select instances and describe their properties. Thisinformationis
encoded in SHOE and added to web pages, but the exact method depends on the problem domain
and the resources available. Aswith ontologies, asmpletext editor isall that isrequired to begin
annotating web pages. However, thisrequires familiarity with the SHOE specification and is prone
to error. Therefore, we have provided the Knowledge Annotator, agraphical tool that allows users
to add annotations by choosing items from lists and filling in forms. The Knowledge Annotator is
described in more detail in Section 5.2.2.

However, it istediousto use an authoring tool to generate large amounts of markup, but without
plentiful markup, the Semantic Web is of limited value. In fact, detractors of the Semantic Web
language approach often cite the difficulty in obtaining markup as the main reason why it will never
work. Fortunately, there are many ways to generate semantic markup.

Many useful web pages have some regular structure to them, and programs (commonly called
“wrappers’ or “web-scrapers’) can be written to extract this data and convert it to SHOE format.
Later, we will describe atool called Running SHOE that helps users quickly create wrappers for
certain kinds of pages. As XML becomes ubiquitouson the Web, generating wrapperswill become
easier, and authors will be able to use style sheets to transform a simple XML vocabulary into a
semantically enriched one.

If aweb page’'s provider iswilling to include semantic markup, the process can be even easier.
For example, databases hold much of the Web's data, and scripts produce web pages from that data.
Because databases are structured resources, an analyst can determine the semantics of a database
schema, map it to an ontology, and modify the scripts that produce the web pages to include the
appropriate semantic markup.

Other extraction tools might include machine-learning [ 36, 60] or natural-language-processing
techniques. NLP techniques have had success in narrow domains, and if an appropriate tool exists
that works on the document collection, then it can be used to create statementsthat can betrans ated
to SHOE. It should be mentioned that even if such an NLP tool is available, it is advantageous to
annotate the documents with SHOE because this gives humans the opportunity to correct mistakes
and allows query systems to use the information without having to reparse the text.
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5.1.3 Accessing Information

Once SHOE ontologies and instances are available on the Web, SHOE agents and search en-
gines must be able to access thisinformation. There are two basic approaches: direct access and
repository-based access. In the direct access approach, the software makes an HTTP request to
the relevant web page or pages and extracts the SHOE markup. The advantage of this approach
isthat extracted knowledge is guaranteed to be current. However, the latency in internet connec-
tions means that this approach cannot be realistically used in situations where many pages must be
searched. Therefore, it is best used to respond to specific, localized queries, where incomplete an-
swers are expected. 1t may also be used to supplement ordinary browsing with additional semantic
information about pages in the neighborhood of a selected page.

The repository-based access approach relies on aweb-crawler to gather SHOE information and
cacheit in acentral location, which is similar to the way contemporary search engines work. Cer-
tain constraints may be placed on such a system, such as to only visit certain hosts, only collect
information regarding a particular ontology, or to answer a specific query. Queries are then issued
to the repository, rather than the the Web at large. The chief advantage of the this approach is that
accessing alocal KB is much faster than loading web pages, and thus a compl ete search can be ac-
complished in less time. However, since a web-crawler can only process information so quickly,
there is a tradeoff between coverage of the Web and freshness of the data. If the system revisits
pages frequently, then thereis less time for discovering new pages. Exposé, which is discussed in
Section 5.2.4, is a SHOE web-crawler that enables the repository-based access approach.

5.1.4 Information Processing

Ultimately, the goal of a SHOE system is to process the data in some way. This information may
be used by an intelligent web agent in the course of performing its tasks or it may be used to help
auser locate useful documents. In the latter case, the system may either respond to a direct query
or the user may create a standing query that the system responds to periodically with information
based on its gathering efforts.

A SHOE system requires areasoner, which is a component that can infer new facts from avail-
able information and/or answer queries from a given set of facts and rules. In arepository-based
system, thisisusually provided by aknowledge base system. In order to deal with large amounts of
SHOE information, this system must be selected carefully. While SHOE can be implemented rela-
tively easily in semantically sophisticated knowledge representation systems like LOOM or CY C-
L, thelanguage is intended to be feasibly implementable on top of fast, efficient knowledge repre-
sentation systems with correspondingly s mpler semantics.

The selection of a SHOE repository should depend on a number of factors. In order for the
system to be a complete SHOE reasoner, it must have the expressivity of datalog. To handle the
large volumes of data, it must use efficient secondary storage. Also, since the repository will be
large, it should beleveraged by many users, and thus must support concurrent, multi-user operation.
Finally, it must have a strategy for dealing with perspectives. Later in this chapter, we will discuss
anumber of knowledge base systems, and how they meet these criteria.

It should be noted that due to the size of the Web, complete reasoning may need to be sacrificed
for the sake of improving query response times. Thus, it may be useful to have many repositories,
each with different inferential capabilities and performance characteristics. Then users can select
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Figure5.1: A basic SHOE architecture.

the requirements for a particular query and the repository that best fulfillsthese needs can provide
the answer.

5.1.5 A Basc Architecture

Now that we have discussed the various requirements and choicesfor a SHOE system, we can pro-
pose a general architecture. The foundation of any SHOE architecture depends on the existence
of web pages that contain SHOE instances, where each instance commits to one or more SHOE
ontologies that are also available on the Web. A number of architectures can be built around this
concept, with different sets of toolsfor producing and consuming this data. Thisideaisinfluenced
by the design of the Web, where HTML isalinguafrancathat is produced by text editors, web page
editors, and databases; and processed by web browsers, search engines, and other programs.

We describe a basic architecture (shown in Figure 5.1) that was investigated extensively in this
thesis. Inthisarchitecture, anumber of tools can be used to create SHOE web pages. Thesetoolsin-
cludetext editors, the Knowledge Annotator, Running SHOE (see Section 5.2.3), and possibly other
domain specific tools. For efficiency reasons, the assertions are gathered from the web pages by a
web crawler called Exposé (see Section 5.2.4), and stored in aknowledge base. The specific knowl-
edge base system used can vary depending on the needs of the application, and multiple knowledge
base systems can be used simultaneoudly. Finally, anumber of front-ends, including SHOE Search
(see Section 5.2.9), domain specific tools, or KB specific tools can be used to query the data. The
generic SHOE toolswill be discussed extensively in the next section.
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5.2 SHOE Software

To support the implementation of SHOE we have developed a number of general purpose tools.
Most of these tools are coded in Java and thus allow the development of platform indepen-
dent applications and applets that can be deployed over the Web. These tools are the re-
sults of over 20,000 lines of source code, which for length reasons are not included in this
thesis. However, both source and application versions of the tools may be downloaded from
http: /mvww.cs.umd.edu/proj ects/plus/ SHOE/downl oads.html.

When describing the design of these tools, we will use Java's object-oriented terminology.
Specifically, aclass is a collection of data and methods that operate on that data and an object is
instantiation of aclass. The reader should be careful to distinguish between the use of these terms
as programming language constructs and their use elsewhere in this paper to refer to knowledge
representation concepts. Another important concept from Javais a package, which is a collection
of Java classes meant to be used a unit.

521 TheSHOELibrary

The SHOE library is a Java package that can be used by other programs to parse files containing
SHOE, write SHOE tofiles, and perform simple mani pul ationson various el ements of thelanguage.
Thislibrary servesas afoundation for al of the Java software described later. The emphasis of the
library is on KB independence, athough these classes can easily be used with a KB API to store
the SHOE informationin aKB.

The central class, caled SHOE_Doc, represents a SHOE document. This class can be used to
parse afile or internet resource, or to create a new SHOE document from scratch. The document
is stored in such away that the structure and the format is preserved, while efficient access to and
update of the SHOE tagswithinthedocument isstill possible. SHOE_Doc hasmethodsfor returning
the ontologies and instances contai ned within the document, and a so provides methods to add and
delete them.

Each SHOE tag has a corresponding class that models that element. These classes have acom-
mon ancestor and include methods for reading and interpreting the tags contained within them,
modifying properties or components and validating that the object is consistent with the rules of
thelanguage. Each class uses data structures and methods that are optimized for the most common
accessestoit.

SHOE ontologies are represented by an Ontology class. This class contains methodsfor retriev-
ing and editing the variouscomponentsof theontology. Additionally, it hasamethod that will return
acategory’s set of descendants in atree structure, and another method that returns these structures
for al of the ontology’stop-level categories.

SHOE documents must be parsed in two steps. Thisis because SHOE is order-independent but
the interpretation of some tags may depend on othersin the same document. The first step ensures
that the document is syntactically correct and creates the appropriate structuresfor each of its com-
ponents. The second step ensuresthat the SHOE structuresareinternally consistent with themselves
and any ontologiesthat they depend on.

Accessto ontologiesis controlled viathe OntManager class. Sinceontology informationisused
frequently, it is more efficient to access this information from memory than to access it from disk,
or even worse, the Web. However, an application may require more ontol ogiesthan can bestoredin
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memory, so the ontology manager must cache the ontologies. One of the most important features
of this class is a method which resolves prefixed names. In other words, it determines precisely
which ontology element is being referred to. Thisisnon-trivial because prefix chains can result in
lookups in a series of ontologies and objects can be renamed in certain ontologies. When objects
that contain such prefixed namesarevalidated, the namesareresolved into anidentifier that consists
of theid and version of the ontology that originated the object and the name of the object within that
ontology. Thisidentifier is stored within the object to prevent unnecessary repetition of the prefix
resolution process.

The ontol ogy manager also handlesontology proxies. A proxy ontology isacopy of an ontology
that ishosted at adifferent location. 1t may be needed when an Internet connection isunavailable or
when connectionsto an ontology’soriginal location aretoo slow for ordinary use. Proxy ontologies
can be specified in afile that contains theidentifiers, version numbers, and aternate locationsfor a
set of ontologies. The alternate location may be afile on thelocal disk, or it could specify amirror
sitethat has better accessibility than the ontology’shome site. If aproxy isspecified for aparticular
ontol ogy, the ontology manager will attempt to download it from from the proxy location first.

The SHOE library provides awell-tested and easy to use set of classes and methods for manip-
ulating SHOE documents. This library can be used by any Java software for the SHOE language,
and is at the core of many of the tools described in the subsequent sections.

5.2.2 Knowledge Annotator

The Knowledge Annotator is a tool that makes it easy to add SHOE knowledge to web pages by
making selections and filling in forms. As can be seen in Figure 5.2, the tool has an interface that
displaysinstances, ontologies, and assertions (referredto asclaimsinthefigure). A variety of meth-
ods can be used to view the knowledge in the document. Theseincludeaview of the source HTML,
alogica notation view, and a view that organizes assertions by subject and describes them using
smple English.

The Annotator can open documents from the local disk or the Web. These are parsed using the
SHOE library, and any SHOE instances contained in the document are displayed in the I nstances
panel. When an instance is selected, the ontologies it commits to and its assertions are displayed
in the other panels. Instances can be added, edited and deleted. When adding an instance, the user
must specify its key and an optional name. If desired, the name can be extracted from the docu-
ment’s TITLE with the press of a button.

Every instance must commit to at |east one ontol ogy, but may commit to more. These ontologies
providethe set of categoriesand relationsthat are used to describetheinstance. An ontology can be
added by selecting it fromalist of known ontologies, or by specifyingitsidentifier, version number,
URL, and adesired prefix. These fields can aso be edited for any use-ontology, and an ontology
can be deleted from the list of ontologies committed to by an instance. When the user selects an
ontol ogy, the OntManager class of the SHOE library is used to retrieveit, so that it may be used in
the next step.

After the user has selected an instance and committed to an ontology, he can add, edit, and delete
assertions. When adding or editing an assertion, the user is presented with awindow like the one
shown in Figure 5.3. Thiswindow contains alist from which the user can select the ontology that
containsthe desired category or relation. Thiswill placeavaluein the Prefix field and cause the set
of elements from the ontology to appear in the adjacent window. This list can be filtered to show
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Figure 5.2: The Knowledge Annotator.

just the relations or just the categories using the Filter choicelist. A relation or category assertion
is added by selecting the type of assertion from the Type choice list, and then selecting a name
fromthe Elementslist. If arelation is selected, the types of its arguments are displayed next to the
appropriate fields, and the user can enter values for these fields. When the user enters an instance
key in one of these fields, the availablerelationswill automatically be filtered to display only those
relations where the instance is of the correct type for that argument. This can help the user focus
in on the relevant relations of large ontologies. If a category is selected, the user must supply the
key of theinstance. To reduce the amount of work for the user, the first argument of anew relation
assertion or the key of a new category assertion defaults to the subject of the assertion selected in
the main window. The addition or edit of the assertion can be confirmed with the OK button, which
closes the window, or the New button, which allows another assertion to be added.

The Annotator automatically checksthat all supplied valuesarevalid and addsthe correct SHOE
tags to the document. New tags are inserted near the end of the document’s body or within the
correct instance. The document can then be saved to afile.

The Knowledge Annotator can be used by inexperienced users to create smple SHOE markup
for their pages. By guiding them through the process and prompting them with forms, it can create
valid SHOE without the user having to know the underlying syntax. For these reasons, only arudi-
mentary understanding of SHOE is necessary to markup web pages. However, for large markup
efforts, the Annotator can be painstakingly slow. In the next section, we describe Running SHOE,
which can help in many situations.
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Figure 5.3: The Knowledge Annotator’s assertion window.

5.2.3 Running SHOE

Some web pages have regular structure, with labeled fields, lists, and tables. Often, an analyst can
map these structures to an ontology and write a program to trandate portions of the web page into
the semantic markup language. Running SHOE (see Figure 5.4) is atool that helps users specify
how to extract SHOE markup from these kinds of web pages. The user selectsapageto mark up and
creates awrapper for it by specifying a series of delimiters that describe how to extract interesting
information. These delimitersindicate the start of alist (so that the program can skip header infor-
mation) and end of alist (so that it can ignore trailing information), the start and end of arecord,
and for each field of interest, apair of start and end delimiters.

For each field the user identifies, he must indicate whether itsvalueisaliteral or aURL. Many
web pages use relative URLS, which only specify a path relative to the URL of the current page.
When the user indicates that a field contains URLSs, Running SHOE knows to expand the relative
URLSs by using the page’'s URL asabase. Thisisuseful becausein general URLs make good keys
for SHOE instances, but relative URLSs are poor keys because they do not uniquely identify aweb
page. If we expand the relative URLSs, then they become unique, and we can use them as keys.

After the user has specified the delimiters and pressed the View Recor ds button, the tool dis-
plays atable with arow for each record and a column for each field. Running SHOE cresates this
table by scanning through the document, and extracting records and fields based on the specified
delimiters. Since, irregularitiesin apage’'s HTML code can cause the program to extract fields or
records improperly, this tableis used to verify the results and perform corrections before proceed-
ing.

The next step is to convert the table into SHOE markup. In the top-right panel, the user can
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Figure 5.4: Running SHOE.
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specify ontology information and a series of templates for SHOE category and relation assertions.
The ontology information, including identifier, version number, prefix, and URL, are used to create
aUSE-ONTOLOGY tag. The templates are used to specify the type of assertion, its name, and its
arguments. For category assertions, the first argument is the key of the instance being classified,
while the second argument is not used. For relation assertions, both arguments must be specified.
Either aliteral or afield reference can be used as a template argument. A literal is simply a string
that will appear in SHOE tags asis. A field referenceisof theform @: and referencesthe:thfield,
where fields are numbered based on the order of the table's columns.

By pressing the View SHOE button, the user instructs the tool to extract and display the set of
SHOE tags. Essentially, thetool takes each assertion template and iteratesthrough the table creating
a tag for each record, where field references are replaced by the record’s value for the identified
column. If the user is satisfied with the results, then he can save them to afilewith the Save SHOE
button.

The pages that work best with Running SHOE tend to have long lists or tables of things, where
each item or row contains a hyperlink to some concept’s homepage. Using thistool, a trained user
can extract substantial markup from these web pagesin minutes. Furthermore, Running SHOE lets
userssave and retrievetemplates, so it iseasy to regenerate new SHOE markup if the page’s content
changes. Although Running SHOE was originally designed to extract SHOE from HTML pages,
it can also be used with XML document. Infact, since XML more clearly delineates the content of
the document, it iseven easier to use Running SHOE with XML documentsthan with HTML ones.

524 Expose

After SHOE content has been created, whether by the Knowledge Annotator, Running SHOE, or
other tools, it can be accessed by Exposé, a web-crawler that searches for web pages with SHOE
markup. Exposé stores the knowledge it gathers in a knowledge base, and thus can be used as part
of arepository-based system. The web-crawler isinitialized by specifying astarting URL, arepos-
itory, and a set of constraints on which web sites or directoriesit may visit. These constraintsallow
the search to focus on sources of information that are known to be of high quality and can be used to
keep the agent from accumulating more information than the knowledge base can handle. Exposé
can either build a new repository of SHOE information or revisit a set of web pages to refresh an
existing repository.

A web-crawler essentially performs a graph traversal where the nodes are web pages and the
arcs are the hypertext links between them. Exposé maintains an open list of URLs to visit, and a
closed list of URLs that have aready been visited. When visiting web pages, it follows standard
web robot etiquette by not requesting pages that have been disallowed by a server’s robot.txt file
and by waiting 30 seconds between page requests, so as not to overload a server.

The progress of the crawl can be monitored and paused by the user. Expos€'s display shows
each URL that has been requested, the timestamp of the request, and the status of the request. The
tool also keeps track of the total number of page requests, how many of the pages have SHOE on
them, and how many requests resulted in errors. At any time, the user can pause the search, and
then resume it later.

Upon discovering anew URL, Exposé assignsiit a cost and uses this cost to determine where it
will be placed in aqueue of URLsto bevisited. Inthisway, the cost function determinesthe order
of thetraversal. We assume that SHOE pageswill tend to be localized and interconnected. For this
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reason, we currently use a cost function which increases with distance from the start node, where
paths through non-SHOE pages are more expensive than those through SHOE pages and paths that
stay within the same directory on the same server are cheaper than those that do not.

When Exposeloadsaweb page, it parsesit using the SHOE library, identifiesall of the hypertext
links, category instances, and relation arguments within the page, and evaluates each new URL
as above. Finaly, the agent uses the SHOE KB Library API to store SHOE category and relation
assertion in a specified knowledge base. This API, described in the next section, makes it easy to
adapt Exposé for use with different knowledge bases.

525 TheSHOEKB Library

The SHOE KB library is a Java package that provides a generic API for storing SHOE data and
accessing a query engine. Applications that use this API can be easily modified to use a different
reasoning system, thus allowing them to execute in a different portion of the completeness/ execu-
tion time tradeoff space.

ShoeKb, the main class of the SHOE KB Library API contains methodsfor storing ontologies,
storing SHOE document data, and issuing queries to arepository. It maintains a catalog of al on-
tologies stored in the KB, and provides arenaming method that distingui shes between components
defined in different ontologies. When storing document data, it deletes any assertionsthat wereina
previous version of the document, since they are no longer reflected on the Web. The classalso a-
lows adefault ontology to be specified, which isused to disambiguate query predicates and identify
the basis of the query’s perspective.

The ShoeKb classalso providesthe optionto forward-chainaspecia kind of inference. SHOE's
formal semanticsstatethat if an instance appearsin an argument of arelationwhichisof aninstance
type, then alogical consequence of the assertion is that the instance is a member of the required
category. However, this can result in the addition of alarge number of rulesto the KB. Therefore,
the library supports the option to forward-chain these particular consequences and explicitly store
them in the knowledge base.

Logical sentences are represented by a Sentence class. Subtypes of this class include Query,
which isaconjunctive query, and Axiom which isaHorn clause. Both queries and axiomsare com-
posed of Atom objects.

The ShoeKb class uses a KBInterface which defines methods to access the basic primitives of
knowledge bases. KBInterface isloosely based on arestricted version of OKBC [17], and contains
methods for connecting to knowledge bases, storing sentences in them, and issuing queries. This
class can be subclassed with implementations for specific knowledge representation systems, and
thus provides a generic API for standard knowledge base functionality.

The SHOE KB library isused by all of the SHOE tools that must access a knowledge base. By
using astandard AP, these applications can be easily modified to use different backends. All that is
needed isasimple subclass of ShoeKb or KBInterface that interfaceswith the knowledge base. Sub-
classes of the ShoeKb class have been implemented for X SB, Parka, and OKBC-compliant know!-
edge bases. These systems are discussed in the following sections.
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526 XSB

XSB [83] is an open source, logic programming system that can be used as a deductive database
engine. It is more expressive than datalog, and thus can be used to completely implement SHOE.
XSB’ssyntax is similar to that of Prolog, but while Prolog will not terminate for some datal og pro-
grams, XSB uses tabling to ensure that all datalog programs terminate.

We will now describe how compatible ontology perspectives can be implemented in XSB. In
thisapproach, the SHOE ontologiesand instances aretrand ated into an X SB program that can eval-
uate contextualized queries. Although thisdiscussion is specific to X SB, with minor modifications
the approach can be applied to other logic programming systems.

First, we must consider a naming convention for predicates in the deductive database. Since
two ontologies may use the same term with different meanings, the definitions of such terms could
interact in unintended ways, and thus arenaming must be applied. A ssimple conventionisto assign
a sequence number to each ontology and append this number to each term defined by the ontology.
The sequence numbers can be stored in the deductive database using a ontSeq/2 predicate which
associates an ontology with its sequence number.

As shown in the formal semantics (see Section 4.3), SHOE ontologies can be trandated into
five-tuple ontology structures (V, A, F, R, B). The axioms A of these structures can be written
as Horn clauses, which with some modification can be used in the XSB program. First, a nam-
ing substitution as describe above must be applied. Second, we must localize the clauses so that
they do not firein inappropriate contexts. A naive approach would s mply generate anew program
for each query, thus ensuring that only the appropriate rules are included, but the size of the Se-
mantic Web would make this extremely expensive. Instead, it is more efficient to create a single
program that includes some sort of switch to indicate the context. There are two possible ways of
doing this. oneisto add a context argument to each predicate and set this argument to the ontol ogy
identifier; the other isto create a context predicate and add this structure to the body of each rule.
For example, if the O,,,.;, ontology was assigned the sequence number 1, and contained the axiom
Va, Organization(x) «— University(x), then thefirst method would trand ate the axiom into:

organi zationl(univ, X) :- universityl(univ, X).
Alternatively, the second method would trand ate the axiom as:
organi zationl(X) :- context(univ), universityl(X).

We findthissecond method more natural, and chooseit over thefirst one. To ensurethat the program
failsgracefully, adefault fail ruleis created for each ontology term that appears only in the body of
arule.

When an ontology O extends another ontology O, that isO; € FE;, then any perspective based
on O; must also include all axioms of O,. Another way of thinking about thisis that the context of
O impliesthe O, context. Thus, if we had a univ ontology that extended a gen ontology, our logic
program would need therule:

context (gen) :- context(univ).

This says that whenever the context is univ, the context is a'so gen. However, as we will explain
later, context is a dynamic predicate, which must be defined using the assert predicate in XSB.
Thus, the XSB program actually has:
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.- assert((context(gen) :- context(univ))).

We a so need rulestoindicate how abackward-compatibleontology can use datathat committed
to apreviousversion. When therevision isthe current context, we want all factsthat use predicates
from the earlier ontology to imply facts using predicates defined in the newer ontology. For exam-
ple, assumethat the O, ontology declaresitself to be backward-compatiblewiththe O.,; ontology
(that isO.s1 € B.s2). If the sequence numbers of the O.,; and O, ontologiesare 1 and 2, respec-
tively, the Person term can be made compatibl e across ontol ogies by adding the following rule to
our program:

person2(X) :- context(cs2), personl(X).

This says that if the context is cs2 and X is a personl, then X is aso aperson2. In other words,
from the perspective of O, 0.5 :Personisalso a O.:Person.

In the formal semantics, DEF-RENAME is equivalent to a biconditional axiom of the form
s(xy, 29, ... x,) & 8'(x1,29,...,2,). Thisiseasly implemented in the program by splitting it
into two Horn clauses. Note, that athough it may be tempting to perform pre-processing to smply
use the same predicatewherever the nameor itsalias appears, thiswould beincorrect. For example,
assume we have ontologies A, B, and B’, where B extends A and B’ is backward-compatiblewith
B, but does not extend A. Also assumethat B : g renames A : p and B’ defines ¢ differently than
B does. If we used the renaming approach, then our compatibility axiomwouldbe A : p — B’ : ¢,
but thisisfalse because resources that commit to A are not in the perspective based on B’! Instead,
wemust beabletosay B: ¢ — B’ : q.

Now we can turn our attention to SHOE instances. According to the formal semantics, asser-
tions are ssimply ground atoms, and the corresponding atoms for a resource can be retrieved using
the knowledge function K. Itis easy to trandate these atoms into facts in the deductive database.
For relation assertions, we simply need to find the correct predicate for any given relation name,
while for category assertions, we must convert the category to the appropriate unary predicate. In
both cases, the commitment function C' specifies the ontology that the resource commits to, and
thus determines how to rename the predicates.

Finally, we add a helper predicate for issuing queries to the knowledge base using a particular
context. Since al of the rulesin the program use the context predicate to determineif they should
fire, aquery must beableto create afact for thispredicate. We can use assert to dynamically update
context before we issue our query, and then retract the context after the query has completed. In
order to return the entire set of answersto a query, instead of atuple at atime, the query predicate
must call the Prolog predicate setof between the assert and retract. Thus, our query predicate |ooks
like:

query(C, V, Q L) :- assert(context(Q)),
setof (V, Q L),
retract(context(C)).

The query predicate takes a context C, avariable ordering V, and a query Q as inputs, and returns
alist variable L that bindsto the answers.

Given aset of SHOE documents, the SHOE KB API for XSB constructsan X SB program using
thismethod. This program can then be compiled for maximum performance. The API also hasthe
ability to start an XSB process, load a program, send queries, and parse the answers.
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Although X SB is capable of implementing SHOE's full semantics, this approach does have its
limitations. First, programs cannot be modified dynamically, and to handle new ontologies or in-
stances, anew program must be created and compiled. It may be possibleto alleviate thisby using
XSB’s feature for storing the extensional database in arelational database. If thiswas done, then
assertions could easily be added and del eted using the database’s standard features. Another prob-
lemisthat XSB isasingle-user system, which means that a new XSB process must be started for
each user. Since the knowledge base will be very large, this can be extremely inefficient. A po-
tential solution isto create a client-server interface to asingle XSB process, but thiswould till be
unable to process queries concurrently. A final problem with XSB is that it may not scale to the
sizes needed for semantic web knowledge bases. Future work will address these problems.

5.2.7 Parka

Parka[27, 84] isahigh-performance knowledge representation system whose roots lie in semantic
networks and frame systems. It is capable of performing complex queries over very large knowl-
edge bases in less than a second [84]. For example, when used with a Unified Medical Language
System (UMLS) knowledge base consisting of amost 2 million assertions, Parkawas able to exe-
cute complex recognition queriesin under 2 seconds. One of Parka sstrong suitsisthat it can work
on top of relational database systems, taking advantage of their transaction guarantees while still
performing very fast queries.

Parka represents the world with categories, instances, and n-ary predicates and can infer cat-
egory membership and inheritance. It includes a built-in subcategory relation between categories
(called isa) and a categorization relation between an instance and a category (called instanceof ). 1t
also includes a predicate for partia string matching, and a number of comparison predicates.

Parkacan support SHOE'smost widely-used semanticsdirectly. Aswith X SB, arenaming must
be applied to guarantee the uniqueness of terms defined in different ontologies. The standard cate-
gory axioms can be represented by Parka sisa relation, the membership of an instancein acategory
can berepresented by theinstanceof predicate, and all relation definitions can be accommodated by
defining new predicates. Additionally, the Parkaversion of the SHOE KB API automatically com-
putesand explicitly storestheinferred typesfor certainrelations. Furthermore, renamingishandled
by pre-processing step, which computes the source ontology and component for any name. A sim-
ple name substitution is then used to ensure that the correct predicate is selected. Thus, the only
language component that Parka does not support is ageneral inference rule mechanism.

A Parka knowledge base can be updated dynamically, which is advantageous for a system that
must mirror the rapidly changing Web. In order to provide the best possible snapshot of the Web,
the knowledge base must delete assertions that no longer appear in aresource. To enable Parkato
delete these assertions, we have to keep track of each assertion’s source. One solution would be to
represent source information with an extra argument to each predicate, but the isa and instanceof
linksarebuilt-inbinary predicatesin Parka. Thus, thisapproach could not be used without changing
theinternal workings of the knowledge base. An alternativeisto storetwo factsfor each assertion.
Thefirst fact ignores the source, and can be used normally in Parka. The second fact uses aclaims
predicate to link the source to thefirst fact. Although thisresultsin twice as many assertions being
made to the knowledge basg, it preserves inheritance while keeping queries straightforward. The
claims predicate can be used to find the the source of an assertion or to find all assertions from a
particular source.
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Parkauses socketsfor multi-user, client-server operation. When the Parkalnterface class (asub-
class of KBInterface) is instantiated, it sends a message to the Parka listener, which responds by
creating a new process and establishing a socket for communication with the client. When the is-
sueQuery method is called, the query is trandated into Parka format and sent to the server viathe
socket. After the server processes the query, the client uses the socket to retrieve the answers.

Parka's chief advantages are that it allows dynamic updates and that it can be run in a multi-
user, client-server mode. However, Parka does not provide the ability to partition its knowledge
base, and because the inference across isa and instanceof linksis built-in, true partitioning cannot
be accomplished within the system. Furthermore, because Parka does not have arbitrary axioms, it
does not support the SHOE notion of ontology backward-compatibility. Thus a Parka knowledge
base is best used to represent a single extended ontology perspective, preferably based on many
ontologies.

5.2.8 Relational Database Management Systems

Itisalso possibleto use arelational database management system (RDBMS) as a SHOE repository.
RDBM Ss have been designed to efficiently answer queries over large databases, and thus scal e bet-
ter than X SB or Parka. However, thisefficiency comesat acost: thereisnoway to explicitly specify
inference.

We will now sketch a method for representing SHOE in an RDBMS. First, as with XSB and
Parka, a renaming must be applied to distinguish between predicates in different ontologies. Then
each n-ary SHOE relation is represented by a database relation with r» attributes, while each cate-
gory is represented by a unary relation. Every SHOE relation assertion and category assertionisa
tuplein one of the database relations.

Even certain typesof inferencerules can beimplementedin RDBMSs. Asdescribed by Ullman
[86, Chapter 3], for any set of safe, non-recursive datal og rules with stratified negation, there exists
an expression in relational algebrathat computes a relation for each predicate in the set of rules.
Thusdatabase views could be used to compute each predicate. Although the semanticsof SHOE are
safe and include no negation, SHOE rules can berecursive. Therefore, some but not all, of therules
could be implemented using views. Depending on the RDBMS, some recursive predicates may
even be computable. For example, some commercial RDBM Ss include operators to compute the
trangitiveclosure of arelation (e.g., the CONNECT WITH optioninthe Oracle SELECT operator).

A SHOE repository that usesaRDBM S sacrifices compl etenessfor improved performance, giv-
ing us another option for applications. Although we have not yet implemented a version of the
SHOE KB library for aRDBMS, thiswill be accomplished in future work.

529 SHOE Search

SHOE Search [47] isatool used to query theinformation that has been loaded into a SHOE KB. It
gives users a new way to browse the web by allowing them to submit structured queries and open
documents based on theresults. The basic ideaisthat if queriesareissued withinacontext, the tool
can prompt the user with context specific information and can more accurately locate the informa-
tion desired by the user. A screen shot of SHOE Search is shown in Figure 5.5.

The user selects a context by choosing an ontology from adrop-down list. The list of available
ontol ogies are those that are known by the underlying KB. The identifiersand the version numbers
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Figure 5.5: SHOE Search.

of each ontology are displayed, so that the user may choose to issue queriesagainst earlier versions
of ontologies.

After the user chooses an ontol ogy, the system populates a list of categories that are defined in
that ontology. Thislistisorganized so that the specializations of each category areindented beneath
it. Thistaxonomy makes it possible for the user to quickly determine the kinds of objects that are
described in the ontology and to choose aclass that is of sufficient granularity for hisor her needs.
Since one of the main purposes of choosing an ontology is to reduce the number of choices that
the user will have to make subsequently, the list of categories generally does not include categories
defined in ontologies extended by the selected ontology, even if they are ancestors of categories
definedlocally. Itisassumed that if these categoriesare of interest to the user, then he can first select
an appropriate ontology. However, ontologies may rename an element from an extended ontology
and effectively “import” them. Such categories are included in the list, and displayed with their
local name.

When the user chooses a category and presses the Select button, the system responds with a set
of propertiesthat are applicable for that category (in aframe system, this would essentially be the
dots of the selected frame). Applicable properties are inheritable; thus any properties that apply
to an ancestor of the selected category are also included in the set. However, as with the list of
available categories, itisimportant to provide somefiltering for the user, so only thoserel ationsthat
are defined or aliased in the selected ontology will appear, even if other ontol ogies define relations
that could be relevant.

Technically, SHOE's properties are rel ations which can have some number of typed arguments.
Assuch, aproperty of aclass can be considered arelation wherethefirst argument must be amem-
ber of that class. However, this makes the determination of properties dependent on the somewhat
arbitrary ordering of arguments as chosen by the ontology designer. That is, the relation works-
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For(Person, Organization) would be a property of the class Person, but theinverse relation hasEm-
ployee(Organization, Person) would be a property of Organization. In order to prevent SHOE
Search queries from be restricted by these kinds of representational decisions, arelation in which
the classis a subclass of the second argument is considered an inverse property and isincluded in
the set available to the user. Such properties are clearly labeled in the display.

The property list allowsthe user to issue a query by example. He can type in values for one or
more of the properties, and the system will only returnthose instancesthat match all of the specified
values. Some of these property values are literals (i.e., strings, numbers, etc.) while others may be
instances of classes. In the latter case, the user may not know the keys for these instances, since
they aretypically long URLs. Therefore, arbitrary stringsare allowed in these fields and the query
will attempt to match these strings to the names of instances. To increase the chance of a match,
case-insensitivity and partial string matching are used.

When the user presses the Query button, the system constructs a conjunctive query and usesthe
SHOE KB library toissueit to aKB. Thefirst atom of the query specifiesthat the instance must be
of the selected category, e.g., instanceO f(x, Person). The remaining atoms depend on the type
of the argument that the value represents. In the case of numbers, the atom issimply looking for an
instance that hasthe specified valuefor therelation. Inthe case of strings, two atoms are added, one
to find the values of the relation, and the other to perform apartial string match on them to the string
specified by the user. The latter of these atoms assumes the presence of a string M atch predicate
whichistrueif thefirst argument’s string contains the second argument’sstring. Finally, if thetype
of the argument is a category, then three clauses are added: one to get the values for the relation,
one to get the corresponding names of these instance keys, and a third to partially match the name
strings to the string specified by the user. Note that even if the user only specified values for two
properties, the resulting query could contain as many as seven conjuncts. One of the advantages of
SHOE Search is that useful but complex queries are constructed automatically. For example, the
guery constructed by the user in Figure 5.5 corresponds to a Parka query of the form:

instanceO f(Article, x1) Apublication Research(xy, x2) Aname(xz, na)A
stringMatch(ng, “Simple HTML Ontology Extensions’ )A
publication Author(xy, x3) A name(xs, n3) A stringMatch(ns, “Heflin™)

Many users would have difficulty constructing such queries by hand.

When the KB returns the results of the query, they are displayed in tabular format. The KB is
likely to return many duplicate results, some of these will be due to redundancies of different web
pages, others might be because the same page was visited many timesusing different URLS. Either
way, duplicate results would simply clutter the display, and therefore they are removed before the
system displays them. Generally, both the names and keys are displayed for related instances, so
that the user can distinguish between instances that happen to have identical names. If the user
clickson an instance key, whether it isthe instance that matches the query, or one that matches one
of its properties, the corresponding web page is opened in anew browser window. Thisalowsthe
user to browse the Web with more control over the queries.

Sometimes users may have trouble deciding what values to use for a given property and may
end up getting no results because incorrect values were entered. To remedy this problem, we have
added a Find button next to each property that finds valid values for that property. If this button
is pressed the system will essentially issue a query to find all instances that have a vaue for the

88



Your Query |s: Ca uer

F'article" iz about +'Simple HTML Ontology Extensions” was written by +Heflin IE
#

=l =]
Search Engine; Altalista = Execute | Query Help| Quit|

ﬂ Unsigned Java Applet Window
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selected property and return those values in the tabular display. The user may then select one of
these values and press the Add To Query button to insert it into the query field for the property.
In order to do this, the system always keeps track of which columns of query results correspond to
which properties.

The user may wish to view the values for a certain property without restricting the query. The
Show checkbox allows the user to specify that an additional property should be displayed in the
results. If the user specifies avalue for a property, then its Show box is checked by default. If the
box is checked but no property value was specified, then an extraatom is added to the query, where
its predicateis determined by the property and anew variableisused for itsvalue. Sincethe current
system only supports conjunctive queries, this option can have unintuitive results. For example,
if the user chooses to show a property for which no instances have a value, then no answers are
returned, even if there are many possible answers for the rest of the query.

The Show checkbox and the Add To Query button can be used together to help the user grad-
ualy filter results and find the desired instances. The user starts by checking some of the Show
boxes and issuing a query. One of the results can be selected and added to the query. When the
query isreissued, fewer results should be returned. By repeating this process the user can continue
to reduce the results returned to a managesbl e set.

It may be the case that not all of the relevant web pages are described by SHOE markup. In
such cases, the standard query method of SHOE Search will not be able to return an answer, or
may only return partial answers. Therefore, we have a Web Search feature that will trandlate the
user’squery into asimilar search engine query and allow him to submit it to any one of anumber of
popular search engines. Using SHOE Search in thisway has two advantages over using the search
engines directly. First, by prompting the user for values of properties, it increases the chance that
the user will provide distinguishing information for the desired results. Second, by automatically
creating the query, SHOE Search can take advantage of helpful features that are often overlooked
by users such as quoting phrases or using the plus sign to indicate a mandatory term. The quality
of resultsfor these queries vary depending on the type of query and the search engine used.

Figure 5.6 displays a window with the search engine query that is generated from the inputs
specified in Figure 5.5. Currently, we build a query string that consists of a quoted short name for
the selected category and, for each property value specified by the user, a short phrase describing
the property followed by the user’s value, which is quoted and preceded by a plus sign. For search
engineswith advanced query capabilities, these queries could be expanded to include synonymsfor
terms using digunction or positional information could be used to relate propertiesto their values.

SHOE Search provides a simple interface for querying the Semantic Web. It is primarily used
as a Java applet, and as such is executed on the machine of each user who opensit. Since it uses
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the SHOE KB library, it can be easily tailored for use with a range of knowledge representation
systems.

5.3 Summary

In this section we have described the issues of implementing a SHOE system and presented a ba-
sic architecture. We have developed numeroustoolsto help in all aspects of the process, including
creating SHOE assertions, discovering them with aweb-crawler, storing them in a knowledge base,
and using them to answer queries and retrieve documents. 1n the next section we examinethe prac-
tical issues of the language by using the tools to solve problemsin two different domains.
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Chapter 6

Case Studies

In this chapter, we will discuss the application of SHOE to two different domains. The first case
study describes the use of SHOE in the domain of computer science departments. In this study, we
attempted to quickly generate alot of SHOE from existing web pages. Another key feature of the
study is an examination of a non-trivial ontology revision. The computer science case study was
essentially an in vitro experiment, because only members of the research team participated in it, but
the second case study, which considered the domain of food safety, was morein vivo. It attempted
to solve areal-world problem and was developed as a cooperation between the SHOE team and
members of the Joint Institute for Food Safety and Nutrition (JFSAN). A key feature of this case
study isthe use of SHOE with adomain-specifictool. In both case studies, we discuss the processes
of designing the ontologies, adding SHOE markup to web pages, and providing useful servicesto
users.

6.1 Computer Science Departments

The computer science department application was intended to be a proof of concept for the SHOE
language. We chose thisdomain because it waswell-defined and familiar to the research team. Our
objective was to eval uate the ease of adding SHOE to web pages, the types of queriesthat could be
constructed, and the performance of SHOE queriesin asimple environment. In this section we de-
scribe the devel opment of the ontol ogy and different methodsfor annotating web pages, particularly
focusing on the problem of rapid creation of SHOE assertions. Finally, weprovide adetailed exam-
pleof how the need for ontology revision can arise and show how SHOE' s backward-compatibility
feature can be used in solving the problem. Some of the material in this section has appeared in a
previous article [49].

6.1.1 The Computer Science Department Ontology

Thefirst step in developing any SHOE applicationisto create an ontology. Wenamed thisdomain's
ontology cs-dept-ontology and assigned the version number 1.0 to it. In SHOE thisis specified by
the following tag:

<ONTOLOGY | D="cs-dept - ont ol ogy" VERSI ON="1.0">

Normally, the ontology should extend other ontologies, but since thiswasthe first SHOE ontology,
we could only extend the base ontology. Thisis specified as:
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<USE- ONTOLOGY | D="base- ont ol ogy" VERSI ON="1.0" PREFI X="base"
URL="http://ww. cs. und. edu/ proj ect s/ pl us/ SHOE/ ont s/ basel. 0. htm ">

The next step wasto identify the top-level categories of the domain. These categories should be
broad classifications of the types of objectsfound in the domain. For the CS domain, the top-level
categories were Person, Organization, Publication and Work. All of these categories were subcat-
egories of SHOEEntity from the base ontology, which is SHOE's most generic category. Next, we
refined the categories by identifying more detailed subcategories. For example, subcategories of
Person included Faculty and Student, while subcategories of Organization included Department
and University. Many of the subcategories also had subcategories of their own. For example, sub-
categoriesof Professor were AssistantProfessor, AssociateProfessor, and FullProfessor. InSHOE,
each category isdefined by aDEF-CATEGORY tag, as shown below:

<DEF- CATEGORY NAME=" St udent" | SA="Person">

In some cases, a category had more than one supercategory. For example, the supercategories of
Chair are AdministrativeStaff and Professor. In SHOE, thisis defined by listing multiple category
names in the value of the ISA attribute, where they are separated by whitespace as shown here:

<DEF- CATEGORY NAME=" Chair"
| SA="Adm ni strativeStaff Professor">

After identifying the categories and organizing them in ataxonomy, we needed to define prop-
erties and relationships for these categories. An Organization might be described by its name, its
parent organization, and its members. A publication might be described by its name, authors, and
publication date. In SHOE, these properties are defined with the DEF-RELATION element. We cre-
ated relations called subOrganization, member, publicationAuthor, and publicationDate. For each
relation, its arguments must be identified. For example, subOrganization is arelationship between
two organi zations, and thusit should have two arguments, both of type Organization. Thisiswritten
in SHOE as:

<DEF- RELATI ON NAME="subOr gani zati on" SHORT="is part of">
<DEF- ARG POS=1 TYPE="Organi zati on" SHORT="subor gani zation">
<DEF- ARG PCS=2 TYPE="Or gani zati on" SHORT="superorgani zati on">
</ DEF- RELATI ON\>

Note that the SHORT attribute can help identify which organization fitsin which argument.

While many relations are between two instances, some are between an instance and a data type
value. For example, thepublicationDate relationisbetween apublicationand itsdate of publication,
where date isabasic SHOE data type. Thisrelation iswrittenin SHOE as.

<DEF- RELATI ON NAME="publ i cati onDat e" SHORT="was witten on">
<DEF- ARG POS=1 TYPE="Publication">
<DEF- ARG PCS=2 TYPE=". DATE">

</ DEF- RELATI ON>
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Animportant consideration isto maketheargumentsof therelationsasgeneral aspossiblewhile
still being correct. For example, we could have given subOrganization arguments of type Depart-
ment and University. However, thiswould not capture the full meaning of the relation. Since both
Department and University are subcategories of Organization, our original definition can be used to
relate instances of these types, as well as many other different types.

This desire for broad applicability of relationsis why we have not mentioned relations for the
names of organizationsor publications yet. Objects of both categories can have names, and in fact
anything can have aname. Recall that the base ontology has aname relation, whose argumentsare
Entity and the STRING datatype. Sinceall of our top-level computer science categories are subcat-
egories of SHOEEnNtity, and SHOEERntity is a subcategory of Entity, we can use the name relation
to provide a name for any instance of any category in our ontology. However, since name is such
an important relation, it would be convenient to have alocal version of it. SHOE's DEF-RENAME
element can be used for this purpose. For example:

<DEF- RENAVE FROWE" base. nane" TO="nane">

This creates alocal name for the name relation, so that within the context of the CS Department
ontology, it can referred to as name, instead of base.name.

Thefinal stepinbuilding the ontology isto provideaset of inferencerulesthat help constrainthe
possible meanings of the termsand allow reasonersto infer implicit information from aset of asser-
tions. We defined three inference rules for this ontology. These rules state that subOrganization is
atrangtiverelation, that affiliatedOrganization isasymmetric relation, and that membershipin and
organization transfers through the subOrganization relations. A SHOE example of the transitivity
of subOrganization isgivenin Figure 6.1

When the ontology was completed, it wasembedded inan HTML page. Thispagea soincluded
a human-readable description of the ontology that serves as a handy reference for users to learn
about the ontology. The ontol ogy page was made publicly availableviaaweb server so that it would
be accessible to all web-based agents and could be reused by other people.

6.1.2 Annotating Web Pages

After an ontology has been created, it is possible to begin annotating web pages with SHOE con-
tent. The categories of the CS Department ontology have a direct correspondence with the main
topics of many web pages, and thus can be used to describe those web pages. For example, it can
used to describe department homepages, faculty homepages, student homepages, research project
homepages, course homepages and publication lists.

We began by annotating the pages of the Parallel Understanding Systems (PLUS) research
group. These pages included a group homepage, a members page, a publications page, a projects
page, and a software page. We will use the group homepage (shown in Figure 6.2) to describe a
smple example of SHOE markup. The first step isto identify the instances mentioned on the web
page. Sincethisisahomepage, the most important instance is the subject of the page, which isthe
PLUS group. Other instances mentioned include the Department of Computer Science, the Uni-
versity of Maryland, the High Performance Systems Software Lab, and the Advanced Information
Technology Lab.

A fundamental problem in distributed systemsis knowing when data from different sources de-
scribes the same instance. The SHOE approach requires that each instance have a unique key. A
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<DEF- | NFERENCE DESCRI PTI ON="Transitivity of Suborganizati ons">
<INF-1F>
<RELATI ON NAME="subOr gani zati on" >
<ARG PCS="FROM' VALUE="x" USAGE="VAR'>
<ARG PCS="TO' VALUE="y" USAGE="VAR'>
</ RELATI ON\>
<RELATI ON NAME="subOr gani zati on" >
<ARG PCS="FROM' VALUE="y" USAGE="VAR'>
<ARG PCS="TO' VALUE="z" USAGE="VAR'>
</ RELATI ON\>
</I NF-1F>
<l NF- THEN>
<RELATI ON NAME="subOr gani zati on" >
<ARG PCS="FROM' VALUE="x" USAGE="VAR'>
<ARG PCS="TO' VALUE="z" USAGE="VAR'>
</ RELATI ON>
</ | NF- THEN>
</ DEF- | NFERENCE>

Figure6.1: The “transitivity of suborganizations’ rule.

URL can often serveasthiskey because it identifiesexactly oneweb page, whichisowned by asin-
gle person or organization. If aninstance hasahomepage, thenthe URL of thispageisagood candi-
datefor thekey. Thus, thekey for the PLUS group instanceishttp: //www.cs.umd.edu/projects/plus/.
This was used as the reference instance for the PLUS Group page, as shown in Figure 6.3. Every
reference instance must al'so commit to at least one ontology by means of aUSE-ONTOLOGY tag.
For this application, the ontology is the CS Department ontol ogy.

The next step isto classify each of the instances according to the ontology. The PLUS groupis
aresearch group, and thus was categorized under cs.ResearchGroup as shown in Figure 6.3. We
also categorized the Department of Computer Science as a cs.Department and the University of
Maryland as a cs.University. Note the keys for these instances were chosen based on the URLs of
their homepages, which areavailable fromthe hypertext linksin the PLUS page (they arethevalues
of HREF attributesin A tags).

Finally, we identified relations between the instances. Obviously there were relationships be-
tween the PLUS group and the other instances mentioned on the page. The page's text says that
the PLUS group is associated with the High Performance Systems Software Lab and the Advanced
Information Technology Lab. We decided that here “associated with” meant “ affiliated organiza-
tion of” and created cs.affiliatedOrganization relations between the PLUS group and each of these
organizations. Notethat once again, the URLsfrom the hypertext linkswere chosen asthe keysfor
these instances. The page also mentions that the research group is “in the Dept. of Computer Sci-
ence at the University of Maryland.” This clearly indicates parent organizations of the group, and
indicatesthat the University of Maryland isthe parent organization of aparticular computer science
department. We could have created cs.subOrganization relationsfor all threerelationships, but due
to thetrangitivity of therelation (as specified in the ontology), the fact that the PLUS group isasub-
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Figure 6.2: The PLUS group’s homepage.

<I NSTANCE KEY="http://ww. cs. und. edu/ proj ects/plus/">
<USE- ONTOLOGY | D="cs- dept - ont ol ogy" VERSI ON="1. 0" PREFI X="cs"
URL="http://ww. cs. und. edu/ proj ect s/ pl us/ SHOE/ ont s/ cs. htnl ">
<CATEGORY NAME="cs. Resear chG oup" >
<CATEGORY NAME="cs. School " FOR="http://ww. und. edu/" >
<CATEGORY NAME="cs. Department” FOR="http://wwmv. cs. und. edu/ ">
<RELATI ON NAMVE="cs. affili at edOr gani zati on">
<ARG PCS="TO' VALUE="http://ww. cs. und. edu/ users/ hendl er/ Al TL/ ">
</ RELATI ON\>
<RELATI ON NAMVE="cs. affili at edOr gani zati on">
<ARG PCS="TO' VALUE="http://ww. cs. und. edu/ proj ects/ hpssl.htm ">
</ RELATI ON\>
<RELATI ON NAME="cs. subOrgani zati on"
<ARG PCS="FROM' VALUE="http://ww. cs. und. edu/" >
<ARG PCS="TO' VALUE="http://ww. und. edu/" >
</ RELATI ON\>
<RELATI ON NAME="cs. subOr gani zati on">
<ARG PCS="TO' VALUE="http://ww. cs. und. edu/" >
</ RELATI ON\>
<RELATI ON NAME="cs. nanme" >
<ARG PCS="TO' VALUE="Parall el Understanding Systens">
</ RELATI ON\>
</ | NSTANCE>

Figure 6.3: SHOE markup for the PLUS group.
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organization of the University of Maryland isredundant with the other two. Note that in thefigure,
whenever the PLUS group was the subject of arelation assertion, the corresponding argument was
omitted because in SHOE, the argument’s value defaults to the reference instance’s key.

When the SHOE tags were completed they were inserted into the BODY of the web page. How-
ever, since web browsersignore any tags that they do not recognize, and SHOE content is entirely
contained within such tags, thereis no change in the presentation of the pages. Thus, the tags only
affect software that is SHOE aware.

Using the methodology described above, we added SHOE markup to the remaining pages of
the PLUS group and to the homepages of its members. Since the pages were already on the Web,
the annotations immediately became publicly available. Most of these annotations were produced
using the Knowledge Annotator, although text editorswere used in some cases. However, it became
clear that both approaches were somewhat time-consuming, and that it would take along time to
annotate a large corpus using these techniques.

6.1.3 GeneratingMarkup on alLarge Scale

It was clear that creating a sufficient amount of markup to test the Semantic Web idea would either
require alarge number of people to perform the task manually, or the use of specialized tools. In
this section we will discuss the use of Running SHOE to create computer science markup, and the
use of another program to extract publication information from auseful website that was unsuitable
for Running SHOE.

Computer science department web sites often contain pages that have a semi-regular structure,
such asfaculty, project, course, and user lists. Often, theitemsin theselist contain an <A> tag that
providesthe URL of theitem’shomepage, and this element’scontent isthe name of the entity being
linked to, providing us with avaluefor the name relation. Other properties of the instance are near
the <A> tag and are delimited by punctuation, emphasis, or specia spacing. These kinds of pages
areidea for Running SHOE, which was described in Section 5.2.3.

For example, consider the page of computer science faculty at the University of Maryland. As
shown in Figure 6.4, the HTML used to describe each faculty member has a standard format. The
person’s information is preceded by a <DT> tag, and followed by a pair of newlines. The HREF
attribute of the A element is the URL of their homepage, which serves as a good instance key for
them, whilethe content of the element istheir name. The beginning and ending of thelist of faculty
isindicated by the <DL> and </DL> tags. We can create three SHOE assertions for each itemin
the list. We know that the category of every instance is cs.Faculty, we can extract the cs.name
for each instance, and we know that each instance is a cs.member of the Department of Computer
Science at UMCP. The screen shot in Figure 5.4 shows the use of Running SHOE on this particular
page.

Using Running SHOE, asingleuser created SHOE markup for thefaculty, courses, and projects
of 15 major computer science departments in less than aday. Although, an experienced user can
create markup for a single page in mere minutes, Running SHOE is only effective when there are
long listswith regular structure. However, there are many important resourcesfrom which it cannot
extract information, such as CiteSeer (http://citeseer.nj.nec.conv/cs), an index of online computer
science publications. Interaction with CiteSeer involves issuing a query to one page, viewing a
results page, and then selecting aresult to get a page about a particular publication. This multistep
process prevents Running SHOE from extracting markup from the site.
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<HR>

<DL>

<DT><A HREF="http://ww. cs. und. edu/ ~agrawal a/ " >Ashok K. Agrawal a</ A>
<DD>Pr of essor, CS and UM ACS. | EEE Fellow. Ph.D., Harvard

Uni versity, 1970.

<DD><| >Research Interests:</I> Design and eval uati on of systens,

real tinme systenms, networks.

<DT><A HREF="http://ww. cs. und. edu/ " yi anni s/ ">John (Yi anni s)

Al oi nonos</ A>

<DD>Pr of essor, CS, CfAR, and UM ACS. NSF Presidential Young

I nvestigator. Ph.D., University of Rochester, 1987.

<DD><| >Research Interests:</I> Artificial intelligence, vision,
robotics, |earning, neuro-informatics.

<DT><A HREF="http://ww. cs. und. edu/ “waa/">WIliamA. Arbaugh</A>
<DD>Assi stant Professor, CS and UM ACS. Ph.D., University of

Pennsyl vani a, 1999.

<DD><| >Research Interests:</I> Information System Security, Enbedded
Systens, Operating Systens, and Networking.

<DT><A HREF="http://ww. cs.und. edu/ “nvz/">Marvin V. Zel kow tz</A>
<DD>Pr of essor, CS and UM ACS. Co-Dir., Fraunhofer Center --

Maryl and. | EEE Fellow. Ph.D., Cornell University, 1971.

<DD><| >Research Interests: </|1> Software engi neering, environnment
desi gn, program conpl exity and measurenent.

</ DL>

Figure 6.4 Source HTML for the University of Maryland's CS faculty page.
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To extract SHOE from CiteSeer, webuilt atool called Publication SHOE Maker (PSM). PSM is-
suesaquery to get publicationslikely to befrom aparticul ar institution and retrieves afixed number
of publication pagesfrom the results. The publication pages contain the publication’stitle, authors,
year, links to online copies, and occasionally additional BibTex information (BibTex isacommon
format for bibliographic information). Each publication page’s layout is very similar, so PSM can
extract the values of the desired fields easily.

An important issue is how to link the author information with the faculty instances extracted
from the department web pages. Fortunately, CiteSeer includes homepage information, which
HomePageSearch (http://hpsearch.uni-trier.de/) generates for each author. By using these URLS
(as opposed to the authors' names), PSM can establish links to the appropriate instances.

In the examples described in this section, we created SHOE markup for pages that were owned
by other parties. This raises a significant question: if an annotator does not have write privileges
for the annotated web pages, then how does he associate SHOE assertions with them? The answer
is create new web pageson his or her server that serve as summaries or indexes of the original web
pages. Each of these pages contain a reference instance whose key is the URL of the page from
which the markup was extracted. They may consist solely of SHOE tags, or may include additional
summary informationin HTML.

Since the results of Running SHOE and PSM are no different from those of text editors or the
Knowledge Annotator, they can be processed by SHOE agents in the same manner. Since SHOE
allows individuals to annotate their own pages, or make assertions about the content of other web
pages, the efforts of information providers and professional indexers can be combined.

6.1.4 Processingthe Markup

The main goal for the CS Department application was to use SHOE to improve web search of CS
Department information. To achieve this, we chose to implement arepository-based access system
that relied on the Exposé web-crawler. In order to compare the features of different repositories,
we configured the web-crawler to storeits resultsin both X SB and Parka KBs. Exposé was able to
gather 38,159 assertions from the various web pages that we annotated. Once the knowledge was
loaded into the KBs, the SHOE Search tool could be used to query them, either as a stand-alone
application or as a Java applet.

The possible benefits of a system such as this one are numerous. A prospective student could
use it to inquire about universities that offered a particular class or performed research in certain
areas. Or aresearcher could design an agent to search for articles on a particular subject, whose
authors are members of a particular set of ingtitutions, and were published during some desired
time interval. Additionally, SHOE can combine the information contained in multiple sources to
answer a single query. For example, to answer the query “Find all papers about ontologies written
by authorswho arefaculty membersat public universitiesin the state of Maryland” onewould need
information from university home pages, faculty listing pages, and publication pagesfor individual
faculty members. Such a query would be impossible for current search engines because they rank
each page based upon how many of the query termsit contains.

Sample queriesto the KB exposed one problem with the system: sometimes it didn’t integrate
information from a department web page and CiteSeer as expected. The source of thisproblemwas
that the sites occasionally use different URLSs to refer to the same person, and thus the SHOE as-
sertions used different instance keys for the same entity. Thisisafundamental problem with using
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URLSs as keys in a semantic web system: multiple URLSs can refer to the same web page because
of multiple host names for a given IP address, default pages for a directory URL, host-dependent
shortcuts such as atilde for the users directory, symbolic links within the host, and so on. Addi-
tionally, some individuals might have multiple URLSs that make equally valid keys for them, such
as the URLs of both professional and personal homepages. This problem is an important one for
future work.

6.1.5 Revisingthe CS Department Ontology

The CS Department ontology described in Section 6.1.1 is adequate for the purpose of represent-
ing and querying the most common concepts that are relevant to its domain. However, it was not
designed to promote reusability and interoperability. For example, the categories Person and Or-
ganization are more general than the domain of computer science departments, and could be useful
in many other ontologies. Yet, for an ontology to reuse these terms, it would have to include the
entire CS Department ontology. Clearly, the CS Department ontol ogy should have been more mod-
ularized. In this section we will discuss the development of a more modular set of ontologies, and
describe how the CS Department ontology can be revised in such a way that any web pages that
depend on it do not need to be updated. Thislast pointis critical on the Semantic Web, because the
web pages that commit to an ontology may be distributed across many servers and owned by many
different parties, making a coordinated update impossible.

We begin by creating ageneral ontology, called general-ont, that containselementsthat are com-
mon to most web domains. The top-level categories of this ontology are Agent, PhysicalObject,
Event, Location, Address, Activity, and WebResource. These categories are refined with subcat-
egories, including the Person, Organization, and Work classes from the CS department ontol ogy.
The ontology has some of the relations originally defined in the CS department ontology, including
member and head. It aso correctsone source of confusion in the CS ontology by using therelation
subOrganizationOf instead of subOrganization; this new name more clearly signifies that the first
argument is intended to be the child organization. Finally, the ontology includes al of the CS De-
partment ontology’ sinference rules, and adds additional ones, to state conditionssuch as“A person
who worksfor an organization isamember of that organization” and “ A person who is the head of
an organization is amember of that organization.”

Another area of the CS Department ontology that could be reused by many other ontologies
is the Publication taxonomy and relations. These can be contained in a document ontology called
document-ont. The top-level category of this ontology is Document, and its subcategoriesinclude
unpublished documents as well as published ones.

Continuing with our modul arization of the CS Department ontology, it is clear that none of the
original ontology is specific to CS Departments. In fact, most of the remaining ontology is applica-
bleto universitiesin general or other types of academic departments. Therefore, wemust also create
auniversity ontology, called university-ont. Thisontology extends both general-ont and document-
ont, and includes cs-dept-ontology categories such as Faculty, Student, University and Department.

Finally, we can revise the CS Department ontology so that it is integrated with our new, mod-
ularized ontologies. We will call the new ontology version 1.1 of the cs-dept-ontology. This on-
tology extends both university-ont and document-ont and, for reasons we will discuss momentar-
ily, is backward-compatible with cs-dept-ontology, version 1.0. All of the categories and relations
are defined in other ontologies, but to maintain backward-compatibility, we need local names for
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these components. Therefore, the ontology consists of a series of DEF-RENAME definitions. In
some cases, the ontology needs to contain components just to ensure backward-compatibility. For
example, recall that in general-ont, we decided to change the name of subOrganization to subOr-
ganizationOf. For cs-dept-ontology, version 1.1 to be compatible with version 1.0, it must rename
subOrganizationOf to subOrganization.

Now that we have a backward-compatible revision of the CS Department ontology, the web
pages that committed to version 1.0 should be integrated with two compatible ontology perspec-
tives, one based on version 1.0, and one based on version 1.1. What this means is that the old web
pages can be automatically integrated with web pages based on the new ontology from the perspec-
tive based on version 1.1. Thus, there is no need to upgrade all of the web pages at once. Instead,
their owners can upgrade at their own pace (by committing to the new version of the ontology and
possibly using some of the new terms) or even choose not to upgrade.

The need to modularize or restructure ontologies after they have come into use will be impor-
tant on the Semantic Web. Although not all revisions will be as drastic as the one described in this
section, SHOE's backward-compatibility feature and compatible ontology perspectives ensure that
revisions can occur smoothly.

6.1.6 Summary

We have described a case study in which SHOE was applied to the domain of computer science
departments. We demonstrated how a smply SHOE ontology can be constructed and how web
pages can be annotated. We showed that there were many possible means of acquiring SHOE in-
formation, including manual human annotation and semi-automated wrapper generation, and that
it was possible to generate a significant number of SHOE assertions in days. We also examined
how the basic architecture discussed in Section 5.1.5 could be used in practice and compared the
use of two different knowledge base systems as repositoriesfor SHOE knowledge. Finally, we dis-
cussed how ontologies could be modularized, even after they have been put to practical use, and
how backwards-compatibility can eliminate the need to upgrade existing web pages when an on-
tology must be revised.

6.2 Food Safety

The second case study in this chapter describes the application of SHOE to the domain of food
safety. Whereas the first case study was carefully constrained, this one focused on a real-world
problem and was performed in concert with the Joint Institute for Food Safety and Applied Nu-
trition (JFSAN). JFSAN is a partnership between the Food and Drug Administration (FDA) and
the University of Maryland, and is working to expand the knowledge and resources available to
support risk analysis in the food safety area. One of their goals is to develop a website that will
serve as a clearinghouse of information about food safety risks. This website is intended to serve
adiverse group of users, including researchers, policy makers, risk assessors, and the general pub-
lic, and thus must be able to respond to queries where terminol ogy, complexity and specificity may
vary greatly. Thisis not possible with keyword-based indices, but can be achieved using SHOE.
The work described in this section was first presented in an earlier paper [51].
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In order to scope the project, JFSAN decided to focus the SHOE effort on a specific issue
of food safety. The chosen issue was Transmissible Spongiform Encephal opathies (TSEs), which
are brain diseases that cause sponge-like abnormalitiesin brain cells. “Mad Cow Disease,” which
is technically known as Bovine Spongiform Encephalopathy (BSE), is the most notorious TSE,
mainly because of its apparent link to Creutzfeldt-Jakob disease (CJD) in humans. Recent Mad
Cow Disease epidemics and concerns about the risks BSE poses to humans continue to spawn in-
ternational interest on the topic.

6.2.1 TheTSE Ontology

Unlike the CS Department ontology, the TSE ontology was created by a team of knowledge en-
gineers and domain experts from the FDA and the Maryland Department of Veterinary Medicine.
The ontology focused on the three main concernsfor TSE Risks: source material, processing, and
end-product use. The top-level categories in the source material area were Material, Animal, Dis-
easeAgent, and two important subcategories of Material were Tissue, and BodyFluid. The process-
ing areahad atop-level category called Process, which was subdivided into BasicProcess and Ap-
pliedProcess. The BasicProcess category was further subdivided based on the nature of process,
while AppliedProcess was subdivided based on the purpose of the process. The end-product use
portion of the ontology had EndProduct (which was a subcategory of Material), ExposureRoute,
and Risk categories. Additional basic categories such as Person, Organization, and Event rounded
out the rest of the ontology, which has 73 categoriesin all.

After creating the categories, it was necessary to create the relations. Relations for Material in-
cluded weight and volume, which were ternary because they had to relate a specific material to a
guantity and express the measurement unit of the quantity. Relations for DiseaseAgent included
its transmissibility, transmission method, and symptoms. For Process, the important relationsin-
cluded hasInput and hasOutput, which identify itsinputsand outputs, and duration, whichidentified
the length of the process. A total of 88 relations were created, twelve of which had three or more
arguments.

A significant problem in the design of this ontology was scoping the effort. Many of the cat-
egories and relations that were developed were not of use to the subsequent annotation effort.
Griuninger [43] suggeststhat competency questions can be used to scope an ontology and | ater test it
for completeness. A competency question is essentially a question about the domain that the ontol-
ogy should be able to answer. For a Semantic Web markup language, we suggest that an ontol ogy
also be scoped by the kinds of informationthat iscurrently (or will soon be) available on web pages.
Otherwise, portions of the ontology may be irrelevant to the annotation process.

6.2.2 Food Safety Annotation

Following the creation of theinitial ontology, the JIFSAN team annotated web pages. This process
can be divided into two distinct markup activities. First, since the Web had little information on
animal material processing, we created a set of pages describing many important source materials,
processes and products, and added annotationsto those pages. Second, we annotated pagesthat pro-
vided general descriptions of the disease, described recommendations or regulations, or presented
experimental results.
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The web pages created by the team were very easy to annotate, since their primary purpose
was to provide useful SHOE markup. Pages were created to describe sources such as cattle and
pigs, processes such as daughter, butchering, and rendering; and end products such asanimal feed,
human food, and personal products. The SHOE annotationsfor each processincluded its category,
inputs, and outputs. Annotations for the other pages were typically just the category.

The second set of web pages were much moredifficult to annotate. Unlikethe computer science
department web pages of the other case study, these pages were not homepages and had very few
hypertext links. As such, it was difficult to find instances that had obvious keys. Instead, the user
had to identify a significant noun and then create a key for it. Furthermore, the pages were typi-
cally long, prose texts, instead of short, structured forms. Thus extracting relationships typically
involves parsing of sentences, and since natural language is much richer than knowledge represen-
tation languages, the process of trandating sentences into suitable structures was difficult. Prose
documents can potentially be trandated into numerous SHOE assertions, and the extent of markup
required for such pages was unclear. To compound matters, the important concepts of these pages
often had little overlap with the original ontology. A better strategy would have been to decide how
such pages would be annotated and design the ontology to facilitate this kind of markup. Such a
strategy would of course depend on the intended use for the markup. I1n the case of these pages, im-
proving search was the primary purpose, and thus markup about the document’s source and data,
and a subject matter classification would probably have been sufficient.

6.2.3 Processing the Annotations

The basic architecture for the food safety domain is the one described in Section 5.1.5. Although
the system has not been officially released yet, it isintended that various sources outside of JIFSAN
will be able to annotate their web pages with the TSE ontology and thus be accessible via SHOE
guery tools. The basic process would work as follows:

1. Knowledge providers who wish to make material available to the TSE Risk Website use the
Knowledge Annotator or other toolsto add SHOE markup their pages. The instances within
these pages are described using elements from the TSE Ontol ogy.

2. The knowledge providersthen place the pages on the Web and notify JFSAN.

3. JFSAN reviewsthesiteand if it meetstheir standards, addsit to the list of sitesthat Exposg,
the SHOE web-crawler, isalowed to visit.

4. Exposé crawls aong the selected sites, searching for more SHOE annotated pages with rele-
vant TSE information. It will also look for updates to pages.

5. SHOE knowledge discovered by Expose is loaded into a Parka knowledge base. Currently,
XSB is not needed because the initial version of the TSE ontology did not define inference
rules. However, alternate KBs may be added later.

6. Javaappletson the TSE Risk Website access the knowledge base to respond to users’ queries
or update displays. These appletsinclude the TSE Path Analyzer (described in Section 6.2.4)
and SHOE Search.
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It isimportant to note that new websites with TSE information will be forced to register with JIF-
SAN. This makes Exposg's search more productive and allows JFSAN to maintain alevel of qual-
ity over the data they present from their website. However, this does not restrict the ability of ap-
proved sites to get current information indexed. Once a Site is registered, it is considered trusted
and Exposé will revisit it periodically.

6.24 TheTSE Path Analyzer

One of JFSAN'’s requirements was the need to analyze how source materials end up in products
that are eventually consumed by humans or animals. Thisinformation is extremely valuable when
trying to determine the risk of contamination given the chance that a source materia is contami-
nated. It isexpected that information on each step in the process will be provided on different web
sites(sincedifferent stepsare usually performed by different companies), thususing alanguagelike
SHOE is essentid to integrating thisinformation.

To accommodate this need, we built the TSE Path Anayzer, which is an example of adomain
specific query tool. The TSE Path Analyzer allows the user to pick any combination of source, pro-
cess and product from lists that are derived from the taxonomies of the ontology. The system then
displays a graph of al possible pathways that match the query. For example, Figure 6.5 displays
the results of aquery to find all pathways that begin with ruminant source material, include a sep-
aration process, and result in aruminant feed product. In the display, square boxes indicate source
materials and rounded boxesindicate processes. The user can click on any box to open aweb page
with more details on that subject. Thistool essentially provides users with adynamic map of a set
of web pages based upon a semantic relation.

The Path Analyzer is a repository-based query tool. It issues its queries to a Parka repository
that is updated by the Exposé web-crawler. Inresponse to auser’s query, it grows the graph from
the selected source material by retrieving al processes that have that material as an input, and then
retrieving al products that are outputs of those processes. The processis repeated on the products
until eventually the entire set of paths from the source material are computed. Then the graph is
pruned to remove any pathsthat do not involve the selected process and end product. If no sourceis
selected, then the procedure starts with the selected process and worksit way through the process's
inputsand outputs. If only a product is selected, then the procedure worksitsway back through the
processes that created the product.

The biggest advantage of the TSE Path Analyzer is that it provides a smple user interface to
solve acomplicated problem. Users only have to select items from up to three list and press a but-
ton. A tool like the TSE Path Analyzer could not have been created without a markup language to
provide its source information.

6.2.5 Summary

The food safety case study demonstrated some of the problems with applying SHOE to real-world
problems. First, ontology design can be much more difficult, and significant effort needs to be de-
voted to properly scoping the ontology. Second, this application demonstrated that certain kinds
of pages are more ideal for SHOE than others. The most effective use of SHOE isin describing
web pages that have many hypertext links and some sort of structure (such asfield lists or tables).
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Figure 6.5: The TSE Path Analyzer.
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Although, SHOE can be applied to prose-like pages, they require more work on behalf of the anno-
tator. We also demonstrated how domain-specific tools can use SHOE to provide simpleinterfaces
that help users solve complex problems.
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Chapter 7

Comparison of Semantic Web L anguages

Although SHOE wasone of the first Semantic Web languages, there are other languages with differ-
ent syntaxes, semantics, and approaches to the problems of knowledge representation on the Web.
We will compare themost significant of these languages (Ontobroker, RDF, and OIL) to SHOE. We
will then describe DAML+OIL an emerging standard that is the result of an international effort to
combine the best features of SHOE and these languages.

7.1 Ontobroker

The Ontobroker system [31, 23] is similar to SHOE in many respects. It includes an ontology def-
inition language, a web page annotation language, aweb crawler, an inference engine, and a set of
query interfaces. Ontobroker isbased on frame-logic[57], and includes primitivesfor subclassing,
instantiation, attribute declaration, attribute value specification, predicates, and rules. Frame-logic
rules can be built using all of the connectives of predicate logic (implication, conjunction, digunc-
tion, and negation), and variables may be universally or existentially quantified. As such, the lan-
guage is more expressive than SHOE, but suffers from the scalability problems of predicate logic.
One advantage of aframe-logic language is that ontology objects (such as classes and attributes)
arefirst class citizens and can be used in expressions.

Ontobroker ontologies are written in ordinary frame-logic instead of an SGML or XML syn-
tax. This is because these ontologies are not meant to be shared on the Internet, but are instead
tailored to homogeneousintranet applications. Assuch thereisalso no need for ontology inclusion
or versioning. A short Ontobroker university ontology is shown in Figure 7.1. In frame-logic, C4
:: 'y meansthat class ¢y isasubclass of (', and C[A =>> T] meansthat class C' has an attribute
A of type T'. Ontobroker axioms can have existential or universal variables (with the EXISTS and
FORALL quantifiers, and can use the logic connectives < —, — >, < — >, AND, OR, and NOT.

An Ontogroup is a set of usersthat agree to a particular domain-specific ontology. This group
serves as an index of content providers, which is used to focus the work of the web crawler. How-
ever, this means that new users must register with the group to begin providing information, and
the annotations will be of little use to those who are not members of the community, since they do
not have access to the ontology information.

The language for annotating web pages al so makes use of frame-logic notation and isvery com-
pact. 1t can beembedded inordinary HTML pagesby way of asmall extension to thecommon <A>
tag. The class of an instance is specified by an expression of the form O:C, as demonstrated here:
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oject]].

Person :: (bject.
Faculty :: Person.
Chair :: Faculty.
Student :: Person.
Organi zation :: Object
Departnment :: Organi zation.
Per son|

name =>> STRI NG
headOF =>> Organi zati on].

Facul ty]
teaches =>> { ass;
advi ses =>> Student].

FORALL X, Y
X:Chair <- X Person[headO ->> Y] AND Y: Depart nent

Figure 7.1: An Ontobroker ontology.

<a onto=" 'http://ww. state.edu/users/jsmth/’:Chair">

An attribute value may be specified by an expression of theform O[A — >> V], asin:

<a onto=" 'http://wwv. state. edu/users/jsnmith/’ [name="Jane Smth ]">

Furthermore, a set of special key words allows the annotations to avoid redundancy with other in-
formation on the page. For example, the page keyword indicates that the value should be supplied
by the URL of the page. Additionally, the href keyword specifies that the value is the same as the
value of the href attributein the same tag, and the body keyword specifiesthat the content of thetag
supplies the value. For example, on the page http://mwww.state.edu/user §/jsmith/, an aternate way
of supplying the name annotation shown aboveis:

<a ont o="page[ nane=body] ">Jane Snit h</a>

One of the best features of the Ontobroker approach isits compact and simple language for ex-
pressing both ontologies and data. An important aspect of this is the use of the special keywords
page, href, and body to reduce redundancy between the markup and the document’s content. These
feature can help ensure that when adocument changes, its markup stays synchronized with the con-
tent. However, Ontobroker isnot meant to be used on the entire Web. Itsontologiesare not publicly
available, instead they are designed for local applicationsthat processacontrolled set of web pages.
Although this alows Ontobroker to ignore many of the problemsdiscussed in thisthesis, it makes
it unsuitable for use as a Semantic Web platform.
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<?xm version="1.0"7?>
<RDF xm ns="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: g="http://schena. org/ gener al #' >
<Description about="http://ww.state. edu/ users/jsnith">
<type resource="http://schema. org/ university#Chair" />
<g: nanme>Jane Smi t h</ g: nane>
</ Descri ption>
</ RDF>

Figure 7.2: An RDF Instance.

<?xm version="1.0"7?>
<RDF xm ns="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: g="http://schena. or g/ gener al #"
xm ns: u="http://schema. org/ uni versity#">
<u: Chair about="http://ww. state. edu/users/jsmth"
g: nane="Jane Smith" />
</ RDF>

Figure 7.3: An Abbreviated RDF Instance.

7.2 RDF

The Resource Description Framework (RDF) [62, 61] isa W3C recommendation that attempts to
address XML’s semantic limitations. It presents a ssimple model that can be used to represent any
kind of data. Thisdatamodel consists of nodesconnected by |abel ed arcs, wherethe nodesrepresent
web resourcesand the arcsrepresent propertiesof theseresources. It should be noted that thismodel
is essentially a semantic network, although unlike many semantic networks, it does not provide
inheritance. The nodes/arcs model aso meansthat RDF isinherently binary, however, thisdoes not
restrict the expressivity of the language because any n-ary relation can represented as a sequence
of binary relations.

RDF can beexchanged using an XML serialization syntax, whichisshown by examplein Figure
7.2. The basic syntax consists of a Description element which contains a set of property elements.
The about attribute identifies which resource is described. The property rdf:type is used to express
that aresource isamember of agiven class, and is equivalent to the instance-of link used in many
semantic nets and frame systems. There are anumber of abbreviated variations of the RDF syntax,
whichisan advantage for content providers but requires more complex RDF parsers. Using two of
the abbreviation techniques, Figure 7.2 can be rewritten as shown in Figure 7.3. It isimportant to
notethat all of these syntaxes have awell-defined mapping into the RDF datamodel, and thusavoid
some of the problems with representational choicesin basic XML. Nevertheless, it is still easy to
create different representations for a concept.

To prevent accidental name clashes between different vocabularies, RDF assigns a separate
XML namespace [14] to each vocabulary (these vocabularies, called schemas, can be formally de-
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fined using RDF Schema as discussed below). This approach has two disadvantages. First, since
namespaces can be used with any element and RDF schemas need not be formally specified, it is
possible to write RDF statements such that it is ambiguous as to whether certain tags are RDF or
intermeshed tags from another namespace. Second, namespaces are not transitive, which means
that each RDF section must explicitly specify the namespace for every schemathat isreferencedin
that section, even for schemas that were extended by a schema whose namespace has aready been
specified.

In addition to the basic model, RDF has some syntactic sugar for different collections of objects
called containers. There are three types of containers. bag, sequence, and alternative. A bag is
unordered, a sequence is ordered, and an alternative is a set of choices. Using a specia aboutEach
attribute, a document can make statements that apply to every element in a collection.

Perhaps RDF smost controversial and least understood featureisreification. Theintent of RDF
reification was to alow statements to be made about statements. This can be used to provide meta-
data about the statement, such as creator, effective date, etc., or to provide additional information
such asaconfidencefactor. Reificationinvolvesdescribing astatement with four statements. These
statements use the property type to classify a resource as a Statement and the properties subject,
predicate, and object, to model the three parts of the statement. A reified statement does not assert
the statement it describes. Thisallows providersto talk about statements without claiming they are
true, although the mechanism is rather verbose. A statement can be both described and asserted
by associating abagld with an RDF description. In addition to asserting the statements, it creates
a collection of corresponding reified statements, and descriptions can use the value of the bagld
to describe these statements. Some of the problems with RDF reification include confusion about
whether it can be used for modalities, and also the fact that there is no way to distinguish between
two identical statementsin different documents. The latter problem meansthat any statement about
areified statement in one document must also apply to all identical statementsin other documents.

To alow for the creation of controlled, sharable, extensible vocabularies the RDF working
group has developed the RDF Schema Specification [16]. RDF schema allows users to create
schemas of standard classes and properties using RDF. For this purpose, the specification defines
anumber of classes and properties that have specific semantics. The rdfs:Class and rdfs:Property
classesallow aresourceto betyped asaclassor property respectively, and properties can be used to
describe these classes and properties. The property rdfs:subClassOf essentialy states that one class
isasubset of another, and isequivalent totheis-alink used in semantic networksand frame systems.
With the rdfs:subClassOf property, schema designers can build taxonomies of classes for organiz-
ing their resources. RDF Schema also provides properties for describing properties; the property
rdfs:subPropertyOf alow propertiesto be speciaized in away similar to classes, while the proper-
ties rdfs:domain and rdfs:range allow constraints to be placed on the domain and range of a prop-
erty. An excerpt from the RDF Schemaversion of the university ontology from Figure4.1 isgiven
inFigure 7.4.

Note that since classes and properties are resources, they are identified by URIs. Each URI is
the concatenation of the URL of the resource’s source document, a hash ("#) and the resource’s
ID. For thisreason, RDF does not have to handle problemsof polysemy. Since URIsare often long
and unwieldy, namespace prefixes can be used to create shorter identifiers. However, namespace
prefixes cannot be currently used in attribute values, and thus some URIs must be written in full
form.

In RDF, schemas are extended by ssmply referring to objectsfrom that schemaasresourcesina

109



<?xm version="1.0"7?>
<rdf: RDF xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. or g/ TR/ 1999/ PR- r df - schema- 19990303#" >
<rdfs:C ass rdf: | D="Facul ty">
<rdfs:subd assOf rdf:resource=
"http://schena. org/ general #Per son" />
</rdfs:C ass>

<rdfs:d ass rdf:|D="Student">
<rdfs:subCl assOF rdf:resource=
"http://schena. org/ general #Per son" />
</rdfs:Cl ass>

<rdfs:d ass rdf: 1 D="Chair">
<rdfs:subd assOf rdf:resource="#Faculty" />
</rdfs:C ass>

<rdfs: Property rdf:|D="advi ses">
<rdfs: domai n rdf:resource="#Faculty" />
<rdfs:domai n rdf:resource="#Student" />
</rdfs:Property>
</ rdf : RDF>

Figure 7.4: An example university RDF schema

new schema. Since schemas are assigned unique URI's, the use of XML namespaces guaranteesthat
exactly one object isbeing referenced. Unfortunately, RDF does not have afeaturethat allowslocal
aliases to be provided for properties and classes. Although an alias can be approximated using the
rdfs:subClassOf or rdfs:subPropertyOf propertiesto state that the new name is a specialization of
the old one, thereisno way to state an equivalence. Thiscan be problematicif two separate schemas
“rename” aclass, because when schemas ssimply subclass the original class, theinformationthat all
three classes are equivalent is |l ost.

RDF schema is written entirely in RDF statements. Although at first this may seem like ele-
gant bootstrapping, closer inspection reveals that it is only a reuse of syntax. RDF is not expres-
sive enough to define the special propertiesrdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and
rdfs:range, and thus correct usage of these propertiesmust be built into any tool that processes RDF
with RDF schemas.

A significant weakness of RDF isthat it does not specify a schemainclusion feature. Although
namespaces allow a document to reference terms defined in other documents, it is unclear as to
whether the definitions of these terms should be included. Infact, it isunclear what constitutes the
definition of aterm. The problemisthat the definition of aclass (or property) isacollection of RDF
statements about a particul ar resource using propertiesfrom the RDFS namespace. Typically, these
statements appear on a single web page, grouped using an rdf:Description element. However, since
aresourceisidentified by a URI, thereis no reason why some of these statements could not appear
in another document. Thus anyone could add to the definition of an object introduced in another
schema. Although there are many situations where this is beneficial, accidental or malicious defi-
nitions may alter the semanticsin an undesirableway. For example, someone could make the class
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WebDeveloper asubclass of OverpaidPerson, and anyone who stated that they were aWebDevel-
oper, would now also be implicitly stating they were an OverpaidPerson. A possible solution to
thisisto treat XML namespaces as the only source of ontology inclusions, and then use extended
ontology perspectives as described by Definition 3.22. However, this approach seems somewhat
ad hoc, and may require that namespaces be added to include documents that have no new names,
but instead provide only additional definitions for names from other namespaces.

RDF does not possess any mechanisms for defining general axioms, which are used in logic
to constrain the possible meaning of a term and thus provide stronger semantics. Axioms can be
used to infer additional information that was not explicitly stated and, perhaps moreimportantly for
distributed systems such as the Web, axioms can be used to map between different representations
of the same concepts. Useful axioms might specify that the subOrganization property istransitive
or that the parentOf and childOf propertiesareinversesof each other. Many RDF proponentsbelieve
that axioms can be added to RDF by layering alogic language on top of RDF schema. However,
it appears that doing so would result in an awkward syntax. The problem is that if the terms of
complex logical formulaare modeled resources, then RDF requiresthat each term be treated as an
assertion, which would be incorrect. The only other option is to reify each term, which will not
assert them, but since reification requires four statements to model each term, thisis an extremely
verbose and unwieldy method to represent logic sentences.

Another potential problemfor RDF isthe Web'stendency towardsrapid change. Although RDF
provides a method for revising schemas, this method is insufficient. Essentially, each new version
of aschemais given its own URI and thus can be thought of as a distinct schema in and of itself.
However, therevision isreally just a schemathat extends the original version; its only link to the
original schemais by use of the rdfs:subClassOf and rdfs:subPropertyOf propertiesto point to the
original definitions of each class and property. As such, a true equivalence is not established be-
tween the items. Additionally, if schemas and resources that refer to the schema that was updated
wish to reflect the changes, they must change every individual reference to a schema object to use
the new URI. Finaly, since schemas do not have an official version associated with them, thereis
no way to track the revisions of a schema unless the schema maintainer uses a consistent naming
scheme for the URIs.

Even with RDF Schema, RDF hasvery weak semantics. Still, thereare many who believethat it
providesagood foundation for interchanging data and that true semantic web languages can be lay-
ered ontop of it. By layering, we mean creating alanguage that uses the RDF syntax, but also adds
new classes and properties that have specific semantics. In the next two sections, we will discuss
two languages that layer on top of RDF and RDF Schema.

7.3 OIL

OIL [32, 22, 33], which standsfor Ontology I nterchange Language or Ontology InferenceLayer, is
alanguage for describing ontologies on the Web. OIL’'s semantics are based on description logics,
but itssyntax islayered on RDF. One of the design goalsfor OIL was to maximize integration with
RDF applications. Thus, most RDF Schemas are valid OIL ontologies, and most OIL ontologies
can be partially understood by RDF processors. Unlike RDF, OIL has a well-defined semantics.
Therearemultiplelayersof OIL, where each subsequent layer addsfunctionality to theprevious
one. Core OIL is basically RDFS without reification, which was omitted because as discussed in
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<?xm version="1.0"7?>

<rdf: RDF xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#"
xm ns:rdf s="http://ww. w3. org/ TR/ 1999/ PR- r df - schenma- 19990303#"
xm ns:oil ="http://ww. ont oknow edge. org/oil/rdfs-schema" >

<oi | : Defi nedd ass rdf: | D="Husband" >
<rdf s:subCl assOf rdf:resource="#Mle" />
<oi | : hasSl ot Constrai nt >
<oi | : HasVal ue>
<oi |l : hasProperty rdf:resource="#i sMarri edTo" />
<oi | : hasd ass rdf:resource="#Fenal e" />
</ oi | : HasVal ue>
</ oi |l : hasSl ot Constrai nt >
</rdfs:Cl ass>
</ rdf : RDF>

Figure 7.5: An OIL ontology that defines the class Husband.

Section 7.2 it can be problematic. Standard OIL adds anumber of description logic primitivesto the
CoreOIL layer, andisthefocusof most OIL work to date. Instance OlL addsthe capability to model
instances, essentially using RDF to describetheinstances. Finally, Heavy OIL isan undefined layer
that will include future extensionsto thelanguage. Thislayered approach allows applicationsto use
pre-defined subsets of the language to manage compl exity.

OIL starts with the basic primitives of RDF, classes and properties. There are two basic types
of classes. primitive classes and defined classes. Primitive classes are essentially ordinary RDFS
classes, while defined classes provide necessary and sufficient conditionsfor membership. Defined
classesrequirethe use of class expressions, which are bool ean combinations of classes and sl ot con-
straints. The standard boolean operations are provided by oil:AND, 0il:OR, and 0il:NOT. Slot con-
straints restrict classes to only those instances which are the domain of a property where the range
satisfies some constraint. Slot constraints include oil:HasValue, oil:ValueType, oil:MaxCardinality
and oil:MinCardinality. The oil:HasValue constraint states that there must exist at least one value for
the dot that is a member of a specified class expression. The oil:ValueType constraint states that
all valuesfor the ot must be members of a specified class expression. The cardinality constraints
state that there must exist at most (or at least) »n instances that have the value for the particular dot.
Inall of these cases, the oil:hasProperty property is used to indicate the property to which the con-
straint applies, and oil:hasClass is used to indicate the class expression (if any) of the constraint.
An example OIL class definition for Husband isgivenin Figure 7.5. In this ontology, ahusband is
amalewho ismarried to afemale.

OIL dots are RDF properties, and thus dot definitions can use RDFS constructs such as
rdfs:subclassOf, rdfs:domain, and rdfs:range. OIL also adds propertiesand classes that can be used
to give dotsmore precise definitions. The oil:inverseRelationOf property states that two properties
areinverserelations. If aproperty isan instance of the oil: TransitiveProperty class, then the prop-
erty istrangitive. Finally, if aproperty isasubclass of oil:SymmetricProperty, thenitisasymmetric
relation.

In addition to defining classes and slots, Ol L ontol ogies can describe themsel ves with metadata,

112



import modules and provide arule base. There are a standard set of meta-properties, based on the
Dublin Core, that include ontology name, ontology author, and others. The import mechanism is
simply to use XML namespaces, and suffersfrom the same drawbacksasRDF inthisarea. Therule
baseisintended to provide additional axiomsor global constraintsfor the ontology, but itsstructure
is currently undefined.

The advantages of OIL are tied to its description logic basis. If two ontologies used the same
set of base terms in their definitions, then it is possible to automatically compute a subsumption
hierarchy for the combination of the ontologies. Additionally, the rich modeling constructs allow
consistency to be checked, which eases the construction of high-quality ontologies. However, it is
possible for logical inconsistencies to arise due to instances, which will be distributed across the
Semantic Web and thus harder to control. There are no guidelines as to how reasoners should ap-
proach this kind of inconsistency. For example, if a Person class defined the oil:maxCardinality
of amarriedTo dot to be one, what should happen if different documents contain assertions about
different people being married to Madonna? OIL’s other weaknesses are inherited from RDF. It
has no explicit import mechanism and inadequate support for ontology evolution. OIL also cannot
specify many of the common kinds of articulation mappings needed to integrate ontologies. For
example, OIL cannot express synonymy of classes or properties, and cannot express mappings be-
tween different structures that represent the same concept. For these reasons, it seemsthat OIL is
better suited as an RDF representation of description logic than as a foundation for the Semantic
Web.

74 DAML

The DARPA Agent Markup Language (DAML) [54, 55] is perhaps the highest profile Semantic
Web language. This high profileisin part because DAML isamajor DARPA project with multiple
academic and industry teams involved, and in part because it involves many member of the W3C,
including Tim Berners-Leehimsalf. DAML attemptsto combinethebest features of other Semantic
Web languages, including RDF, SHOE, and OIL. The earliest versions of DAML were officially
called DAML-ONT, but alater effort to more closely involve the developersof OIL hasresulted in
DAML+OIL. In therest of this section, unless explicitly stated otherwise, the term DAML refers
to DAML+OIL.

Like OIL, DAML builds upon RDF and has a description logic basis. DAML allows class
expressions to be a single class, a list of instances that comprise a class, a property restric-
tion, or a boolean combination of class expressions. The daml:intersectionOf, daml:unionOf, and
daml:complementOf propertiesprovide conjunction, digunction, and negation of class expressions,
and thus serve the same purpose as the oil: AND, oil:OR, and 0il:NOT classes.

A DAML property restriction is indicated by the daml:Restriction class, which contains a
daml:onProperty property that specifies the dot being restricted, as well as additional information
about the restriction. The daml:toClass property is used to say that all values for the slot must be
members of the specified class expression, and has the same use as the oil:ValueType class. The
daml:hasClass property is like the oil:HasClass class, and states that at at |east one value for the
dot must be a member of the specified class expresson. DAML aso has a daml:hasValue prop-
erty, which does not have an equivalent in OIL. This property is used to state that one value of
the dot must equal the specified value. Like OIL, DAML includes cardinality restrictions, specifi-
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<?xm version="1.0"7?>

<rdf: RDF xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#"
xm ns:rdf s="http://ww. w3. org/ TR/ 1999/ PR- r df - schenma- 19990303#"
xm ns: dam ="htt p://ww. dam . or g/ 2001/ 03/ dan +oi | #"* >

<dami : Ont ol ogy rdf: about="">

<dani : ver si onl nf 0>1. 0</ dam : ver si onl nf 0>

<dam :inports rdf:resource="http://schena. org/ base#" />
</ dam : Ont ol ogy>

<danml : d ass rdf: | D="Husband">
<rdfs:subCl assOf rdf:resource="#Mle" />
<rdf s: subC assCf >
<danl : Restriction>
<dami : onProperty rdf:resource="#i sMarri edTo" />
<danl : hasCl ass rdf:resource="#Fenal e" />
</dam : Restriction>
</rdfs:subd assCf >
</dam : Cl ass>

</ r df : RDF>

Figure7.6: A DAML ontology that defines the class Husband.

cally daml:minCardinality and daml:maxCardinality. Because of thedifferent way that DAML struc-
turesrestrictions, it also needs daml:hasClassQ, daml:maxCardinalityQ, and daml:minCardinalityQ
properties so that cardinality restrictions can be qualified by a specific class expression. Figure 7.6
presents the DAML version of the Husband ontology from Figure 7.5.

DAML aso providesprimitivesfor defining properties. Inadditionto thebasic onesavailablein
RDF, it adds adaml:inverseOf property and daml: TransitiveProperty class, which areidentical to el-
ements of OIL. DAML also has the daml:UniqueProperty and daml:UnambiguousProperty classes
which state that a property can only have one value per instance and that a value can only belong
to one instance, respectively.

Like SHOE, DAML has an explicit feature for including ontologies, provides a means for han-
dling synonymousterms, and provides some primitiveversioninformation. DAML’'s daml:imports
issimilar to SHOE's USE-ONTOLOGY element. It is transitive and specifies that the definitions
from theimported document al so apply to the current ontology. Thisallows extended ontology per-
spectives (see Definition 3.22) to be used with DAML. However, unlike SHOE, DAML uses XML
namespaces to provide names, which requires some redundancy between the namespace declara
tions and daml:imports statements.

DAML has a daml:equivalentTo property that is used to state that two resources are identical.
Since classes and properties are resources, this can be applied to them as well as other classes.
Thus, daml:equivalentTo provides the functionality of SHOE's DEF-RENAME element, plus the
capability to state that two instances are identical. The latter feature is extremely useful on the
Web, where resources are identified by URLsS. Since syntactically different URL’s often identify
the same resource, it is likely that different users could use different IDs for that resource. Using
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daml:equivalentTo, content from these two sources can be effectively merged.

The daml:versioninfo property allows an ontology to provide version information. However,
in DAML the contents of this property are not defined, thus it cannot be used to automatically
determine prior versions of the ontologies. Furthermore, there is no way to indicate a backward-
compatible version. Therefore, compatible ontology perspectives (see Definition 3.31) cannot be
used with DAML.

DAML asoincludessupport for XML Schemadatatypes. All datatypesare considered special
classes and each has an identifier that is constructed from the URL of its source document and its
name. Thus, a data value can be assigned atype, asin:

<xsd: deci mal rdf:value="3.14" />
Also, therange of a property could be a data type:

<danl : Dat at ypeProperty rdf: 1 D="hei ght">
<rdfs:range rdf:resource=
"http://ww. w3. org/ 2000/ 10/ XM_Schema#deci mal "/ >
</ daml : Dat at ypePr operty>

SinceDAML isbased on description logics, it hasall of the advantages of OIL. However, since
itisalso based on RDF, it has many of the disadvantages of that language. Despiteall of itsfeatures,
DAML is still not more expressive than SHOE. Although the cardinality constraints and boolean
expressions can express things that cannot be expressed in SHOE, SHOE's Horn clause-likeinfer-
ence rules can express things not possible in DAML. However, there are plansfor aDAML-Logic
language, that will extend DAML+OIL with some fragment of first-order logic. Such alanguage
would most likely be more expressive than SHOE.

7.5 Summary

We have described four different semantic web languages, and compared them to SHOE. In Table
7.1, we summarize the results of this comparison. In this table, syntax describes the notation of
the language. Class hierarchy indicates whether the language allows taxonomies of classes to be
defined. The Horn logic, description logic, and predicate logic rows all indicate the ability of alan-
guage to express the axioms of that kind of logic. Class and predicate equivalence deals with the
language's ability to establish equivalence between classes and predicates (known as relations or
properties in some languages), respectively. Instance equivalence concerns the ability to express
the equivalence of individuals. A language that has decentralized ontologies allows ontologies to
be developed autonomously, and does not require a central authority to approve or control them.
Ontology extension is the ability of the language to include other ontologies. RDFS and OIL are
marked with an asterisk because thisfeatureis not explicit, but can beimplied by namespaces. On-
tology revision concernsthe ability to explicitly state that one ontology is a new version of another
ontology, and a language allows revision compatibility if it can state that a revision is backward-
compatible with specific prior versions.
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Feature SHOE Ontobroker | RDFS | OIL | DAML+OIL
Syntax SGML/XML | HTML XML | RDF | RDF
Formal semantics Yes Yes No Yes | Yes
Class hierarchy Yes Yes Yes Yes | Yes
Hornlogic Yes Yes No No No
Description logic No No No Yes | Yes
Predicate logic No Yes No No No
Class equivaence Yes Yes No No Yes
Predicate equivaence Yes Yes No No Yes
Instance equivaence No No No No Yes
Decentralized ontologies | Yes No Yes Yes | Yes
Ontology extension Yes No Yest Yest | Yes
Ontology revision Yes No No No No
Revision compatibility Yes No No No No

Table 7.1: Comparison of semantic web languages.
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Chapter 8

Conclusion

In this chapter, we will review the SHOE language and systems, and discuss how they meet the
needs of the Semantic Web. Based on this analysis, we will recommend future directions for se-
mantic web research. We then speculate as to how the Semantic Web could revol utionize the way
people use the Internet.

8.1 Analysis

In thisthes s, we have described the challenges that must be overcometo realize the Semantic Web.
The first problem is to extract structured knowledge from web pages. Then we must be able to
integrate the data that is extracted from different sources. We have shown how ontologies can be
used for integration, but since the Web is a distributed system with information on a multitude of
sources, asingle ontology solutionisunrealistic. To accommodate the needs of diverseinformation
providers, we allow ontologiesto be created autonomously, but provide means for extending other
ontol ogiesto enableintegration at design time. We pointed out that ontol ogieson the Web will need
to evolve, and included features to maximize integration between data that commits to different
versions of ontologies. A final problem is creating systems that can scale to the Web's enormous
size. We will now examine our proposed solutions to these challenges.

In order to enable any agent to easily extract content from web pages, we can use SHOE tagsto
formally describe the knowledge. Although, thisisone of SHOE's greatest strengths, it can also be
its Achilles heel. There are already a billion web pages in existence, and convincing their owners
to add semantic tags will not be an easy task. A page author will only add the tags if they can help
lead othersto the web page, but users will not query SHOE systems unlessthere is sufficient SHOE
content to provide alikely match. In his description of the early days of developing the Web, Tim
Berners-Lee describes a similar problem: [5, page 30]

A big incentive for putting a document on the Web was that anyone else in the world
could find it. But who would bother to install a client if there wasn't exciting infor-
mation already on the Web? Getting out of this chicken-and-egg situation was the task
before us.

In Chapters5 and 6, we presented tool sand techniquesthat reducethelevel of effort neededto create
SHOE markup. We also presented tools that demonstrate how the markup can be used. We believe
that tools like these will demonstrate that the benefit of using a semantic web language outweighs
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the cost of of annotating pages. Still, thereisthe chicken-and-egg problem, and large quantities of
useful semantic web content must be created to get the ball rolling. Thisis already beginning to
emerge, dueto projectslike DAML at DARPA.

In Chapter 6, we described how SHOE could be used in two different domains. In the process,
we found that certain types of pages were more amenable to annotation than others. In particu-
lar, pages with many hyperlinks that provided succinct information in labeled field, list, or table
formats seem to be the best kinds of pagesfor this process. In general, people had difficulty identi-
fying relevant instances and relations from long prose documents with few hyperlinks. Any effort
to use SHOE must take into account the content and organization of the source web pages, so that
an appropriate strategy for markup can be devel oped.

A significant issue for the Semantic Web is establishing the identity of individuals. The ap-
proach taken by SHOE isto choose aunique URL for each individual. In many cases, such aswhen
theindividual isaperson or organization with ahomepage, thisis an acceptabl e solution. However,
some people have multiple homepages (such as a persona page and professional page), and the
URLSs of aperson can change over time (if the person changes jobs or internet service providers).
Furthermore, problems arise with objects that are not owned by any person or organization. For
example, who has the right to choose keys for Napoleon, the continent of Asia, the 16th century,
or the Sun? In SHOE, we would create constants in ontol ogies to describe each of these concepts,
but this begs the question of who has the right to create these ontologies. Perhaps the answer lies
not in choosing a particular identifier for a concept, but in allowing a page to assign any unique
identifier it chooses and state that it isequivalent to other identifiersfor the same concept. DAML's
equivalentTo feature provides just this capability, and could be one of the most important features
of a Semantic Web language.

A fundamental component of the SHOE approach isthat every document must commit to afor-
mally described ontology. This provides a compromise between the extremes of asingle, univer-
sal schemafor the entire Web and individual schemas for each document. However, unlike XML
DTDs, SHOE ontologies are arranged in a taxonomy with generic ontologies at the top that are
extended by domain-specific ontologies. This approach encourages reuse while simultaneoudly al-
lowing arbitrary extension. Ontologies can serve as contexts where different sets of axioms are ap-
plicable. Furthermore, ontology axioms can be used to articul ate between the many common types
of representational differences, providing adeclarative meansfor transformation. However, SHOE
lacks features such as arithmetic functions, aggregation, and string manipul ation functionsthat are
needed to provide articulation axioms for the full range of representational differences.

Due to the Web's dynamic nature, semantic web ontologieswill inevitably need to change, but
these changes could adversely affect the various resources that commit to the ontologies. In SHOE,
each revision of an ontology is a separate resource with its own unique version number, and in-
stances commit to a specific version of an ontology. This ensures that dependencies are not bro-
ken. Furthermore, the definition of compatible ontology perspectives allows SHOE to integrate
data from resources that committed to different versions of an ontology. This approach seems to
work well, even in the presence of major structural changes to the ontology such as those described
in Section 6.1.5.

To deal with the quantity of information on the Semantic Web, the language must be scalable.
Although we limited SHOE to the expressivity of datalog, this may still not scale to the needs of
all applications. Therefore, we indicated that SHOE could use a number of different knowledge
representation systems, which differed in the completeness of reasoning and query response time.
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For example, a deductive database can support the full semantics of SHOE, but there will be per-
formance tradeoffs. On the other hand, relational database management systems can provide per-
formance gains but at the cost of no inference.

We believe that SHOE has demonstrated many of the features needed in a semantic web lan-
guage. SHOE provides interoperability in distributed environments through the use of extensi-
ble, shared ontologies, the avoidance of contradictions, and localization of inferencerules. It han-
dles the changing nature of the Web with an ontology versioning scheme that supports backward-
compatibility. It takes stepsin the direction of scalability by limiting expressivity and alowing for
different levels on inferential support. Finally, since the Web is an “open-world,” SHOE does not
allow conclusions to be drawn from lack of information.

8.2 FutureDirections

Although we believe SHOE is good language that has practical use, we do not mean to suggest that
it solves al of the problems of the Semantic Web. We are at the beginning of a new and exciting
research field and there is still much work to do. In this section, we discuss some possibilities for
future work.

8.2.1 User Friendly Tools

Clearly, since the Semantic Web is intended to be an extension of the contemporary Web, its tools
must be usable by the layperson. Since query tools will be used most often, the greatest attention
should be paid them. Ideally, we want a query tool that isas easy to use as as keyword-based search
engine, but provides the accurate answers possible with structured queries. Thefirst challenge for
such atool is establishing the context of the query. Although it is easy to choose a query context
from the pick list in our SHOE Search tool when there are only a dozen ontologies to choose from,
the Semantic Web may have thousands of ontologies. How can auser choose theright context from
this set? Another problem is how can a user learn enough about an ontology’s contents to create
the desired query. Most users want instant answers, and will not bother to peruse pages of ontol-
ogy documentation just so they can form a query. Perhaps the answer isto alow the user to type
aquery string, which the system attempts to parse into a structured query, prompting the user to
disambiguate terms when necessary.

Another important aspect of usability isthe creation of SHOE documents. SHOE hopesto over-
come the knowledge acquisition bottleneck by amortizing the cost of annotation over the entire set
of content providers, but unless the process is straightforward, this is doomed to failure. We are
actively working with our users to determine what interfaces are the most intuitive. Certainly, the
ultimate annotation process would be fully automatic, but due to limitations of NLP in general do-
mains, thisgoal iscurrently unrealistic. However, a semi-automatic method that incorporated ideas
from NLP or machine learning may simplify the process for the user.

8.2.2 Scalability

Because the scope of the Semantic Web is as broad as that of the contemporary Web, scalability
is critical to any Semantic Web system. We intentionally restricted SHOE to the expressivity of
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datalog so that we could use reasoning algorithms devel oped for large data sets. However, it isun-
clear if even thisrestriction will truly allow us to scale to problems with thousands of ontologies
and billions of assertions as will be required on the Semantic Web. In Section 5.1.4, we discussed
how different knowledge base systems could provide different inferential capabilities and perfor-
mance characteristics, and suggested that incompl ete reasoners would provide better performance.
Future experiments need to verify this hypothesis and explore the tradeoffs, so that well-informed
decisions can be made.

We conducted a preliminary experiment that compared the use of XSB and Parka as SHOE
repositories in the computer science domain. We chose ten representative queries, which ranged
from one to five conjuncts and had up to four variables. Seven of these queries included a pred-
icate which was partially defined by one of the ontology’s inference rules. Two of the predicates
used partial string matching, which can help userslocate instances without knowing their complete
names. Using a Sparc 20 with 128 megabytes of memory, we issued the queries to both KBs, and
measured the system’s response time (in milliseconds) and the number of answersreturned for each
query.

Theresultsof theexperiment areshownin Table8.1. Responsetimesfor X SB varied from 39ms
to 124215ms, while the response times for Parka varied from 376msto 2991ms. Although, XSB
out-performed Parka on half of the queries, this can be partialy attributed to the different ways the
SHOE KB library accesses the repositories. XSB is executed as a child process, whose input and
output streams are managed by the SHOE software. Parka, on the other hand, isaclient-server ap-
plication, and the SHOE KB library communicateswith it via sockets. Thus, adominant cost in the
Parkatimingswas the additional overhead of socket communication, which can be as much as 2000
ms. An interesting feature of the XSB timings s that three queries took over 10 seconds to com-
plete. The onething in common between these queriesis that each involved atest for membership
in a high-level category. Due to child categories and to relations that had arguments typed to the
high-level categories, the corresponding predicates of these categories appear in the heads of many
rules. This caused XSB'’s search to branch out significantly more than in other queries and resulted
in the longer completion times. In general, it seems that the smaller variance in query completion
time makes Parka a better choice for queries where response timeis important.

The other aspect of the experiment was the degree of completeness in the returned answers.
While XSB always provided complete answers, Parka only provided complete answers for 6 of
the 10 queries. In one case (when querying the members of the UMCP CS department), Parka
could not provide any answers, although XSB returned 480. This was because no page explic-
itly contained assertions about members of http://mww.umd.edu/, but XSB was able to use the rule
that stated membership transfers through the subOrganization relation to infer that all members of
http: //Amww.cs.umd.edu/ were also members of http://www.umd.edu/. In another query, which con-
cerned the people who authored publications and were members of an organization with Stanford
in its name, XSB returned twice as many answers as Parka. The reason isthat X SB returned each
person twice, once each for being amember of “ Stanford University” and the * Stanford University
Computer Science Department.” Since Parka was unable to determine that the individuals were
members of the university, it only returned them as members of the computer science department.
In the other two queries, Parka only returned one or two results less than XSB. Although, Parka's
lack of a complete inference engine for SHOE only serioudly affected one query in this set, larger
and richer ontologies arelikely to have moreinferencerules, and the diff erences between Parkaand
XSB on queries using these ontologies will be much more significant.
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Time (ms) No. of Answers

Query XSB | Parka | XSB | Paka
instanceO f(x, University) 2248 | 2430 27 27
instanceO f(x, Organization) 13031 | 1337 | 254 254
member(hittp : [ /www.cs.umd.edu/, x) 1040 | 1663 | 480 478
member(hittp : //www.umd.edu/, x) 1121 376 | 480 0
member(http : [/www.cs.umd.edu/, ) A 1373 | 1010 57 57
instanceO f(x, Faculty)

member(x, http : //www.cs.umd.eduusers/heflin/) 39 | 1016 5 4
instanceO f(x, Department) A 72 979 1 1
member(x, http : //www.cs.umd.eduusers/heflin/)

instanceO f(p, Publication) A 20208 | 2091 23 23

publication Author(p, a) A
member(hitp : [ /www.cs.stanford.edu/, a)

instanceO f(p, Article) A publication Author(p, a) A 352 | 2991 7 7
name(a,n) A stringMatch(n, “Heflin” )
instanceO f(x, Person) A 124215 | 2092 46 23

publication Author(p, ) A member(o,x) A
name(o,n) A string M atch(n, “Stanford” )

Table 8.1: Comparison of XSB and Parka.

Thiscomparisonindicatesthat Parka squery responsetimesaremuch morereliablethan XSB’s,
where certain queriescanresultin anintolerabledelay. However, thereare certain queriesfor which
Parkais useless. It is clear then that each system is better in certain situations. Obviously, a more
thorough experiment is needed. Such an experiment should ensure that additional variables such
as network latency are accounted for, test awider range of systems, including relational databases;
compare variationsin the way SHOE is implemented in each system, and use larger and more re-
alistic knowledge bases for the tests.

8.2.3 Language Design

Although SHOE was the first ontol ogy-based web language, there are many directionsfor possible
improvement. Researchers need to develop aset of criteriafor eval uating Semantic Web languages.
Based on our analysisin Chapter 3, we suggest afew basic requirements. First, the language must
be able to define ontologies, and ontologies must be able to extend and revise other ontologies.
Second, the language must have the power to express trand ations between different representations
of the same concepts, and particularly include the ability to establish equivalence of terms. Third,
the language must have an XML syntax, so that it can make use of existing infrastructure.

In order to trandate between different representations of the same concepts, a language would
need additional primitives not present in SHOE. For example, in order to convert between differ-
ent measurement units, the language must alow arithmetic functionsin inferencerules. However,
if an arithmetic function is used recursively in arule, inference procedures may never terminate.
Aggregation and string manipulation are needed for other types of conversions. To provide truly
flexible facilities, arbitrary functions should be considered, but since the definition of an arbitrary
function would requireamuch more complex language, it should be specified by means of aremote
procedure call.
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Although, SHOE takes an open-world approach, there are many useful queries and actions that
cannot be performed by web agents without closed-world information. Localized closed-world
(LCW) statements[26] are apromising step in thisdirection. LCW statements can be used to state
that the given source has all of the information on agiven topic. LCW statements are more appro-
priate for the Web than the closed-world assumption, but there is still a question as to how a query
system acquiresthe set of LCW statementsthat could be relevant. One possible extension to SHOE
isto allow LCW statements to be expressed in the language.

Finally, research must be conducted to establish the best set of primitivesfor asemantic web lan-
guage. For example, the limited expressivity of SHOE did |ead to occasions where incorrect usage
of an ontology’s vocabulary could not be detected, resulting in erroneous conclusions. A language
that could express negation, digoint sets, and/or cardinality constraints could use those featuresto
validate and evaluate data that is discovered. However, in a distributed system the violation of a
constraint may be due to bad data that was discovered earlier. Assuch, aconstraint should not pre-
vent data from being included in the KB, but should instead be used as afilter at query time that
resultsin awarning or lowering of the confidencein a particular assertion. Featuresfrom other log-
ics may aso be useful. For example, temporal, probabilistic, or fuzzy logics might have aplace on
the Semantic Web.

Clearly, thereareanumber of featuresthat could be of usein a semantic web language. To prop-
erly evaluate candidate languages, we need to identify what expressive needs are most important
and compare complexity of thelanguages. Animportant directionfor futurework isan enumeration
of the possible features along with an analysis of the cost, complexity and benefit of each feature.

8.2.4 Web Servicesand Agent Communication

Inthisthesis, wefocused on the Semantic Web as a search and query mechanism, but it can be much
more. The Web already provides a number of services, some of which look up information (such
asflight schedules) and some of which perform an action (such as book aflight). However if these
services could be described with semantic markup, then intelligent agents can use these services.
Preliminary research in thisareais described by Mcllraith, Son, and Zeng [71]. A crucial problem
to be solved hereis the design of an ontology that is flexible enough to describe the wide range of
potential services.

Web services can be thought of as smple agents, and techniques for describing them could be
expanded for use in agent communication [53]. An agent can advertiseits capabilitiesusing a ser-
vice ontology. Other agents could then understand this advertisement and determine if they should
request a service from the advertising agent. Ontologies may aso be needed for the process of ne-
gotiation and for rating of agent services.

825 A Web of Trust

A serious problem on the contemporary Web is finding reliable information. This problem will be
even morecrucia for the Semantic Web, where agentswill beintegratinginformationfrom multiple
sources. If anincorrect premise is used due to a single faulty source, then any conclusions drawn
may bein error. In the perspective approaches of Chapter 3, it is assumed that all resources used to
form aperspective are reliable. This approach could be extended with an additional trust function
which extractsfrom the set of resources only those assertionsthat are deemed reliablein some way.
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One problem with trust is that it can be very subjective, and two individuals may disagree on
whether aparticular sourceisreliable. Tofurther complicate matters, agiven source may bereliable
only on certain subject matter and reliability may depend on supporting evidence. A potential solu-
tion to these problemsisto create special ontologiesthat provide belief systems using sets of rules
that filter out claims which may be suspect. Such ontologies will require special relations such as
claims(z, a),whichistrueif x isthe source of assertion a, and believe(a), whichistrueif the agent
should believe assertion « [50]. Users can then subscribe to a particular belief system or customize
one to their own needs.

8.3 A Vision of the Semantic Web

The Semantic Web, which waswas once the dream of afew isolated individuals, isnow ontheverge
of revolutionizing the Internet. The DAML project has helped to garner the cause widespread at-
tention, and the W3C's Semantic Web activity iswell underway. In the summer of 2001, aworking
group will form to develop a W3C standard for web ontologies. By 2003, this standard should be
in place and will serve as the foundation of a Semantic Web.

Then, the Internet will begin to be transformed in amazing ways. First, people will be able to
conduct more accurate searches, and the answers they receive may be based on the automatic inte-
gration of numerous sources. Aswith the current Web, there will be many search enginesto choose
from, but these engineswill differ not just in coverage of the Web, but also in inferential complete-
ness and query response time. Some search engines will have a single trust model that represents
one viewpoint of the Web, while others may allow usersto configure their own trust model. How-
ever, since the detail s of many web pageswill be too complex to annotate, therewill still be aplace
for keyword-based search engines on the Web. The best search engineswill combine keyword and
semantic web search techniques to best satisfy their users.

Although improved search is a significant capability of the Semantic Web, the real revolution
will occur with agentsthat don’t just find things, but also do things. These agentswill be automated
personal secretariesthat interact with each other over the Internet. For example, you could tell your
agent to make travel arrangementsfor you to attend a conference. The agent would go the confer-
ence web page to find out about the location and dates of the conference. It would then use your
personal information and preferences to determine a means of transportation, contact atravel site,
and make plane and hotel reservations. The agent may also discover that your favorite band is play-
ing in town during your stay, and even though the show is sold out, the agent might find reasonably
priced ticketsfrom aticket broker. In addition to presenting your itinerary, the agent would mention
the concert and ask if you to wanted to purchase the tickets. Although this may sound far-fetched,
when web pages are annotated in a semantic markup language, the problem becomes much easier
to solve.

Semantic web agents will also bring changes to e-commerce. People will be able to search for
products that contain exactly the features they desire and at the lowest possible price. If the seller
also has an agent, then the two agents may even negotiate a lower price for you. The impact of
this on the Web will be that sellerswho wish to stay in business will have to constantly match their
competitors prices or differentiate themsel ves on some other aspect such asfeatures of the product,
quality, or customer service. All of these things can be described on the Semantic Web and could
play in the consideration of a product for the agent.
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Appendix A

SHOE DTDs

This appendix contains the DTDs for both the SGML and XML syntaxes of SHOE. These DTDs
specify what tags can be used in a document, their structure, and how they may be nested.

A.l SGML DTD

The SGML syntax of SHOE is an application of the Standard Generalized Markup Language
(SGML). An SGML DTD describes adocument structure using element, attribute, and entity dec-
larations. Comments are indicated with <!- - and - ->.

An element declaration consists of <!ELEMENT, the element name, minimization options, a
content specification, and a >. The minimization options consists of two characters indicating the
minimization for the start and end tags of the element. The character - indicates thetag is required,
while O indicates that it is optional. The content specification can be declared or a model group.
In this DTD, the only declared content is CDATA, which stands for character data and means the
content is text that does not include any tags. Model groups are used to specify the subtags of an
element. Here, “,” separates elementsthat must appear in sequence, “|” separatesitemsof achoice,
and “&” separates items that must appear in any order. The quantity of elementsisindicated with
“?" for optional but cannot repeat, “*” for optional but can repeat, and “+” for mandatory and re-
peatable.

Attribute declarations associ ate attributeswith elements and have theform <!ATTLIST, element
name, a sequence of attribute definitions, and a >. Each attribute definition consists of an attribute
name, declared value, and default value. The only declared values used here are CDATA or lists of
literal values. The default value can be #/REQUIRED indicating that the attribute must appear in
every tag, #IMPLIED indicating that it may be absent, or a specific value.

Finally, entities are like macros, in that they can associate a name with some component of the
DTD. Anentity declaration consists of <!ENTITY %, the entity name, an optional system identifier,
some content, and a>. Anentity’s content isinserted wherever the entity is referenced with %enti-
tyname;. A external entity can be referenced by using the PUBLIC system identifier and specifying
the name of the public entity.

The DTD below builds on the HTML 3.2 DTD by redefining the block entity to include the
elements ONTOLOGY and INSTANCE, and then defining the corresponding sub-elements. It then
includesthe HTML DTD as a public entity.

<!-- DID for SHCE -->
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<l-- Last Modd: 1/1/98 -->
<IENTITY % shoe. content "ONTOLOGY | | NSTANCE" >

<!-- The following three entity declarations are used to
override the HTM. content nodel for blocks, so that
an ONTOLOGY or | NSTANCE can appear anywhere a bl ock
can. Typically this is as a top level elenment in the
BODY of the HTM. docunent -->

<IENTITY %list "UL | OL | DR[| MNU>
<IENTITY % preformatted "PRE">

<IENTITY % bl ock
"P| %ist | Yreformatted | DL | DIV | CENTER |
BLOCKQUOTE | FORM | ISINDEX | HR | TABLE |
%shoe. content ;">

<!-- Declarations for ontol ogies -->

<l ELEMENT ONTOLOGY - - (USE-ONTOLOGY | DEF- CATEGORY |
DEF- RELATI ON | DEF- RENAME |
DEF- | NFERENCE | DEF- CONSTANT |
DEF- TYPE) * >

<I ATTLI ST ONTOLOGY

id CDATA #REQUI RED
version CDATA #REQUI RED
descri ption CDATA #1 MPLI ED
decl arators CDATA #1 MPLI ED
backwar d- conpati bl e-wi th CDATA #1 MPLI ED >
<! ELEMENT USE- ONTOLOGY - O EMPTY >
<l ATTLI ST USE- ONTOLOGY
id CDATA #REQUI RED
version CDATA #REQUI RED
prefix CDATA #REQUI RED
url CDATA #| MPLI ED >
<! ELEMENT DEF- CATEGORY - O EMPTY >
<! ATTLI ST DEF- CATEGORY
name CDATA #REQUI RED
i sa CDATA #1 MPLI ED
description CDATA #1 MPLI ED
short CDATA #| MPLI ED >
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<! ELEMENT DEF- RELATI ON - - (DEF-ARG* >
<! ATTLI ST DEF- RELATI ON

nane CDATA #REQUI RED
short CDATA #| MPLI ED
descri ption CDATA #1 MPLI ED >
<! ELEMENT DEF- ARG - O EMPTY >
<! ATTLI ST DEF- ARG
pos CDATA #REQUI RED
type CDATA #REQUI RED
short CDATA #1 MPLI ED >
<l-- pos nust be either an integer, or one of the

strings: FROMor TO -->

<! ELEMENT DEF- RENAME - O EMPTY >
<! ATTLI ST DEF- RENAME
from CDATA #REQUI RED
to CDATA #REQUI RED >
<! ELEMENT DEF- CONSTANT - O EMPTY >
<! ATTLI ST DEF- CONSTANT
nane CDATA #REQUI RED
cat egory CDATA #| MPLI ED >
<! ELEMENT DEF- TYPE - O EMPTY >
<! ATTLI ST DEF- TYPE
nane CDATA #REQUI RED
descri ption CDATA #1 MPLI ED
short CDATA #| MPLI ED >
<!-- Declarations for inferences -->
<l-- Inferences consist of if and then parts, each of

which can contain nmultiple relation and category
cl auses -->

< ELEMENT DEF-INFERENCE - - (INF-1F, INF-THEN >
<! ATTLI ST DEF- | NFERENCE
description CDATA #1 MPLI ED >
< ELEMENT | NF-1F - - (CATEGORY | RELATION |
COWPARI SON) + >
<! ELEMENT | NF- THEN - - (CATEGORY | RELATION)+ >
<! ELEMENT COVPARI SON - - (ARG ARG >
<! ATTLI ST COVWPARI SON
op (equal | notEqual | greaterThan |
great er ThanOr Equal | | essThanOr Equal |
| essThan) #REQUI RED >
<I-- Declarations for instances -->
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<! ELEMENT | NSTANCE

<! ATTLI ST | NSTANCE
key
del egate-to

<! ELEMENT CATEGORY
<! ATTLI ST CATEGORY
name
for
usage
<l--

<! ELEMENT RELATI ON
<! ATTLI ST RELATI ON
name
<! ELEMENT ARG
<I ATTLI ST ARG
pos
val ue
usage
<! -- pos nust
strings:
<l--

<l -- |nclude DID for

<IENTITY % HTMLDTD PUBLI C

then it

- - (USE- ONTOLOGY |
RELATI ON |

CDATA
CDATA

- O EMPTY >

CDATA
CDATA
(VAR |

- - (ARG >

CDATA

CONST)

If VAR is specified for a category that

within a <DEF-1 NFERENCE>, then it

- O EMPTY >

CDATA
CDATA
(VAR |

-

-->

CONST)

be either an integer, or
FROM or TO
If VAR is specified for an arg that
<DEF- | NFERENCE>,

CATEGORY |
| NSTANCE) * >

#REQUI RED
#| MPLI ED >

#REQUI RED
#| MPLI ED
CONST >
i s not
is ignored -->

#REQUI RED >

#REQUI RED
#REQUI RED

CONST >
one of the

is not wwthin a

is ignored -->

"-//WBC//DTD HTM. 3.2 Final//EN' >

WATMLDTD;

A2 XML DTD

Since XML isessentialy asmplified version of XML, the XML syntax for SHOE isvery similar
to the SGML one. Likewise, the XML DTD isvery smilar. The key differences between the two

DTDsare:

e XML iscase-sensitive, so the case of all element and attribute names is relevant. We chose

lower-case to correspond with XHTML.

e XML doesnot allow tag minimization, so the tag minimization tokensare not used in element

declarations.

e ThisDTD can stand on its own, and does not need to referencethe HTML DTD.
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<! ELEMENT shoe (ontology | instance)* >

<l-- Since this may be enbedded in a docunent that
doesn’t have META el enents, the SHCE versi on nunber
is included as an attribute of the shoe elenent. -->
<! ATTLI ST shoe
versi on CDATA #REQUI RED >
<l-- Declarations for ontol ogies -->
<! ELEMENT ont ol ogy (use-ontol ogy | def-category |

def-relation | def-renane |
def-inference | def-constant |
def-type)* >

<l ATTLI ST ont ol ogy

id CDATA #REQUI RED
versi on CDATA #REQUI RED
descri ption CDATA #1 MPLI ED
decl arators CDATA #1 MPLI ED
backwar d- conpati bl e-wi th CDATA #1 MPLI ED >

<! ELEMENT use-ont ol ogy EMPTY >
<! ATTLI ST use-ont ol ogy

id CDATA #REQUI RED
versi on CDATA #REQUI RED
prefix CDATA #REQUI RED
ur CDATA #1 MPLI ED >

<! ELEMENT def -cat egory EMPTY >
<! ATTLI ST def-category

name CDATA #REQUI RED
i sa CDATA #1 MPLI ED
description CDATA #1 MPLI ED
short CDATA #| MPLI ED >

<!l ELEMENT def-rel ation (def-arg)* >
<l ATTLI ST def-rel ation

name CDATA #REQUI RED
short CDATA #1 MPLI ED
description CDATA #| MPLI ED >
<!l ELEMENT def-arg EMPTY >
<I ATTLI ST def-arg
pos CDATA #REQUI RED
type CDATA #REQUI RED
short CDATA #1 MPLI ED >
<l-- pos must be either an integer, or one of the
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strings: FROM or TO -->

<! ELEMENT def-renane EMPTY >
<! ATTLI ST def-renane

from CDATA

to CDATA
<! ELEMENT def - const ant EMPTY >
<I ATTLI ST def - const ant

nane CDATA

cat egory CDATA
<! ELEMENT def-type EMPTY >
<I ATTLI ST def-type

nanme CDATA

descri ption CDATA

short CDATA
<l-- Declarations for inferences -->
<l-- Inferences consist of

cl auses -->

<! ELEMENT def -i nference
<I ATTLI ST def-i nference

descri ption
<! ELEMENT inf-if

#REQUI RED
#REQUI RED >

#REQUI RED
#| MPLI ED >

#REQUI RED
#| MPLI ED
#| MPLI ED >

if and then parts, each of
whi ch can contain multiple relation and category

(inf-if, inf-then) >
CDATA #| MPLI ED >
(category | relation

conparison)+ >

<l ELEMENT i nf-then (category | relation)+ >
<! ELEMENT conpari son (arg, arg) >
<I ATTLI ST conpari son
op (equal not Equal | greaterThan
great er ThanO Equal | | essThanO Equa
| essThan) #REQUI RED >
<l-- Declarations for instances -->
<! ELEMENT i nst ance (use-ontol ogy | category |
relation | instance)* >
<l ATTLI ST i nstance
key CDATA #REQUI RED
del egate-to CDATA #1 MPLI ED >
<! ELEMENT cat egory EMPTY >
<! ATTLI ST category
nanme CDATA #REQUI RED
for CDATA #1 MPLI ED
usage (VAR | CONST) " CONST"
<l-- If VAR is specified for a category that is not
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within a <def-inference> then it is ignhored -->

<! ELEMENT rel ati on (arg)* >
<I' ATTLI ST rel ation
nane CDATA #REQUI RED >
<! ELEMENT arg EMPTY >
<I ATTLI ST arg
pos CDATA #REQUI RED
val ue CDATA #REQUI RED
usage (VAR | CONST) "CONST" >
<l-- pos nust be either an integer, or one of the
strings: FROM or TO -->
<I-- If VAR is specified for an arg that is not within a

<def-inference> then it is ignored -->
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