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ABSTRACT
Entity matching (EM) identifies data records that refer to the same
real-world entity. Despite the effort in the past years to improve
the performance in EM, the existing methods still require a huge
amount of labeled data in each domain during the training phase.
These methods treat each domain individually, and capture the
specific signals for each dataset in EM, and this leads to overfitting
on just one dataset. The knowledge that is learned from one dataset
is not utilized to better understand the EM task in order to make
predictions on the unseen datasets with fewer labeled samples. In
this paper, we propose a new domain adaptation-based method that
transfers the task knowledge from multiple source domains to a
target domain. Our method presents a new setting for EMwhere the
objective is to capture the task-specific knowledge from pretraining
our model using multiple source domains, then testing our model
on a target domain. We study the zero-shot learning case on the
target domain, and demonstrate that our method learns the EM
task and transfers knowledge to the target domain. We extensively
study fine-tuning our model on the target dataset from multiple
domains, and demonstrate that our model generalizes better than
state-of-the-art methods in EM.
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1 INTRODUCTION
Entity matching (EM) identifies data records that refer to the same
real-world entity. EM is an important step in data cleaning and
integration [6], knowledge base enrichment [25], and entity linking
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[33]. Researchers have studied EM for many years in the context of
data mining and integration.

In the past few years, deep learning (DL) has led to a significant
improvement in multiple tasks, where DL-based methods achieved
state-of-the-art (SOTA) results for text, image, and speech data. In
many cases, DL models are trained end-to-end to automatically
extract features and build predictive models. This significantly re-
duces the human effort that is needed in traditional methods for
feature engineering, and gives the model the ability to capture
specific features that are better than the hand-crafted ones for mul-
tiple tasks. Following the success of DL models, researchers have
focused on exploring DL in data cleaning and integration. In partic-
ular, multiple DL methods have been proposed to solve the EM task
[9, 11, 16, 24, 43]. Deep contextualized language models (DCLM),
like BERT [8], RoBERTa [21], and DistilBERT [30] have been re-
cently proposed to solve multiple tasks [5, 29, 35–37, 39]. Building
on DCLM, Ditto [20] achieved SOTA results in EM.

Although DL methods have led to a significant improvement in
the EM task, these models need a huge amount of labeled data for
each domain. DL-based models are trained in a supervised setting
for each dataset in EM, where a different model is obtained and
is fully fine-tuned on a specific dataset. This means that existing
models capture the specific signals for each dataset in EM which
leads to overfitting on just one dataset. In addition, the knowledge
that is learned from one dataset is not explored to better understand
the EM task so that the predictions in other datasets can be made
with fewer labeled samples.

In order to overcome the limitations of prior methods, we pro-
pose a newmethod, calledDomainAdaptation forMatching Entities
(DAME), that transfers the task knowledge from multiple source
domains to a target domain. Our method presents a new setting for
EM where the objective is to capture task-specific knowledge from
pretraining our model using multiple source domains, then testing
our model on a target domain. In our study, we are interested in two
aspects of our model. First, we study the zero-shot learning (ZSL)
case of DAME on the target domain. Second, we study the effect of
fine-tuning our proposed model on the target domain using differ-
ent percentages of training data, and we compare our fine-tuned
model to SOTA methods. We formulate EM as a mixture of experts
with a global shared model [13, 17, 41] where each expert is trained
on an individual source domain, and the global model is trained
on all domains. Then, we aggregate the features from the experts
using a global model-guided attention mechanism. We train DAME
with unsupervised domain adaptation (DA) loss functions [13, 41]
to reduce the domain shift between the source and target domains.

In summary, we make the following contributions: (1) We pro-
pose a new DA-based method for EM. Our new formulation of EM
is based on the mixture of experts where we transfer learning from
multiple source domains to a target domain. (2) We study the ZSL
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case on the target domain and demonstrate that our method learns
the EM task and transfers the task knowledge to the target domain.
(3) We extensively study fine-tuning our model on the target dataset
frommultiple domains, and demonstrate that our model generalizes
better than SOTA methods for most of the datasets.

2 RELATEDWORK
2.1 Entity matching
EM [1, 9, 16, 20, 24] is the field of research that solves the problem
of finding records that refer to the same real-world entity. EM,
also known as data matching, record linkage, entity resolution,
etc, has been intensively studied in recent years because EM is
an important step in data cleaning and integration. Given two
collections of records 𝐷1 and 𝐷2, EM classifies a pair of entities
(𝑒1, 𝑒2),∀𝑒1 ∈ 𝐷1, 𝑒2 ∈ 𝐷2 into match or non-match. The records
from 𝐷1 and 𝐷2 can have the same or different set of attributes.
The value of each attribute is composed of a sequence of tokens.

Comparing all record pairs from 𝐷1 and 𝐷2 grows quadrati-
cally. Therefore, a set of candidate pairs 𝐶 ⊂ 𝐷1 × 𝐷2, where
|𝐶 | ≪ |𝐷1 × 𝐷2 | is selected in a separate step, called blocking,
before running a computationally expensive algorithm for EM. Af-
ter the blocking step, each record pair (𝑒1, 𝑒2) ∈ 𝐶 is compared
to predict a binary label indicating a match or non-match. Prior
works have proposed string similarity-based methods to compare
records [7, 10, 22]. Traditional supervised classifiers have been pro-
posed to map the string similarities-based feature vector to a binary
class label [4, 6]. Recently, DL-based methods have been proposed
to solve EM [9, 11, 16, 20, 24, 43]. The DL methods of EM can be
categorized into attribute- and record-level comparison methods.
Attribute comparators predict the label of a pair of records based
on the signals collected from matching values of the same attribute.
DeepMatcher [24], which is the SOTA attribute-level comparator,
explores multiple techniques to compute the attribute representa-
tion from word embedding, where combining both bidirectional
GRU and decomposable attention [27] leads to the best results.
The SOTA method in EM is a record-based comparator known as
Ditto [20] which is based on DCLM. Ditto models each record by
alternating between attributes and data values with two additional
special tokens [COL] and [VAL]. Then, Ditto adapts the sentence
pair classification setting to EM in order to compare record pairs
using the special tokens [SEP] and [CLS] that are added into the
input. In addition, Ditto explores domain-specific optimizations by
injecting domain knowledge into the input.

2.2 Domain adaptation
DA studies the transfer of task knowledge from a single or multiple
labeled source domains to an unlabeled target domain. In this paper,
we are interested in the case of multiple source domains known
as Multi-Source DA (MSDA). Using only unlabeled data from the
target domain is known as Unsupervised DA (UDA).

Existing approaches in UDA focus on reducing the domain shift
between the source and target domains by aligning feature vectors
[2, 26]. Representation learning methods have been proposed for
UDA such as domain adversarial networks [32, 42]. Other represen-
tation learning methods include comparing the marginal distribu-
tion between the source and target domains in an adversarial way

[13] and minimizing the covariance between the source and target
representations [34]. An effective strategy in the case of MSDA is
known as a mixture of experts [13, 17, 41]. Kim et al. [17] proposed
to incorporate an attention mechanism to combine the predictions
from multiple models trained on the source domains. Guo et al. [13]
proposed a method that is based on a mixture of experts where
the posteriors of the models are combined using a point-to-set
Mahalanobis distance metric between an input sample and source
domains. Wright and Augenstein [41] improved the performance
of mixture of experts using DCLM as experts in source domains.
This work follows a line of research that investigates the use of
Transformers [38] in DA [14, 15, 23, 28]. Ma et al. [23] improved
the performance of BERT in the target domain for natural language
inference by incorporating a similarity of a given target domain to
source domains with curriculum learning [3]. AdaptaBERT [15] is
a BERT-based model that is proposed in the case of UDA for the
sequence labeling by adding a masked language modeling in the
target domain. Fine-tuning of BERT on the target domain was also
shown to be effective in the sentiment analysis task [28]. Gururan-
gan et al. [14] combines both domain and task adaptive pretraining
to improve the performance of RoBERTa on NLP tasks.

3 PROBLEM STATEMENT
Our formulation of DA in EM task is based on the unsupervised
multi-source DA setting which consists of𝐾 labeled source domains

{S𝑖 }𝐾𝑖=1, where S𝑖 =
{(
𝑥
S𝑖
𝑗
, 𝑦

S𝑖
𝑗

)} |S𝑖 |
𝑗=1

(𝑥S𝑖
𝑗

is the 𝑗-th instance of S𝑖

with a label 𝑦S𝑖
𝑗
), and unlabeled target domain T =

{
𝑥T
𝑗

} |T |

𝑗=1
(𝑥T
𝑗

is the 𝑗-th instance of T ). The objective is to learn a classifier 𝑀
using labeled data from source domains and unlabeled data from the
target domain so that (1)𝑀 produces accurate predictions on the
target domain without fine-tuning (ZSL case), and (2)𝑀 generalizes
better than SOTA methods on the target domain after partially or
fully fine-tuning.

4 DOMAIN ADAPTATION FOR MATCHING
ENTITIES

In this section, we introduce our proposed method DAME which
is a DA-based method for matching entities. We first describe the
architecture of DAME, and then present the DA-based training
strategy to update the parameters of our proposed model. Finally,
we present our fine-tuning strategy in the case of using labeled
samples from the target domain to update DAME.

4.1 DAME architecture
There are multiple datasets that are available for the EM task. There-
fore, our model is based on formulating the EM as a mixture of
domain experts in the case of DA. Each expert model is trained
on one source domain. We denote by 𝑓𝑆𝑖 , the expert model that
is trained on 𝑆𝑖 . Training a mixture of experts and shared models
improves the performance when multiple source domains are avail-
able as shown in prior works [13, 17, 41]. Therefore, we also add a
global model 𝑔 that is trained using all the source domains {S𝑖 }𝐾𝑖=1.

DCLM have been proposed in the DA setting to solve multi-
ple tasks [14, 15, 23, 28, 41]. We propose to incorporate DCLM



in our DA-based model to solve the EM task. Each 𝑓𝑆𝑖 and 𝑔 are
initialized using DistillBERT [30] which is a distilled version of
BERT with fewer parameters. We choose to use DistilBERT as the
main component for the expert and global models for two reasons.
First, by incorporating DCLM, we compare records in their entirety
which has been shown to be more effective than attribute-based
comparisons. Second, DistilBERT has a reduced size and compa-
rable performance to BERT, and our objective is to include many
source domains while keeping the time and memory complexity
reasonable. In general, our proposed model𝑀 has four modules:

𝑀 = 𝑁 ◦𝐴𝑡𝑡 ◦ 𝐹 ◦ 𝑅𝑒𝑝 (1)

𝑅𝑒𝑝 is a representation module that produces the sequence input
from a pair of records 𝑥 , 𝐹 is a feature extractor that produces
multiple embeddings for the sequence input of the record pair 𝑥
using expert models

{
𝑓𝑆𝑖

}𝐾
𝑖=1 and the global model 𝑔, 𝐴𝑡𝑡 is an

attention module that aggregates the embeddings of the expert
models to produce the final multi-source embedding, and 𝑁 is a
classification layer that maps the final embedding to a confidence
score to make a matching/non-matching decision on a record pair.

4.1.1 Representation module 𝑅𝑒𝑝 . Each record pair 𝑥 = (𝑒1, 𝑒2) is
composed of two data entries 𝑒1 ∈ 𝐷1 and 𝑒2 ∈ 𝐷2 that correspond
to candidate rows from two collections of data entries 𝐷1 and 𝐷2.
Both 𝐷1 and 𝐷2 are from the same source domain. Each data
entry 𝑒𝑖 =

{(
attr𝑗 , val𝑗

)}
1≤ 𝑗≤𝐶 is a set of attribute-value pairs

denoted by (att𝑗 , val𝑗 ), where𝐶 is the number of attributes in each
record. We follow the encoding of Ditto [20] for serializing data
entries to produce a sequence for each record from the attribute-
value pairs:

𝑟𝑒𝑖 = [COL]attr1 [VAL]val1 . . . [COL]attr𝐶 [VAL]val𝐶 (2)

where [COL] and [VAL] are special tokens that denote the start
of attributes and values, respectively. The input of EM is a pair of
records 𝑥 = (𝑒1, 𝑒2). So, 𝑅𝑒𝑝 takes as input a pair of records, and
produces a sequence pair of serialized entries that is given by:

𝑅𝑒𝑝 (𝑥) = 𝑅𝑒𝑝 ((𝑒1, 𝑒2)) = [CLS]𝑟𝑒1 [SEP]𝑟𝑒2 [SEP], (3)

where [SEP] and [CLS] are BERT special tokens that are added into
the sequence similar to the sentence pair classification setting.

4.1.2 Feature extractor 𝐹 . We have 𝐾 + 1 DistilBERT models: 𝐾
expert models

{
𝑓𝑆𝑖

}𝐾
𝑖=1 and a global shared model 𝑔. We use 𝑅𝑒𝑝 (𝑥)

as input to the 𝐾 + 1 models to extract 𝐾 source domain-based em-
beddings denoted by 𝑓𝑆𝑖 (𝑅𝑒𝑝 (𝑥)), 𝑖 = 1, . . . , 𝐾 , and a global model-
based embedding denoted by 𝑔(𝑅𝑒𝑝 (𝑥)). The embeddings from the
source domain models and the global model are extracted using the
hidden state of the [CLS] token from the last Transformer block in
each DistilBERT model. In conclusion, the output of 𝐹 is given by:

𝐹 (𝑅𝑒𝑝 (𝑥)) =
{
𝑓𝑆𝑖 (𝑅𝑒𝑝 (𝑥))

}𝐾
𝑖=1 ∪ 𝑔(𝑅𝑒𝑝 (𝑥)) (4)

4.1.3 Attention module 𝐴𝑡𝑡 . When aggregating the embeddings
that are extracted using 𝐹 , the embeddings from the source do-
mains and the global model should not be treated equally as there
are domains that are more relevant to a given record pair 𝑥 than
others. We use a parameterized attention model that attends to
all domains using a dot product-based attention where three para-
metric matrices are introduced: a query matrix 𝑄 ∈ R𝑑×𝑑 , a key

matrix 𝐾𝑒 ∈ R𝑑×𝑑 , and a value matrix 𝑉 ∈ R𝑑×𝑑 , where 𝑑 is the
dimension of the embedding. We first concatenate all the expert
embeddings from 𝐹 (𝑅𝑒𝑝 (𝑥)) to form an embedding matrix denoted
by 𝐸 ∈ R𝐾×𝑑 . The attention operations are defined by:

𝛼 = 𝑔(𝑅𝑒𝑝 (𝑥))𝑇𝑄 ∈ R1×𝑑
K = 𝐸𝐾𝑒 ∈ R𝐾×𝑑
V = 𝐸𝑉 ∈ R𝐾×𝑑

𝐴𝑡𝑡 (𝑅𝑒𝑝 (𝑥), 𝑄, 𝐾,𝑉 ) = softmax
(
𝛼K𝑇√
𝑑

)
V ∈ R1×𝑑

(5)

An important design choice in our attention module 𝐴𝑡𝑡 is the use
of the global representation 𝑔(𝑅𝑒𝑝 (𝑥)) to map the query matrix 𝑄
to a query vector 𝛼 . Given that the global model is trained on all
the source domains, we expect the global model’s embedding to
transfer to the target domain, and by consequence we obtain more
accurate attention weights in the target domain to aggregate the
source domains, mainly in the zero-shot learning case. The output
of the attention module is used as input to the classification layer
𝑁 to predict the matching score of the input record pair 𝑥 .

4.2 Training strategy
In the multi-source DA setting, we have 𝐾 labeled source domains

{S𝑖 }𝐾𝑖=1, where S𝑖 =
{(
𝑥
S𝑖
𝑗
, 𝑦

S𝑖
𝑗

)} |S𝑖 |
𝑗=1

, and an unlabeled target do-

main T =

{
𝑥T
𝑗

} |T |

𝑗=1
. Our training phase is based on the multi-task

learning setting. In each batch for the training phase, we sample 𝐵
pairs of records 𝑋 𝑗 = (𝑥S𝑗1 , 𝑦

S𝑗
1 ), (𝑥S𝑗2 , 𝑦

S𝑗
2 ), . . . , (𝑥S𝑗

𝐵
, 𝑦

S𝑗
𝐵

) from a
given source 𝑆 𝑗 . Our loss function L is composed of four parts and
is given by:

L(𝑋 𝑗 ) = 𝜆1L1 (𝑋 𝑗 ) + 𝜆2L2 (𝑋 𝑗 ) + 𝜆3L3 (𝑋 𝑗 ) + 𝜆4L4 (𝑋 𝑗 ) (6)

where 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are hyperparameters that control the con-
tribution of each loss to the final loss function L; each of L1, L2,
L3, and L4 represents a task-specific loss.

4.2.1 Expert domain loss L1. 𝑓𝑆𝑖 represents the expert model of 𝑆𝑖 ,
for all 𝑖 ∈ 1, 2, . . . , 𝐾 . To optimize each expert model 𝑓𝑆𝑖 , we add a
classification layer𝑁𝑆𝑖 that predicts the probabilities of matches and
non-matches for each domain 𝑆𝑖 . So, in total we add 𝐾 classification
layers. Given that 𝑋 𝑗 is sampled from the 𝑗-th domain, the domain
expert loss L1 is given by:

L1 (𝑋 𝑗 ) =
1
𝐵

𝐵∑
𝑙=1

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡 (𝑁𝑆 𝑗 (𝑓𝑆 𝑗 (𝑅𝑒𝑝 (𝑥
S𝑗
𝑙

))), 𝑦S𝑗
𝑙

) (7)

where 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡 denotes the cross entropy loss function.

4.2.2 Global model loss L2. The global model is trained on all the
source domains in order to learn a universal embedding for the EM
task that supports transfer to the target domain while maintaining
important matching signals for each source domain. In addition,
the embedding of the global model is multiplied with the query
matrix 𝑄 in the attention module 𝐴𝑡𝑡 to compute the contribution
of each source domain to the final representation. After learning
how to aggregate features in the training phase on source domains,
the global model guides the attention module 𝐴𝑡𝑡 to pick the most
important source domains for the target domain during the testing
phase. To optimize the global model 𝑔, we add a classification layer



Table 1: Datasets for our experiments.

Dataset Domain Size % matches nb attributes

Shoes clothing 5,805 21.95 1

Cameras electronics 5,255 22.03 1

Computers electronics 8,094 22.42 1

Watches electronics 6,413 22.85 1

DBLP-GoogleScholar citation 28,707 18.62 4

DBLP-ACM citation 12,363 17.95 4

Fodors-Zagats restaurant 946 11.62 6

Beer product 450 15.11 4

iTunes-Amazon music 539 24.48 8

Abt-Buy product 9,575 10.73 3

Amazon-Google software 11,460 10.18 3

Walmart-Amazon electronics 10,242 9.39 5

𝑁𝑔 that predicts the probabilities of matches and non-matches for
all source domains. The global model loss L2 is given by:

L2 (𝑋 𝑗 ) =
1
𝐵

𝐵∑
𝑙=1

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡 (𝑁𝑔 (𝑓𝑔 (𝑅𝑒𝑝 (𝑥
S𝑗
𝑙

))), 𝑦S𝑗
𝑙

) (8)

4.2.3 Meta-target loss L3. In DA, the objective is to incorporate
multiple source domains to predict labels for samples from the
target domain during the testing phase. In order to simulate the
process of DA during the training phase, we use the meta-target and
meta-sources similar to Guo et al. [13]. Given that 𝑋 𝑗 is sampled
from the 𝑗-th domain, the meta-target is the 𝑗-th source domain
and the meta-sources are {S𝑖 }𝐾𝑖=1,𝑖≠𝑗 . The meta-model𝑀𝑆 𝑗 differs
only on the feature extractor part 𝐹𝑆 𝑗 compared to𝑀 .𝑀𝑆 𝑗 is given
by:

𝑀𝑆 𝑗 = 𝑁 ◦𝐴𝑡𝑡 ◦ 𝐹𝑆 𝑗 ◦ 𝑅𝑒𝑝 (9)
where:

𝐹𝑆 𝑗 (𝑅𝑒𝑝 (𝑥)) =
{
𝑓𝑆𝑖 (𝑅𝑒𝑝 (𝑥))

}𝐾
𝑖=1,𝑖≠𝑗 ∪ 𝑔(𝑅𝑒𝑝 (𝑥)) (10)

The same attention module 𝐴𝑡𝑡 is applicable to the output of the
meta-feature extractor 𝐹𝑆 𝑗 where the query matrix based on the
global model attends to all the expert embeddings in the key matrix
regardless of the number of expert models. Finally, the meta-target
loss L3 for the batch 𝑋 𝑗 is given by:

L3 (𝑋 𝑗 ) =
1
𝐵

𝐵∑
𝑙=1

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡 (𝑀𝑆 𝑗 (𝑥
S𝑗
𝑙

), 𝑦S𝑗
𝑙

) (11)

4.2.4 Adversarial loss L4. The global model 𝑔 plays an important
role in the attention module 𝐴𝑡𝑡 . Learning a domain invariant em-
bedding from the global model makes the transfer to the target
domain smoother as the attention weights should be more accurate.
To obtain a domain invariant representation from 𝑔, we adapt the
domain adversarial training for EM. Similar to the generative adver-
sarial network (GAN), a min-max objective function is introduced
to optimize the parameters of the generator which is the global
model 𝑔 and the discriminator denoted by 𝐷 . The parameters of 𝐷
are optimized to predict the domain of a sample 𝑥 using 𝑔(𝑅𝑒𝑝 (𝑥)),
and the parameters of 𝑔 are optimized to produce a confusing repre-
sentation 𝑔(𝑅𝑒𝑝 (𝑥)) for 𝐷 . We alternate between updating 𝐷 and 𝑔.

Given that 𝑋 𝑗 is sampled from the 𝑗-th domain, in order to update
𝐷 , we minimize L𝐷 which is given by:

L𝐷 (𝑋 𝑗 ) =
1
𝐵

𝐵∑
𝑙=1

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡 (𝐷 (𝑓𝑔 (𝑅𝑒𝑝 (𝑥
S𝑗
𝑙

))), 𝑗) (12)

L𝐷 is minimized with respect to only the parameters of 𝐷 . Then,
we set L4 (𝑋 𝑗 ) = −L𝐷 (𝑋 𝑗 ) to update the parameters of 𝑔 when
minimizing L (𝐷 parameters are fixed). Unlabeled samples T ={
𝑥T
𝑗

} |T |

𝑗=1
from the target domain can also be considered as an addi-

tional domain when updating the parameters of 𝐷 and 𝑔 by alter-
nating between minimizing L𝐷 and −L𝐷 , respectively. In this case,
the total number of labels that are used in L𝐷 is equal to 𝐾 + 1.

4.3 Fine-tuning DAME on the target domain
During fine-tuning DAME on the target domain, we only update
the weights of the global model 𝑔, attention weights 𝐴𝑡𝑡 , and the
classification layer 𝑁 , and we keep the weights of the expert models
𝑓𝑆1 , 𝑓𝑆2 , . . . , 𝑓𝑆𝐾 frozen. The objective of the fine-tuning step is to
slightly update the parameters of DAME to incorporate dataset-
specific signals related to the target domain without changing the
parameters of expert models. There are multiple fine-tuning scenar-
ios on the target domain. First, we can use all the samples from the
target domain or only a limited budget of samples for fine-tuning.
Second, in the case of having access to only a limited budget of
samples, we can randomly choose samples, or adapt active learning
(AL) selection strategies to select the most promising samples. We
experiment with all the scenarios and produce AL results using
methods from [12, 31, 40].

5 EVALUATION
5.1 Data collections
Table 1 represents all the 12 datasets that we use in our experi-
ments. Datasets are collected from the entity resolution Benchmark
datasets [19] and the Magellan data repository [18]. These datasets
cover multiple domains including clothing, electronics, citation,
restaurant, products, music, and software. Each dataset is com-
posed of candidate pairs of records from two structured tables that
have the same set of attributes. The datasets vary in the size and
this simulates real-world scenarios where there are some domains
that are more frequent than others. The total number of attributes
in all datasets ranges from 1 to 8. The rate of matches in all datasets
ranges from 9.39% to 24.48%. Clearly, there is a class imbalance in all
datasets where the non-matching class is significantly larger than
the matching class. Each dataset is split into training, validation,
and testing, and we use the same pre-splited datasets in Ditto [20].

5.2 Baselines
We compare the performance of our proposed model against the
best performing method in the category of attribute-level compara-
tors which is DeepMatcher [24] (the previous SOTA), and the SOTA
in EM which is Ditto [20]. We are interested in two aspects of our
proposed model DAME. First, we evaluate the ZSL case for DAME
by comparing the performance to baselines that are trained on dif-
ferent percentages of training data. Second, we compare the results



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
percentage of training data

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1 DAME (ZSL)
F1 DAME (fine-tuning)
Accuracy DAME (fine-tuning)
F1 Ditto
Accuracy Ditto

(a) Shoes

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
percentage of training data

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1 DAME (ZSL)
F1 DAME (fine-tuning)
Accuracy DAME (fine-tuning)
F1 Ditto
Accuracy Ditto

(b) Computers

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
percentage of training data

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1 DAME (ZSL)
F1 DAME (fine-tuning)
Accuracy DAME (fine-tuning)
F1 Ditto
Accuracy Ditto

(c) Watches

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
percentage of training data

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1 DAME (ZSL)
F1 DAME (fine-tuning)
Accuracy DAME (fine-tuning)
F1 Ditto
Accuracy Ditto

(d) Cameras

Figure 1: Comparison of DAME results against Ditto for datasets with similar structures (Shoes, Computers, Watches, and
Cameras). The plots report two evaluation metrics: F1 score and accuracy. In all figures, the light blue plot represents the
F1 score of DAME, and is compared against the green plot that represents the F1 score of Ditto; the red plot represents the
accuracy of DAME, and is compared against the blue plot that represents the accuracy of Ditto; the magenta color represents
the F1 score of the ZSL for the target domain, which is equivalent to 0% of supervised training data from the target domain.

Method Name Precision Recall F1 Accuracy

DeepMatcher [24] 0.9489 0.9373 0.9431 0.9789

Ditto [20] 0.9358 0.9542 0.9449 0.9793

DAME (ZSL) 0.9098 0.8579 0.8831 0.9576

DAME (full training data) 0.9354 0.9719 0.9533 0.9850

(a) DBLP-GoogleScholar

Method Name Precision Recall F1 Accuracy

DeepMatcher [24] 0.9855 0.9869 0.9861 0.9945

Ditto [20] 0.9865 0.9865 0.9865 0.9951

DAME (ZSL) 0.8769 0.9954 0.9324 0.9741

DAME (full training data) 0.9865 0.9954 0.9909 0.9971

(b) DBLP-ACM

Table 2: DA results for EM using datasets with similar structures. (a) the target dataset is DBLP-GoogleScholar and the source
dataset is DBLP-ACM; (b) the target dataset is DBLP-ACM and the source dataset is DBLP-GoogleScholar.

of fine-tuning DAME on the target domain against training the
baselines on the target domain.

5.3 Experimental Setup
We evaluate the performance of DAME and baselines on the EM
task using precision, recall, F1-score, and accuracy of predictions
on the testing set. We use †, and ‡ to denote that the difference in a
given evaluation metric between Ditto trained on 50% of data and
DAME (ZSL) is less than 0.15, and less than 0.1, respectively. We use
§ to denote that either the difference between Ditto trained on 50%
of data and DAME (ZSL) is less than 0.05 or DAME (ZSL) is better
than Ditto trained on 50% of data. DAME is trained for 3 epochs on
the source domains. We compare fine-tuning results for DAME and
baselines after training for 10 epochs on the same percentage of
training data from the target domain. The hyperparameters 𝜆1, 𝜆2,
𝜆3, and 𝜆4 are fine-tuned for one dataset and then kept the same
for all the experiments. We distinguish 3 sets of experiments based
on the structure of datasets. The first set of experiments studies DA
for Shoes, Cameras, Computers, and Watches. These datasets have
a unique attribute which is title. The second set of experiments
also studies DA for datasets that have similar structures which
are DBLP-GoogleScholar and DBLP-ACM. The set of attributes for
these two datasets are title, authors, venue, and year. The third set of
experiments is related to DA in the wild where we study DA using
all 12 datasets regardless of the structures and domains.

5.4 Experimental results
5.4.1 DA for Shoes, Computers, Watches, Cameras. Figure 1 shows
the comparison of DAME results against Ditto for Shoes, Computers,
Watches, and Cameras. The caption of each subfigure represents the
target domain, and the remaining 3 domains represent the source
domains. Each data point represents the mean of 5 trials, and the
vertical line in each data point represents the standard deviation
(std). The plots report two evaluation metrics: F1 score and accuracy.
In all figures, the light blue plot represents the F1 score of DAME,
and is compared against the green plot that represents the F1 score
of Ditto; the red plot represents the accuracy of DAME, and is
compared against the blue plot that represents the accuracy of
Ditto. DAME and Ditto outperform DeepMatcher for all evaluation
metrics by a large margin, so that we only include DAME and Ditto
results to avoid clutter in the figures. The magenta color represents
the F1 score of the DAME (ZSL) for the target domain, which is
equivalent to 0% of supervised training data from the target domain.
We achieve high F1 scores for DAME (ZSL) for both Shoes and
Cameras datasets, where the F1 score for DAME (ZSL) is equivalent
to training Ditto on 72% and 85% of training data for the Shoes and
Cameras, respectively. The results are lower for Computers and
Watches where the F1 score of DAME (ZSL) is equivalent to Ditto
trained on around 25% of training data. Figure 1 shows the results
of fine-tuning DAME using different percentages of training data.
Fine-tuning DAME leads to a better and more stable (smaller std in
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Figure 2: Comparison of F1 score results with different numbers of expert domains against using global model representation
during testing phase on the target domain.

Table 3: F1 results for AL after DA.

Method Shoes Computers Watches Cameras

DAME (ZSL) 0.7527 0.7946 0.7936 0.8507
DAME (full training data) 0.8483 0.8947 0.9371 0.8941

Random Sampling (5%) 0.7527 0.8181 0.8004 0.8664
Least Confidence [40] (5%) 0.7818 0.8402 0.8209 0.8745
Entropy Sampling [40] (5%) 0.7859 0.8464 0.8166 0.8748

USDE [12] (5%) 0.7877 0.8437 0.8151 0.8775
BALD [12] (5%) 0.7852 0.8472 0.8313 0.8705

K-Centers Greedy [31] (5%) 0.7674 0.8271 0.8206 0.8687
K-Means [31] (5%) 0.7527 0.8042 0.8097 0.8596
Core-Set [31] (5%) 0.7621 0.8304 0.8168 0.8734

Random Sampling (25%) 0.8120 0.8418 0.8528 0.8741
Least Confidence [40] (25%) 0.8228 0.8804 0.8677 0.8888
Entropy Sampling [40] (25%) 0.8207 0.8770 0.8740 0.8925

USDE (25%) [12] 0.8286 0.8741 0.8688 0.8842
BALD (25%) [12] 0.8247 0.8835 0.8872 0.8941

K-Centers Greedy [31] (25%) 0.8155 0.8771 0.8869 0.8780
K-Means [31] (25%) 0.8057 0.8658 0.8694 0.8737
Core-Set [31] (25%) 0.8161 0.8696 0.8812 0.8776

most fractions of the training data) performance than Ditto for all
datasets which means that DAME generalizes better than existing
methods in EM for datasets with similar structures. This can be
explained by the important role of DA in learning the task so that
the weights are better warmed up for EM.

5.4.2 DA for DBLP-GoogleScholar, DBLP-ACM. Table 2 summa-
rizes the performance of different approaches on the second set
of datasets with the same structure which is composed of DBLP-
GoogleScholar and DBLP-ACM. In this case, we have one target
dataset and one source dataset. We achieve high results for DAME
(ZSL) for both datasets. In addition, fine-tuning DAME slightly in-
creases the F1 and accuracy for both datasets. So, consistent with
the first set of experiments, we conclude that DAME transfers the
task knowledge from the source domains to a target domain in the
case of datasets with similar structures.

5.4.3 DA in the wild. We study the case of transferring knowledge
between datasets with different domains and structures. We call this
setting DA in the wild which simulates real-world scenarios. Table
4 (end of the paper) shows extensive experiments on 12 datasets
reporting evaluation metrics for multiple methods. DAME (ZSL)

achieves a better F1 score than DeepMatcher trained with 50% of
training data from the target domain for 7 out of 12 datasets. The
difference between the F1 score of Ditto trained on 50% of data and
DAME (ZSL) is less than 0.1, and 0.05 for 83% and 41% of datasets,
respectively. By comparing the F1 score of fine-tuning all methods
using 50% of training data from the target domain, we achieve
SOTA results for 10 out of 12 datasets. By comparing the F1 score
of fine-tuning all methods using all training data from the target
domain, we achieve SOTA results for 10 out of 12 datasets. This
means that DAME generalizes better than existing methods for
datasets in the wild.

5.4.4 Expert models vs Global model. Figure 2 shows the compari-
son of F1 score results with different numbers of expert domains
against using the global model representation during the testing
phase on the target domain in the case of ZSL. The x-axis represents
the number of experts that we use for predictions. For example,
if the number of experts is equal to 6, it means that we randomly
choose 6 experts and we drop the remaining 5 experts. Each data
point in Figure 2 represents an average of 5 trials. The dashed
line represents the F1 score for the global model. For 10 out of 12
datasets, combining multiple experts using the attention network
𝐴𝑡𝑡 leads to better results than the global model. Figure 2 shows
that the fewest number of experts needed to outperform the global
model was 5 (DBLP-ACM); the most required was 11 (Cameras).
Overall, we obtain better F1 scores for the mixture of experts when
we increase the number of experts. This means that the experts
help to better understand the EM task, and therefore transfer the
learned task knowledge to the unseen target domain.

5.4.5 DAME with Active learning. So far, we have discussed the
performance of fine-tuning DAME using randomly selected sam-
ples from the target domain. To improve the results of fine-tuning
our model, we investigate multiple AL selection techniques given
a limited budget of labeled instances. Table 3 shows the results of
multiple AL selection methods applied to the DAME (ZSL) model.
The starting point is our DA-based model which is not fine-tuned
on the target domain, and the best performance corresponds to
DAME fine-tuned on all training data from the target domain. We
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Figure 3: The t-SNE visualization of the final embeddings for the target and source domains after DA in thewild (ZSL case). The
gray and blue colors represent randomly selected data points from the source domains with label 0 and label 1, respectively;
The green and red colors represent randomly selected data points from the testing set of the target domain with label 0 and
label 1, respectively. 12 domains are used in each experiment, where the caption of each subfigure represents the target domain,
and the 11 remaining datasets represent the source domains.

report results using two budget levels: 5% and 25% of the train-
ing data from the target domain. The simplest baseline is Random
Sampling. The remaining baselines can be categorized into two
groups: the confidence-based baselines which are: Least Confidence
[40], Entropy Sampling [40], Uncertainty Sampling with Dropout
Estimation (USDE) [12], and Bayesian Active Learning Disagree-
ment (BALD) [12]; and the embedding-based baselines which are
K-Centers Greedy [31], K-Means [31], and Core-Set [31]. The selec-
tion of samples in the first group is based on the confidence scores
of the training data from the target domain that are computed using
the DAME (ZSL) model. For example, for a budget of 𝑏 samples,
Least Confidence corresponds to the top 𝑏 samples with the lowest
confidence level. Multiple predictions for a given sample are needed
for USDE and BALD to compute the uncertainty functions, and we
obtain these different predictions by activating the dropout layers
during the inference phase on the target domain. The second group
is based on the embeddings of samples from the target domain that
are obtained using the DAME (ZSL) model. Clustering of the input
space is then applied to determine centers of clusters or core sets.
Table 3 shows that the confidence-based methods lead to better
results than the embedding-based methods. In particular, when we
select 25% of samples using the BALD method for the Cameras
dataset, we achieve the same F1 score of a fully fine-tuned DAME
model using all training data from the target domain. This indicates
that the predictions from the classification layer 𝑁 of our model
𝑀 accurately reflect the data points where DA was unsuccessful.
Therefore, by fine-tuning on these samples from the training data,
our model generalizes better on the testing set of the target domain.

5.4.6 Visualization. We show the embedding of DAME in the case
of ZSL. Figure 3 shows the t-SNE visualization of the final embed-
dings for the target and source domains after DA in the wild (ZSL
case). We only show the embeddings of four domains due to the
space limitation in the paper, but we notice similar patterns for all
the datasets. The gray and blue colors represent randomly selected
data points from the source domains with a label 0 and label 1,
respectively; the green and red colors represent randomly selected
data points from the testing set of the target domain with a label

0 and label 1, respectively. 12 domains are used in each experi-
ment, where the caption of each subfigure in Figure 3 represents
the target domain, and the 11 remaining datasets represent the
source domains. The best case is to have a mixture of blue and
red dots which represent the matching class for the source and
target domains, respectively, and a mixture of gray and green dots
which represent the non-matching class for the source and target
domains, respectively. This means that we transfer the task knowl-
edge from sources to the target domain for both labels. For example,
for Computers and DBLP-ACM, we obtain embeddings that respect
the matching and non-matching classes as shown in Figure 3 (a)
and (b), respectively. On the other hand, for Amazon-Google and
Walmart-Amazon, there are green dots that are closer to the blue
dots than the gray dots as shown in Figure 3 (c) and (d), respectively,
and this leads to incorrect predictions for DAME (ZSL).

6 CONCLUSIONS
We have shown that our proposed model transfers learning from
multiple source domains to an unseen target domain in the EM
task. We formulate the EM task as a mixture of experts that cap-
ture task-specific knowledge from pretraining on multiple source
domains and testing on a target domain. We evaluate DAME in
two aspects. First, we study the ZSL case on the target domain and
demonstrate that DAME learns the EM task and transfers knowl-
edge to the target domain. Second, we study fine-tuning DAME
on the target domain and demonstrate that DAME generalizes bet-
ter than SOTA methods for most of the datasets. We showed that
our results hold in two scenarios which are EM for datasets with
similar structures and EM in the wild. Our experimental section
contains extensive experiments over 12 datasets with different do-
mains, sizes and structures. In addition, we showed the importance
of selecting a specific set of samples in the fine-tuning of the target
domain by studying AL methods with limited budget. Future work
includes extending our model to pairs of records with different
sets of attributes, and enriching our DA-based model with external
knowledge, such as knowledge graphs, to better understand the EM
task and therefore transfer more knowledge to the target domain.



Table 4: DA results for EM in the wild.

Target dataset Method Precision Recall F1 Accuracy

Fodors-Zagats

DAME (ZSL) 0.9565§ 1.0000§ 0.9777§ 0.9947§
DeepMatcher[24] (50% training data) 0.9360±0.0559 0.8333±0.0428 0.8801±0.0334 0.9735±0.0074

Ditto [20] (50% training data) 1.0000 0.9545 0.9767 0.9947
DAME (50% training data) 0.9565 1.0000 0.9777 0.9947

DeepMatcher[24] (full training data) 0.9092±0.0756 0.9848±0.0214 0.9437±0.0423 0.9858±0.0108
Ditto [20] (full training data) 1.0000 0.9545 0.9767 0.9947
DAME (full training data) 1.0000 1.0000 1.0000 1.0000

Beer

DAME (ZSL) 0.7368§ 1.000§ 0.8484§ 0.9450§
DeepMatcher[24] (50% training data) 0.8095±0.0673 0.4047±0.0336 0.5396±0.0448 0.8937±0.0103

Ditto [20] (50% training data) 0.7211±0.0288 0.6428 0.6794±0.0128 0.9065±0.0054
DAME (50% training data) 0.7801 ±0.0433 1.000 0.8758±0.0273 0.9560±0.0109

DeepMatcher[24] (full training data) 0.8183±0.0581 0.7142±0.0583 0.7588±0.0193 0.9304±0.0051
Ditto [20] (full training data) 0.8174±0.0396 0.9285±0.0714 0.8660±0.0089 0.9560
DAME (full training data) 0.7801 1.000 0.8758 0.9560

iTunes-Amazon

DAME (ZSL) 0.6750 1.000§ 0.8059‡ 0.8807‡
DeepMatcher[24] (50% training data) 0.9005±0.0226 0.7901±0.0698 0.8406±0.0464 0.9266±0.0198

Ditto [20] (50% training data) 0.8685±0.0114 0.8518±0.0370 0.8594±0.0132 0.9311±0.0045
DAME (50% training data) 0.9333±0.0666 0.9629 0.9467±0.0344 0.9724±0.0183

DeepMatcher[24] (full training data) 0.9139±0.0149 0.9135±0.0174 0.9135±0.0088 0.9571±0.0043
Ditto [20] (full training data) 0.9282±0.0317 0.9259±0.0370 0.9258±0.0027 0.9633
DAME (full training data) 0.9807±0.0192 0.9259 0.9524±0.0090 0.9770±0.0045

Abt-Buy

DAME (ZSL) 0.4545 0.6796† 0.5447 0.8778‡
DeepMatcher[24] (50% training data) 0.6978±0.0416 0.5355±0.0397 0.6033±0.0112 0.9244±0.0021

Ditto [20] (50% training data) 0.7916±0.0312 0.7839±0.0169 0.7870±0.0069 0.9543±0.0028
DAME (50% training data) 0.7960±0.0078 0.7864±0.0097 0.7911±0.0088 0.9553±0.0018

DeepMatcher[24] (full training data) 0.7382±0.0214 0.6181±0.0127 0.6725±0.0082 0.9352±0.0022
Ditto [20] (full training data) 0.9206±0.0095 0.7864±0.0097 0.8481±0.0015 0.9697
DAME (full training data) 0.8243±0.0252 0.8592±0.0097 0.8410±0.0084 0.9650±0.0026

Amazon-Google

DAME (ZSL) 0.5431 0.6453§ 0.5898‡ 0.9084§
DeepMatcher[24] (50% training data) 0.5623±0.0395 0.5327±0.0708 0.5416±0.0161 0.9085±0.0063

Ditto [20] (50% training data) 0.7055±0.0037 0.6709±0.017 0.6877±0.0107 0.9378±0.0015
DAME (50% training data) 0.6339±0.0327 0.7435±0.0683 0.6809±0.0099 0.9291±0.0032

DeepMatcher[24] (full training data) 0.7002±0.0281 0.6011±0.0344 0.6454±0.0082 0.9326±0.0017
Ditto [20] (full training data) 0.6709±0.0077 0.8098±0.0064 0.7338±0.0020 0.9400±0.0010
DAME (full training data) 0.7046±0.0038 0.7692±0.0213 0.7353±0.0076 0.9435±0.0006

Shoes

DAME (ZSL) 0.6798§ 0.8135§ 0.7407§ 0.8450§
DeepMatcher[24] (50% training data) 0.6346±0.0250 0.7163±0.0303 0.6719±0.0041 0.8096±0.0082

Ditto [20] (50% training data) 0.7137±0.0240 0.7559±0.0881 0.7301±0.0290 0.8496±0.0046
DAME (50% training data) 0.8234±0.0189 0.8423±0.0084 0.8325±0.0055 0.9077±0.0046

DeepMatcher[24] (full training data) 0.6908±0.0366 0.7988±0.0162 0.7400±0.0179 0.8468±0.0158
Ditto [20] (full training data) 0.7569±0.0377 0.8389±0.0118 0.7950±0.0155 0.8819±0.0129
DAME (full training data) 0.8421±0.0222 0.8796±0.0152 0.8600±0.0043 0.9220±0.0041

Computers

DAME (ZSL) 0.7957§ 0.8729§ 0.8325§ 0.9043§
DeepMatcher[24] (50% training data) 0.5762±0.0239 0.7547±0.0536 0.6529±0.0315 0.7820±0.0169

Ditto [20] (50% training data) 0.8020±0.0085 0.9080±0.0083 0.8517±0.0085 0.9139±0.0050
DAME (50% training data) 0.8303±0.0268 0.9063±0.0234 0.8659±0.0039 0.9234±0.0045

DeepMatcher[24] (full training data) 0.7002±0.0258 0.8350±0.0356 0.7614±0.0270 0.8576±0.0157
Ditto [20] (full training data) 0.8682 0.9147±0.0117 0.8908±0.0055 0.9389±0.0027
DAME (full training data) 0.8630±0.0076 0.9264±0.0033 0.8935±0.0025 0.9398±0.0018

Watches

DAME (ZSL) 0.7267† 0.9124§ 0.8090‡ 0.8834‡
DeepMatcher[24] (50% training data) 0.6997±0.0260 0.7274±0.0478 0.7126±0.0314 0.8415±0.0151

Ditto [20] (50% training data) 0.8664±0.0037 0.8996±0.0054 0.8827±0.0045 0.9352±0.0024
DAME (50% training data) 0.8691±0.0196 0.9160±0.0109 0.8917±0.0051 0.9397±0.0039

DeepMatcher[24] (full training data) 0.7771±0.0093 0.8309±0.0169 0.8030±0.0087 0.8896±0.0044
Ditto [20] (full training data) 0.9145±0.0030 0.9178±0.0164 0.9161±0.0097 0.9545±0.0049
DAME (full training data) 0.9010±0.0038 0.9470±0.0091 0.9234±0.0023 0.9575±0.0009

Cameras

DAME (ZSL) 0.8376§ 0.8958§ 0.8657§ 0.9243§
DeepMatcher[24] (50% training data) 0.5896±0.0063 0.6863±0.0630 0.6328±0.0275 0.7842±0.0058

Ditto [20] (50% training data) 0.7585± 0.0694 0.8628±0.0607 0.8020±0.0127 0.8831±0.0175
DAME (50% training data) 0.8801 ±0.0312 0.8871±0.0295 0.8825±0.0011 0.9356±0.0028

DeepMatcher[24] (full training data) 0.6986±0.0280 0.7847±0.0075 0.7388±0.0159 0.8486±0.0124
Ditto [20] (full training data) 0.8573±0.0075 0.9062±0.0173 0.8809±0.0042 0.9333±0.0014
DAME (full training data) 0.8917±0.0013 0.9070±0.0017 0.8963±0.0001 0.9432

Walmart-Amazon

DAME (ZSL) 0.3558 0.9015§ 0.5102 0.8369†
DeepMatcher[24] (50% training data) 0.6938±0.0171 0.5474±0.0217 0.6118±0.0167 0.9346±0.0023

Ditto [20] (50% training data) 0.8501±0.0206 0.7098±0.0466 0.7721±0.0191 0.9607±0.0017
DAME (50% training data) 0.8082±0.0019 0.8083±0.0103 0.8082±0.0061 0.9638±0.0009

DeepMatcher[24] (full training data) 0.6971±0.0183 0.6010±0.0223 0.6448±0.0067 0.9376±0.0011
Ditto [20] (full training data) 0.8883±0.0459 0.7694±0.0336 0.8227±0.0004 0.9687±0.0014
DAME (full training data) 0.8615±0.0090 0.7875±0.0207 0.8226±0.0071 0.9680±0.0007

DBLP-GoogleScholar

DAME (ZSL) 0.9077§ 0.8490‡ 0.8737‡ 0.9499§
DeepMatcher[24] (50% training data) 0.9347±0.0034 0.9439±0.0074 0.9385±0.0019 0.9770±0.0006

Ditto [20] (50% training data) 0.9356±0.0030 0.9448±0.0065 0.9385±0.0016 0.9771±0.0005
DAME (50% training data) 0.9367±0.0019 0.9411±0.0037 0.9389±0.0028 0.9771±0.0010

DeepMatcher[24] (full training data) 0.9489±0.0014 0.9373±0.0018 0.9431±0.0016 0.9789±0.0006
Ditto [20] (full training data) 0.9358±0.0025 0.9542±0.0009 0.9449±0.0008 0.9793±0.0003
DAME (full training data) 0.9392±0.0023 0.9537±0.0032 0.9464±0.0003 0.9798

DBLP-ACM

DAME (ZSL) 0.8661† 0.9854§ 0.9219‡ 0.9651§
DeepMatcher[24] (50% training data) 0.9787±0.0098 0.9763±0.0056 0.9774±0.0020 0.9919±0.0008

Ditto [20] (50% training data) 0.9865±0.0066 0.9865±0.0011 0.9865±0.0027 0.9951±0.0010
DAME (50% training data) 0.9787±0.0055 0.9831±0.0011 0.9809±0.0033 0.9931±0.0012

DeepMatcher[24] (full training data) 0.9855±0.0056 0.9869±0.0022 0.9861±0.0039 0.9945±0.0014
Ditto [20] (full training data) 0.9865±0.0011 0.9865±0.0022 0.9865±0.0016 0.9951±0.0006
DAME (full training data) 0.9865±0.0032 0.9868±0.0033 0.9866 0.9951
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