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Abstract

The Slepian-Wolf (SW) cooperation proposed in [1] is probably the first practical cooperative
scheme that implements the idea of compress-and-forward. Through the exploitation of efficient
distributed source coding (DSC) technology, the authors of [1] demonstrate the effectiveness of
Slepian-Wolf cooperation in combating inter-user channel outage in wireless environment. In this
paper, we discuss the general framework of Slepian-Wolf cooperation using the two most popular
DSC technologies: the binning/syndrome approach and the parity approach. We show that the
latter is particularly useful in SW cooperation, since it is conceptually simpler, provides certain
performance advantages, and enables any (system) linear channel code to be readily exploited.
Examples using convolutional codes, low-density generator-matrix codes and low-density parity-
check codes are demonstrated and practical algorithms for estimating the source-relay correlation
and for decoding the compound packets at the destination are discussed.

I. INTRODUCTION

User cooperation has become an increasingly hot research topic, due to its substantial
gains over non-cooperative communication. Also known as the relay channel problem, user
cooperation dates back to the late sixties when it was first discussed by van der Meulen
[2]. Substantial advances in the theory and the basic coding strategies were made by Cover
and El Gamal [3]. It was not until years later that the problem was re-invented, analyzed in
detail, and popularized by several research groups (e.g. [4]-[10]).

Consider a cellular type of wireless scenario where multiple users, each equipped with
a single antenna, communicate with a common destination. Assume for the time being,
the channels experience quasi-static Rayleigh fading, i.e. time-limited channels where time
diversity is hard to attain. Due to the lack of diversity, conventional non-cooperative wireless
communication sees a high outage rate that decreases only linearly with the increase of
signal-to-noise ratio (SNR): pout ≈1/(4SNR). Through the collaboration of geographically-
distributed users, virtual antenna arrays can be formed, promising substantial gains via
transmit/receive diversity, beam-forming, spatial multiplexing and power allocation [3]-[10].

The basic cooperative modes include amplify-and-forward (AF), where the relay rescales
the received analog waveforms and forwards them to the destination, decode-and-forward
(DF), where the relay demodulates and decodes the received packet and possibly re-encodes
it before forwarding it, and compress-and-forward (CF), where the relay forwards the quan-
tized/compressed/estimated version of its observations [3][4]. If in CF the relay does not
decode the packet, then DF and CF exhibit certain duality and achieve respectively the gains
related to multi-antenna transmission and multi-antenna reception [4]. On the other hand, if
we view scaling and decoding as special forms of estimation, then CF, in its general sense,
subsumes both AF and DF.
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While information-theoretic aspects (e.g. achievable rate regions, capacity bounds) are
important, another interesting research direction explores coding solutions that implement
these cooperative ideas. A large body of work targets random codes. Most notable among
them is the work by Kramer et al [4], where efficient random coding strategies based on the
DF and CF modes are developed and analyzed. In the area of practical coding solutions,
the existing work has almost exclusively focused on DF (and AF). Examples include coded
cooperation, space-time cooperation, coded space-time cooperation and coded double space-
time cooperation [5]-[10].

This paper discusses a recently developed cooperative strategy, formerly known as Slepian-
Wolf (SW) cooperation, which exploits the technology of Slepian-Wolf compression, or
distributed source coding (DSC), in wireless user cooperation. Originally proposed in [1],
SW cooperation is probably the first practical coding scheme that falls in the category of
compress-and-forward. In [1], the key elements of SW cooperation are discussed, examples
using low-density parity-check (LDPC) codes (or more precisely, LDPC Slepian-Wolf formu-
lation) are provided, and substantial gains over the existing cooperative schemes (especially
in combating the inter-user channel outage) are demonstrated [1].

In this paper, we further the concept of Slepian-Wolf cooperation, and discuss a constructive
framework that is general enough to allow any systematic linear channel code to be exploited
in Slepian-Wolf cooperation. We start with the motivation for Slepian-Wolf cooperation
(Section II). After briefing the background of distributed source coding technology (Section
II), we discuss the central idea of SW cooperation, and present a general framework for
wireless user cooperation (Section III). We demonstrate, through examples of convolutional
codes, low-density generator-matrix (LDGM) codes and LDPC codes, the generality of the
proposed framework (Section IV). Finally, concluding remarks are provided in Section V).

Throughout the paper, unless otherwise stated, we will assume (1) the relay model com-
prises three terminals: a source S, a relay R and a destination D, (2) the communication
channels between these terminals are spatially-independent block fading Rayleigh channels,
where the fading coefficient of each channel remains constant during one round of user
cooperation, and (3) all the three terminals operate in a half-duplex mode.

II. MOTIVATION AND BACKGROUND

A. Motivation for Slepian-Wolf Cooperation

The revival of user cooperation in the wireless context is in part spurred by the great success
of multiple-input multiple-output (MIMO) technologies. Although user cooperation enables
different users to share antennas, the virtual antenna array nevertheless has a fundamental
difference from the real antenna array in a MIMO system: while the data to be transmitted
are known beforehand to every antenna in the latter case, they need to be conveyed from one
antenna to another in the former case. Associated with this is a cost for time, energy and
bandwidth, as well as a risk that data may be corrupted or lost during the transmission. We
say an inter-user outage happens when the relay fails to correctly decode the source packet
- even under the protection of a channel code. Clearly, a low inter-user outage is essential
to ensure successful user cooperation and subsequently a good cooperative diversity.

However, inter-user outage is not as low as one would like to see. For many practical cases,
inter-user outage occurs at a probability of 10−2 even with the protection of a convolutional
code or an LDPC code1 [12]. When inter-user outage happens, DF is reduced to a non-

1For example, a packet protected by a (3000, 2000) LDPC code may still see 10.4%-1.06% of inter-user outage at
inter-user SNRs of 10-22 dB [12].



cooperative mode with a diversity order of only 1. The authors of [12] showed that, at
inter-user outage, the asymptotic error probability of AF scales linearly with that of DF
by a factor of approximately 1/2. That is, the availability of a second copy of the packet
(foreseeably a quite noisy copy) enables AF to reduce the error rate but only by half. Hence,
both strategies perform rather poorly in this worst case scenario, which in term adversely
degrades the average performance.

In this paper, we resort to the idea of compress-and-forward, and propose to exploit
Slepian-Wolf coding in user cooperation to effectively combat inter-user outage. From the
analysis of the achievable rate region [4], one finds that the achievable rate region of DF
improves as the relay moves toward the source, and reaches its maximum (i.e. system achieves
the capacity) when the relay is near the source. On the other hand, the achievable rate region
of CF improves as the relay moves toward the destination, and reaches its maximum when
the relay is near the destination. Inter-user outage resembles a case where the relay is farther
away from the source (and likely closer up to the destination). CF could therefore expect to
outperform DF.

One motivation for Slepian-Wolf cooperation is the observation that at inter-user outage,
although the relay fails to decode the packet entirely right, it may get most of the bits
right most of the time. This holds for most channel codes although to what extent is code
dependent. For example, for a (3000, 2000) regular LDPC code, at a low SNR of 7 dB,
about 85% of the failed blocks contain less than 5% of errors; when the SNR increases to
13 dB, more than 96% of the failed blocks contain less than 5% of errors2 Hence, instead
of attaining the original source packet X , the relay now gets a copy Y , which is highly
correlated with X . Is it possible for the relay to make intelligent use of Y rather than casting
it away?
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Fig. 1. (A) Relay system. (B) DSC system.

Regarding correlated data at physically-separated places, one technology becomes immedi-
ately relevant: Slepian-Wolf coding [11]. Also known as distributed source coding, SW coding
concerns the separate compression of two (or more) statistically correlated sources, say X
and Y , and the joint decompression of them at a common destination Z; see Figure 1(B).
When we compare the system model of SW coding and that of user cooperation (in the
case of inter-user outage) in Figure 1, we find that the two seemingly dispatched problems
exhibit several interesting similarities: (1) they both have two transmit terminals and one
final destination terminal: S, R and D in user cooperation, and X , Y and Z in DSC; (2)
a high correlation between data recovered at R and data at S is exactly like the inherent
source correlation between X and Y ; (3) the (compressed) data from X and Y in DSC are
transmitted in orthogonal channels, and so are data from S and R in user cooperation. Further,
encoding of DSC is performed separately at each source, obviating the need for inter-user
coordination in cooperative communication. Hence, there is a good reason to believe that
the excellent ideas in SW coding can find new and exciting use in user cooperation. Before
proceeding to the framework and the details of Slepian-Wolf cooperation, let us first look at

2We observe, however, the residual errors appear to be more busty with turbo codes.



the basics of Slepian-Wolf coding.

B. Slepian-Wolf Coding

The theoretical underpinnings of Slepian-Wolf coding were established back in the sev-
enties. In a typical two-source Slepian-Wolf system as shown in Fig. 1(B), assume that X
and Y are memoryless binary symmetric sources that are correlated at the same time instant
with Pr(X 6= Y ) = p < 0.5. This correlation is typically described using a binary symmetric
channel (BSC) correlation with a crossover probability p, since one source can be viewed as
a noisy version of the other after it is passed through a BSC(p). The achievable rate pairs in
this case are specified by the famous Slepian-Wolf theorem [11]: Rx ≥ H(X|Y ) = H(p),
Ry ≥ H(Y |X) = H(p) and Rx + Ry ≥ H(X, Y ) = 1 + H(p). The corner points of
the Slepian-Wolf boundary are commonly referred to as asymmetric compression, where one
source, say Y , can be coded using a conventional entropy coding technique and transmitted at
rate H(Y ), the other source X can be compressed to H(X|Y ) using “Slepian-Wolf coding”,
and the destination can recover both X and Y through the joint decoding of Y and H(X|Y ).

A key concept in Slepian-Wolf coding is code binning, which has been used in the proof
of the Slepian-Wolf theory, i.e. the achievability of compressing X to Rx = H(X|Y ) [11].
In a nutshell, coding binning refers to the idea of grouping sequences of source X in bins,
each indexed with a bin-index. Compression is performed by mapping the X sequence to
its bin-index, and decompression is performed by identifying the target bin using the bin-
index and subsequently identifying the target X sequence in the bin using the correlated Y
sequence.

In practice, bins are constructed using the coset structure of a linear channel code. The idea
is to view Xn, a sequence of X with length n, as a virtual codeword of some (n, k) linear
channel code. It is then natural to use cosets of this linear channel as bins, to use syndromes
Sn−k as bin-indexes, and to compress Xn to its corresponding syndrome. If the channel
code is capacity approaching on BSC(p), then the rate of the channel code k/n → 1−H(p)
(capacity of BSC), and a compression rate of Rx = (n − k)/n → H(p) = H(X|Y ) is thus
achieved.

While the technique of binning can losslessly turn any linear channel code to a Slepian-
Wolf code, it is not the only means of performing SW compression. Below we describe a
different approach which is applicable to a general systematic linear channel code and which
is particularly attractive to the proposed Slepian-Wolf cooperation.

The approach, which we refer to as the parity approach, exploits the exact encoding
and decoding process of an (n, k) systematic linear channel code for the purpose of SW
compression. For each source sequence Xk, it computes its length n codeword, leaves out
the systematic part Xk, and transmits only the parity part P n−k to the destination. The
decoder recovers Xk by performing channel decoding on Y k and P n−k, where Y k is treated
as BSC(p) corrupted version of the systematic part. Unlike the binning approach which yields
a compression ratio of n : (n−k) for an (n, k) code, the parity approach yields a compression
ratio of k : (n − k).

III. A GENERAL FRAMEWORK FOR SLEPIAN-WOLF COOPERATION

A. The System Model of Slepian-Wolf Cooperation

The proposed Slepian-Wolf cooperation exploits the asymmetric SW coding technology
to combat inter-user outage. In the system model shown in Figure 2(A), the source and the
relay will transmit alternatively in three consecutive time slots. In the first time slot, the
source sends data X , possibly protected by an error correcting code, to the destination and



the relay simultaneously. The relay, upon obtaining a slightly distorted version Y , will invoke
Slepian-Wolf cooperation by transmitting Y (or H(Y )) in the second time slot. Notified by
a flag bit, the source will then transmit an additional packet containing H(X|Y ) to complete
the Slepian-Wolf code. The destination thus attains two spatially diversified copies of X ,
one from the Slepian-Wolf decoding of H(Y ) and H(X|Y ), and the other from the initial
transmission of X by the source. This basic approach can be improved by letting the source
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Fig. 2. The system model of Slepian-Wolf cooperation. (A) The basic model. (B) The advanced model.

transmit X and H(X|Y ) altogether in the first time slot; see Figure 2(B). Since H(X|Y ) is
needed only when Slepian-Wolf cooperation is invoked, will pre-fetching this be wasteful?
The answer is no. As discussed in the previous section, H(X|Y ) is computed in two ways in
practice: (1) in the parity approach, H(X|Y ) is in fact the parity bits for X , and can therefore
be used to protect X if nothing else; (2) in the binning approach, H(X|Y ) is represented
using syndromes. From the coding theory, one realizes that syndromes are essentially a
special type of parity bits (will be discussed in further detail). Hence, H(X|Y ) can first of
all be interpreted as parity bits for protecting X , and, in the case of Slepian-Wolf cooperation,
be combined with Y (or H(Y )) to form a Slepian-Wolf code.

To summarize, the proposed cooperative framework operates as follows:

1) In the first time slot, the source computes H(X|Y ) using the parity approach, and
broadcast data X , denoted as packetX , together with H(X|Y ), denoted as packetX|Y .

2) The relay treats the packetX|Y as parity bits, and performs channel decoding on
packetX + packetX|Y to estimate X . Depending on the estimation result, it chooses
one of following three options in the second time slot:

• If X is decoded successfully, the relay resorts to a DF-based cooperative strategy
such as coded cooperation.

• If the decoded data Y contains a small percentage of errors (e.g. below
a predefined threshold pth), the relay invokes Slepian-Wolf cooperation by
forwarding Y or H(Y ) (denoted as packetY ), the slightly distorted version of
X , to the destination.

• If the decoded data contains lots of errors, the relay reverts to the non-cooperative
mode and stays idle.

In the former two cases, an indicating bit will be piggybacked on the relay packet,
so that the destination knows which one happens.

3) The destination will perform a joint decoding on all the packets it received to make
a best estimation on X .

B. Practical Issues

We discuss several issues concerning the practicality and the efficiency of the proposed
framework.

First, in the initial transmission of X by the source, X may either be raw data or channel-
coded data. However, in light of the fact that packetX|Y will provide protection for X ,



there is no practical benefit for using additional channel coding. Put another way, the (extra)
protection power needed for X can be obtained by choosing a proper (Slepian-Wolf) code
to compute packetX|Y .

Second, in computing H(X|Y ) or packetX|Y , it is highly recommended that the parity
approach, rather than the binning approach, be used. We note that there is a subtle relationship
between the binning approach and the parity approach, which will become clear when we
discuss the example of LDPC codes. Nevertheless, it is fair to say that the parity approach
is not only easier to implement, but tends to perform better in Slepian-Wolf cooperation. We
realize that the parity approach is restricted to systematic codes, but for any linear channel
code, there exists an equivalent systematic code that has the same codeword space and
therefore renders the same block error rate. Hence, confirming to systematic codes does not
cause any essential compromise to the system performance.

Third, in order to choose between, say, coded cooperation, Slepian-Wolf cooperation and
no cooperation, the relay needs to know the decoding quality. Practical systems are typically
equipped with a cyclic redundancy check (CRC); it is therefore easy to tell between successful
decoding and unsuccessful decoding. In the latter case, an efficient estimation method is
needed for the relay to determine the percentage of residual errors. While other methods are
possible, [1] showed that the mean of the log-likelihood ratios (LLR) at the decoder output,
denoted as µ(LLR), can be used a figure of merit to describe the relative decoding quality.
The relation between µ(LLR) and the percentage of errors in the block, pe, is plotted in
Figure 3 for an LDPC code and a convolutional code. Each blue dot represents a simulation
test, where the mean of the decoder LLRs is computed by averaging over all the bits in
the block, and the solid red line represents the “true” mean, which is computed by further
averaging over hundreds of thousands of blocks. It is evident that µ(LLR) is closely related
to pe. In addition to its simplicity and the rather accurate estimation (see [1] for experimental
results), another particularly attractive feature about µ(LLR) is that its relation with pe is
independent to the channel SNRs. Hence, a single lookup table suffices to implement the
estimation rule [1],
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Fig. 3. The relation between the mean of the decoder LLRs, µ(LLR), and the percentage of errors in the block, pe.
(A) A (3000, 2000) regular LDPC code with column weight 3; message-passing decoding. (B) A rate rate 1/2 systematic
convolutional code with generator matrix (1, 25/31)oct and information block size 1000 bits; BCJR decoding.

The last issue concerns the decoding process at the destination in Slepian-Wolf Coopera-
tion. By choosing the appropriate Slepian-Wolf code and the thresholds pth, the destination is
guaranteed to retrieve a diversity order of two for X . This can be implemented, for example,
by Slepian-Wolf decoding of packetX|Y + packetY followed by decoding of packetX . A



more efficient way, however is to decode the three packets altogether as one codeword.
This is possible, since packetX and packetY both contain noisy copies of the source X
(note that packetY is essentially X passed through a cascade of a BSC(p) and a Rayleigh
fading channel), and packetX|Y contains noisy parity bits for X . More detailed discussion
is provided in Section IV-C.

IV. EXAMPLES

To demonstrate the generality and the efficiency of the proposed framework, we discuss
in the below a few examples using convolutional codes and LDPC codes.

A. Convolutional Codes

Consider a rate 1/2 convolutional code with codeword size n = 2k. According to the parity
approach, Slepian-Wolf coding can be performed by taking source X in blocks of length k
and encoding them using the (n, k) convolutional code, where the parity bits P n−k fulfill
the role of H(Xn|Y n). In the context of user cooperation, the source will, in the first time
slot, transmit packetX|Y = P n−k = P k, the parity bits, together with packetX = Xk, the
systematic bits, which together forms a complete convolutional codeword (for simplicity, we
assume Xk already contains CRC bits.) The relay will decode this convolutional code using,
for example, the BCJR algorithm or the soft-output Viterbi algorithm (SOVA): Y n = X̃n.

• Upon successful decoding (i.e. X̃n = Xn), the relay can scramble the source bits Xk,
re-encode them using the same convolutional code, and forwards the new set of parity
bits Qn−k, to the destination. This coded cooperation strategy has essentially delivered
a rate k/(2n − k) = 1/3 distributed turbo code to the destination, such that X k can be
efficiently recovered using an iterative turbo decoder.

• When the CRC check fails, the relay will estimate the percentage of the residual errors in
the block by examining the average decoder LLRs (or using other estimation methods).
If the error rate exceeds a threshold pth, which is pre-defined and known to both the relay
and the destination, then the relay will discard Y n since it is badly corrupted and not
worthy of further processing. This reduces to a non-cooperative mode. Otherwise, the
relay decides that Y n is highly correlated with Xn and invokes Slepian-Wolf cooperation
by forwarding packetY = Y n. The destination has now received two (noisy) copies of
the systematic bits, packetX = Xk and packetY = Y n = X̃n, and one (noisy) copy
of the parity bits, packetX|Y = P n−k, it can then perform convolutional decoding to
recover Xn.

B. LDPC codes

In [1], examples of LDPC codes are discussed, where H(X|Y ) or packetX|Y is computed
using the binning approach. We will quickly walk through the examples in [1], and show how
the same “distributed codeword” can be generated using the parity approach in a conceptually
simpler way.

SW Cooperation using the binning approach: Let us brief the conventional LDPC Slepian-
Wolf formulation using the binning approach. Let H be the parity check matrix of an (n, k)
LDPC code, Xn ∈ {0, 1}n and Y n ∈ {0, 1}n be two memoryless binary symmetric sources
with BSC(pth) correlation, and Sn−k be the syndrome sequences of Xn, computed by matrix
multiplication: Sn−k =HXn. Asymmetric SW coding is performed by compressing Xn to
Sn−k at a rate of (n−k)/n bit/symbol, and transmitting Y n at full rate. Since the combination
of Xn and Sn−k forms a valid codeword of an extended LDPC code with parity check matrix
[H, I], joint decompression is performed by feeding Y n, the BSC(pth) corrupted version of



Xn, and Sn−k, to the message-passing decoder of [H, I] (assume the physical transmission
channel is noiseless). The process is illustrated in Figure 4(A).

In the context of Slepian-Wolf cooperation, the source will broadcast, in the first time slot,
packetX = Xn, and packetX|Y = Sn−k = HXn. The relay will estimate Xn by performing
message-passing decoding on [H, I]. If the decoded data, Y n = X̃n, contains but less than
pth of errors, then the relay forwards packetY = Y n. The destination will perform message-
passing on [H, I] using packetX = Xn, packetY = X̃n and packetX|Y = Sn−k.

Since the large number of weight-1 columns in [H, I] makes message-passing rather
inefficient, [1] proposed an improved LDPC Slepian-Wolf formulation. The idea is to restore
the efficiency of the message-passing algorithm by making the parity check matrix possess
all the desired features such as random, sparse, having a large girth and few small cycles.
Instead of attempting to convert [H, I] to a better matrix, which is technically challenging,
[1] proposed to start with a new, good matrix H

∗ pertaining to a (2n − k, n − k) LDPC
code, to diagonalize H

∗ to [P, I] (using Gaussian Elimination), and to use P (which may
be dense) for computing the “syndrome” Sn−k and use H

∗ for message-passing decoding.
This improved LDPC SW formulation is illustrated in Figure 4(B) and promises a better
performance especially in SW cooperation [1].
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Fig. 4. LDPC Slepian-Wolf coding using the binning approach. (A) The conventional LDPC SW formulation. (B) The
improved LDPC SW formulation.

SW Cooperation using the parity approach: Viewed from the perspective of the parity
approach, the conventional LDPC binning approach shown in Figure 4(A) is like Slepian-
Wolf compression using a (2n− k, n− k) low-density generator-matrix (LDGM) code with
parity check matrix [H, I]. LDGM codes are defined, in the coding literature, as a special class
of linear-time encodable LDPC codes whose parity check matrix comprises a random sparse
matrix on the left and an identity matrix on the right. Likewise, the improved LDPC binning
approach shown in Figure 4(B) is like SW compression using a (typical) (2n − k, n − k)
LDPC code with parity check matrix H

∗. It is well recognized that random LDPC codes
generally outperform LDGM codes, which agrees with the observation that the improved
LDPC binning formulation exhibits gains over the conventional LDPC binning formulation.

C. Simulation Results

To demonstrate the efficiency of the proposed framework, we simulate the system perfor-
mance on block Rayleigh fading channels. We assume that the source-destination channel and
the relay-destination channel have the same average quality. Since the block size is typically
limited to a few thousand bits in practical systems, we consider a (3000, 2000) random LDPC
code (denoted as LDPC1) and use the parity approach for Slepian-Wolf coding.



Using the strategy discussed previously, the source will transmit the complete LDPC
codeword, with 2000 systematic bits in packetX and 1000 parity bits in packetX|Y . The
relay decodes the LDPC code, and uses CRC and µ(LLR) to compute pe, the estimated
percentage of errors in the block. In the simulation, we used a threshold pth = 5%. Hence,
depending on whether pe = 0, 0 < pe ≤ 5% or pe > 5%, the system will witch respectively
to coded cooperation, Slepian-Wolf cooperation, and no cooperatoin.

In the case of coded cooperation, the relay re-encodes the 2000 correctly decoded bits
using a (different) (4000, 2000) LDPC code (denoted as LDPC2), and transmits the new
set of 2000 parity bits. The destination then combines LDPC1 and LDPC2 to form a
(5000, 2000) “layer” LDPC code and performs message-passing decoding.

In the case of Slepian-Wolf cooperation, the relay simply forwards the 2000 decoded bits
(which contain less than 5% errors) in packetY , and the destination performs message-passing
on LDPC1. It is crutial that the destination correctly computes the channel LLRs for each
received packet, since channel mismatch could lead to disastrous error propagation! Let s be
the data bit, r be the received signal, h be the fading coefficient of the Rayleigh channel, and
σ2 be variance of the additive white Gaussian noise (AWGN). Futher, let subscripts sd and rd
denote respectively the source-destination channel and the relay-destination channel. packetX

and packetX|Y have gone through a source-relay channel which is a Rayleigh fading channel;
the channel LLRs of the data therein (systematic bits and parity bits) can be computed using

LpacketX,X|Y
(s) =

2hsd

σ2

sd

r. (1)

packetY contains systematic bits, which have traversed the source-relay-destination channel,
or, a cascade of a BSC(pe) and a Rayleigh fading channel. The channel LLRs should therefore
be computed using

LpacketY (s) = ln
pe + (1 − pe)exp

(

2hrdr

σ2

rd

)

(1 − pe) + peexp
(

2hrdr

σ2

rd

) . (2)

The simulation results are presented in Figure 5. Figure 5(A) plots the bit error rate (BER)
vs the normalized SNR for the case of 0 < pe ≤ 5%, i.e the “favorable” inter-user outage
case where Slepian-Wolf cooperation is fully functional while code cooperation degenerates
to no cooperation. We observe some 13 dB gain provided by SW cooperation over the
conventional scheme in this favorable case! Note that this gain is evaluated after deducting
the additional energy spent in transmitting packetY in SW cooperation.

To provide a more accurate evaluation of the overall system gain enabled by Slepian-Wolf
cooperation, we blend in the two other cases of pe = 0 (i.e successful relay decoding) and
pe > 5% (i.e. severe errors at the relay) and plot in Figure 5(B) the average performance.
The two user channels are fixed to a normalized SNR of 14 dB, and the inter-user channel
changes from 0 to 18 dB. What is denoted as coded cooperation is essentially a mixture of
coded cooperation (pe = 0) and no cooperation (Pe > 0), and what is denoted as Slepian-Wolf
cooperation is essentially a mixture of coded cooperation (pe = 0), SW cooperation (0 < pe ≤
5%) and no cooperation (Pe > 5%). Again the energy consumption has been normalized, and
we observe a system gain of close to 4 dB enabled by Slepian-Wolf cooperation. Considering
the rather small block size that is used and the extremely low complexity of Slepian-Wolf
cooperation (virtually no additional complexity over the existing schemes), 4 dB of gain is
quite impressive.



V. CONCLUSION

Slepian-Wolf cooperation, a simple and practical cooperative strategy that implements the
idea of compress-and-forward is discussed in detail. We demonstrate, through the exploitation
of practical Slepian-Wolf coding strategies and especially the parity approach, how a general
(systematic) linear channel code may be exploited in Slepian-Wolf cooperation to efficiently
combat the inter-user outage. The proposed framework assumes the same universal form
as the existing decode-and-forward based schemes such as coded cooperation. It therefore
provides the relay with a convenient freedom to switch between no cooperation, compress-
and-forward (i.e. SW cooperation) and decode-and-forward (e.g. coded cooperation), on-the-
fly, depending on the quality of the instantaneous inter-user channel.
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Fig. 5. (A) Performance of Slepian-Wolf cooperation in its favorable situation. The X-axis denotes the SNR of the
source-destination and the relay-destination channel. (B) Comparison of Slepian-Wolf cooperation, coded cooperation and
no cooperation. Eb/Nosd = Eb/Nord = 14dB. The X-axis denotes the normalized SNR of the inter-user channel.
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