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Abstract

This paper considers symmetric Slepian-Wolf coding of two binary memoryless sources. A
constructive coding approach, termed the symmetric SF-ISF framework (SSIF), is proposed. The
idea is to first recover the difference pattern between the sources using the syndrome former (SF)
and the inverse syndrome former (ISF) of the linear channel code, and to subsequently recover
individual source sequences through syndrome former partitioning. The proposed framework can
be efficiently applied to a general linear channel code, incurs no rate loss when converting the
channel code to the Slepian-Wolf code, and can achieve an arbitrary point in the Slepian-Wolf rate
region. The feasibility and optimality of the framework is rigorously proven using properties of
linear codes and cosets, and further demonstrated using low-density parity-check (LDPC) codes.

I. INTRODUCTION

The problem of lossless distributed source coding (DSC) rooted back to the seminal work of
Slepian and Wolf in 1973. The famous Slepian-Wolf (SW) theorem [1] states that theoretically
there is no loss in rate to compress two correlated sources using separate encoding (as
compared to joint encoding), provided that the decoding is done jointly and that the source
correlation is available to both the encoder(s) and the decoder. The original proof of the
achievability of the SW bound is asymptotic and non-constructive. Considerable research
effort has since been attempted in terms of practical coding solutions, but it was not until
years later that a major breakthrough was made by exploiting the technology of algebraic
code binning [2]. Since then, various sophisticated formulations using powerful channel codes
have been explored for lossless DSC with binary memoryless sources, including low density
parity check (LDPC) codes (e.g. [3][4]) and convolutional/turbo codes (e.g [5]-[9]).

The majority of the work in literature targets achieving the corner points of the SW
bound, formally known as the asymmetric DSC problem. Practical applications, however,
may require the separate encoders to retain comparable compression/transmission rates and
to share an equal computational complexity. Although time sharing can be applied on corner
points to achieve an arbitrary point in the SW bound (i.e. an arbitrary rate/load allocation),
the practice may be inconvenient, expensive, or unfeasible in certain scenarios. For example,
inter-source synchronization, as required to perform time sharing, is hard to implement
between two non-communicating encoders. For this reason, symmetric compression that can
directly realize a rate and load balance is desirable.

The practicality and efficiency of achieving the entire SW rate region using linear channel
codes [9]-[13] is a worthy research area. Early work on symmetric SW coding focuses on
source splitting. For example, [9] proposes to encode the two (highly) correlated sources
X and Y using separate turbo encoders, each followed by a different and complimentary
puncturing pattern. The joint decoder iterates between the two turbo decoders in a way similar
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to decoding a four-branch parallelly concatenated code. In additional to source splitting, code
partitioning is also being actively exploited. The authors of [10] propose to horizontally split
the generator matrix of the channel code into two sub generator matrices, each assuming a
different compression rate in accordance to the number of rows retained in the respective
sub matrix. This approach is shown to be applicable to a general linear block code, but does
not warrant lossless conversion; that is, the resulting SW code will likely perform worse as
a source code than its original capability as a channel code. When the channel code is a
systematic code, [11] provides a different and more efficient code partitioning strategy that
exploits the unique properties of a systematic code. Although no proof on the achievability of
the theoretical limit is provided, simulations using (systematic) irregular repeat accumulate
(IRA) codes demonstrate compression rates that are very close to the SW bound [11]. Besides
these excellent results on the general probabilistic source correlation (where sources X and
Y differ with a probability of p = Pr(X 6= Y ) at any instantaneous output), constrained
source correlation (where sources X and Y differ by no more than t bits within a block
of size n) has also been the subject of interest. t-error correcting linear channel codes and
particularly Hamming codes (for t = 1) have been exploited for symmetric (and asymmetric)
compression in this latter scenario [12].

The main contribution of this paper is the development of a constructive framework
for symmetric (and asymmetric) SW coding of binary memoryless sources. The proposed
framework is general, since it can be readily applied on any linear channel code and, for a
given channel code, can achieve any SW rate pair within the code capacity. Although not
shown here, the framework is also general in the sense that it can be used for both the
probabilistic source correlation and the constraint source correlation [13]. Additionally, the
framework is optimal, which incurs no rate loss during the code conversion. Put another way,
how close the resulting SW code gets to the theoretic limit solely depends on how well the
channel code performs on the equivalent virtual channel.

In [8], a simple and optimal mechanism that exploits the use of syndrome formers (SF) and
inverse syndrome formers (ISF), thereafter referred to as the Asymmetric SF-ISF Framework
(ASIF), is proposed for efficient asymmetric compression. The asymmetric SF-ISF framework
is generally applicable to any linear channel code, but achieves the corner points of the SW
boundary only. The new framework discussed here, thereafter referred to as the Symmetric
SF-ISF Framework (SSIF), is an extension and generalization of the ASIF, and it now achieves
an arbitrary point in the SW region [13]!

The key idea of SSIF is to first recover the difference pattern between the sources using
the syndrome former and the inverse syndrome former of the linear channel code, and to
subsequently recover individual source sequences through SF partitioning. After reviewing the
SW theorem and the binning concept in Section II, we propose in Section III the constructive
approach. The asymmetric SF-ISF framework is first discussed in brevity, followed by a
detailed discussion of the more general symmetric SF-ISF framework. Simulations using
LDPC codes are provided in Section IV. More examples on the application of the proposed
SSIF, including Hamming codes, turbo product codes (TPC) and convolutional/turbo codes,
are available in [13]. Finally, Section V concludes the paper.

II. BACKGROUND

A. Slepian-Wolf Rate Region

Consider a set of m memoryless discrete sources U = {U1, U2, · · · , Um} with joint
probability distribution Pr(U1, · · · , Sm). The achievable rate region for separate compression
and joint decompression, known as the Slepian-Wolf region, is bounded by a convex space
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Fig. 1. (A) System model for the (symmetric) SW coding problem. (B) The SW rate region for two discrete memoryless
sources.

with boundaries [1][4]:
∑

Ui∈V

Ri ≥ H(V |Vc), ∀V⊂U, (1)

where V is a subset of U, Vc is the compliment of V, and H(·) is the Shannon entropy
function. Specifically, for two binary symmetric sources (X and Y ) correlated by BSC(p),
the SW region consists of all rate pairs, (Rx, Ry), that satisfy (see Figure 1(B)):

Rx≥H(X|Y ) = H(p), Ry ≥H(Y |X) = H(p), Rx+Ry≥H(X, Y ) = 1 + H(p). (2)

Each vertex in the SW boundary corresponds to a rate-tuple that is single-user decodable
given the side information of the previously decoded user(s), and the process of achieving
them is known as asymmetric compression.

B. Code Binning

Central to the practice of Slepian-Wolf coding is the concept of code binning. From the
information theory, one realizes that 2nH(X,Y ) (jointly typical) sequences suffice to describe
the joint sources (Xn, Y n) (for large n). The fundamental idea of code binning is to uniformly
place these 2nH(X,Y ) sequences into a table of r rows and c columns, where r×c = 2nH(X,Y ).
Clearly that requires log2r bits to index the rows, log2c bits to index the columns, and a
total of log2r + log2c = nH(X, Y ) bits to uniquely identify a sequence in the table. The
SW theorem states that as long as 2nH(X|Y ) ≤ r ≤ 2nH(X) and 2nH(Y |X) ≤ c ≤ 2nH(Y ), there
exists an arrangement of these X-Y jointly typical sequences (and corresponding row/column
indexes), such that one can unambiguously find the row index of an jointly typical sequence
by looking only at the X component, and find the column index by looking only at the Y
component. The question is how to attain such an arrangement for any valid pair of c and
r?

The problem appears to be difficult in general, except for the two boundary cases which
correspond to asymmetric compression. Consider the boundary case when r=2nH(X|Y ) and



c=2nH(Y ). To start, we note that there are about 2nH(X) typical X sequences, about 2nH(Y )

typical Y sequences, and about2nH(X,Y ) jointly typical sequences. Not all pairs of typical
Xn and typical Y n are also jointly typical, but a jointly typical sequence must be formed
from a typical Xn and a typical Y n. Let us assign the 2nH(Y ) typical Y n’s to c = 2nH(Y )

columns, one for each column. For a given typical Y n, there are about 2nH(X|Y ) typical X
sequences that are jointly typical with it; hence, these typical Xn’s can take the r=2nH(X|Y )

distinct rows pertaining to that Y n column. On the other hand, for a given typical Xn, there
are about 2nH(Y |X) typical Y n’s that are jointly typical with it; hence, a typical Xn sequence
will (re)appear in the same row in about 2nH(Y |X) different column positions. Put another
way, each column (with r=2nH(X|Y ) row positions) will host one unique typical Y n, which
takes up all the row positions; whereas each row (with c=2nH(Y ) column positions) will host
2I(X;Y ) different typical Xn’s, each occupying 2nH(Y |X) column positions pertaining to their
respective jointly typical Y n’s. It can be easily verified that such an arrangement guarantees
that the table contains only the X-Y jointly typical sequences, and that the row index is only
a function of the X component and the column index is only a function of the Y component,
thus enabling separate encoding or mapping of a sequence to its row/column index.

The practical implementation of this random binning approach (for asymmetric compres-
sion) explores the properties of linear channel codes and their cosets. For binary symmetric
sources with BSC(p) correlation, Y n can be losslessly transmitted at a full rate of Ry =
H(Y ) = 1 bit/sample. Xn can be compressed using the coset structure of the (n, k) linear
channel code. Specifically, we can take Xn’s as virtual codewords, cosets as bins, and
syndromes as bin-indexes. By mapping the length n source sequences to the length n − k
syndromes/bin-indexes, a compression ratio of n : n−k is achieved. If the (n, k) channel
code has sufficient error correction capability to support a reliable transmission through the
virtual BSC(p), then a losslessly recovery of Xn can be guaranteed [1]. Additionally, if the
channel code achieves the highest possible transmission rate promised by the Shannon theory
(i.e. k/n = 1 − H(p)), then the source code beats the lowest compression rate promised by
the SW theory (i.e. Rx = (n − k)/n = H(p) = H(X|Y ) bit/sample).

III. THE GENERAL FRAMEWORK

This section details the proposed constructive framework for efficient symmetric and
asymmetric SW compression. We start with a brief discussion on the asymmetric SF-ISF
framework, where the concept of syndrome former and inverse syndrome former was intro-
duced [8]. The more general symmetric SF-ISF framework is then presented with a rigorous
discussion on its ability to achieve an arbitrary point in the SW rate region. Examples using
practical linear channel codes are provided in the next section. Unless otherwise stated, below
we will use an (n, k) linear channel code with a valid pair of syndrome former and inverse
syndrome former. Let x and y denote the n-bit source sequences, z = x ⊕ y the n-bit
difference pattern, and sx, sy and sz the respective syndromes of length n − k bits, all in
column vectors.

A. The Asymmetric SF-ISF Framework (ASIF)

The asymmetric SF-ISF framework, first proposed in [8], is a direct exploitation of the
binning idea discussed in the previous section. The system structure is presented in Figure
2, where the source encoder compresses x to sx through a syndrome former, and the source
decoder decompresses sx (with the help of side information y) through an inverse syndrome
former and the original channel decoder. The key elements here are a matching pair of
syndrome former and inverse syndrome former, whose roles are to systematically “bin” and
“de-bin” the source sequences. Consider an (n, k) linear channel code with 2n−k cosets, each
indexed with a unique syndrome of length n− k. The syndrome former maps the codeword
space Xn to the syndrome space Sn−k by retrieving the syndrome/bin-index for a given



codeword sequence, and the matching inverse syndrome former does the reverse mapping by
retrieving an arbitrary sequence associated with that syndrome. Since there are 2k codewords
in each coset, there thus exist 2k matching ISFs for any given SF, each producing a different
set of outputs. Further, there is no particular rule on the association between syndromes and
cosets, except that the all-zero syndrome has to index the “elementary” coset, i.e. the coset
that contains all the valid codewords of the channel code. This leads to (2n−k − 1)! possible
choices for SF, and consequently (2n−k −1)!2k possible choices for a matching SF-ISF pair!
As discussed in [8], these SF-ISF pairs are functionally equivalent as far as SW coding is
concerned, but the induced complexity may differ.

Detailed discussion on ASIF’s ability to achieve the corner points of the SW boundary
can be found in [8]. One key advantage of this framework is that it reduces the problem of
constructing SW encoder/decoder to a much easier one of finding a matching SF-ISF pair.
Let H(n−k)×n be the parity check matrix of a general linear channel code. From the coding
theory, one realizes that the syndrome former is an (n − k) × n matrix in the form of

SF = PH, (3)

and a matching inverse syndrome former is an n × (n − k) matrix satisfying

SF × ISF = I, (4)

where P is an arbitrary (n − k) full-rank square matrix and I is an (n − k) identity matrix.
For linear block codes including low-density parity-check codes where H comes in handy,

H can simply be taken as the SF and its right inverse H−1 as the ISF. For convolutional codes
with a generator polynomial/matrix G(D) (in the D-domain), the transpose of the transfer
matrix TT (D), where GT = 0, can serve as the syndrome [8]. For parallelly and/or serially
concatenated codes where a single parity check or generator matrix is less available, layered
or cascade structures can be exploited to efficiently build the SF-ISF pair of the compound
code from those of the component codes. For detailed discussion of the latter and especially
SF-ISF construction for parallel/serial turbo codes, please refer to [8].
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Fig. 2. The asymmetric SF-ISF framework. S denotes the syndrome (output of the SF), and c2(s) denotes an arbitrary
codeword that is associated with syndrome s (output of the ISF).

B. The Symmetric SF-ISF Framework (SSIF)

Clearly, the asymmetric SF-ISF framework discussed above is but a general approach to
achieve the corner points of the SW boundary. To attain an arbitrary point in the SW region,
consider the framework in Figure 3. Without loss of generality, let H be the parity check
matrix of the (n, k) linear channel code, and SF = H and ISF = H−1 be a matching
SF-ISF pair, where HH−1 = I. As shown in Figure 3, the two sources x and y will each
transmit a syndrome of length n−k,

sx = Hx, and sy = Hy, (5)

as well as complementary subsets of the first k source bits, xk1

1 (length k1) and yk
k1+1 (length

k − k1), where 0≤k1≤k. If the channel code is capacity-achieving on BSC(p), then

k/n = 1 − H(p) = 1 − H(Y |X) = 1 − H(X|Y ). (6)
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Since the two sources have transmitted (n−k+k1) and (n−k1) bits respectively, the total
amount of transmission is thus 2n− k = nH(X, Y ) bits; further, depending on the value of
k1 (0≤k1≤k), the compression rate (Rx, Ry) = ((n−k+k1)/n, (n−k1)/n) can achieve any
point in the line between (H(X|Y ) = (n − k)/n, H(Y ) = 1) and (H(X) = 1, H(Y |X) =
(n − k)/n), which is the SW bound.

The source decoder performs the joint decompression in two steps: “Decoder A” (see
Figure 3) will first retrieve the difference pattern, z = x ⊕ y, from syndromes sx and sy;
and “Decoder B” will subsequently recover sources x and y from the difference sequence
z, the syndromes sx and sy, and the complimentary subsets xk1

1 and yk
k1+1.

Decoder A

Before discussing how Decoder A works, let us present a few basic facts about linear
channel codes.

An (n, k) linear channel code can be described in the form of coset codes; see Figure
4. Let s be an (n − k)-bit syndrome, and c(s) be an n-bit codeword having syndrome s.
Let subscripts u, v and i, j denote the row indexes and column indexes of the coset table,
respectively, where 0 ≤ u, v ≤ 2n−k − 1 and 0 ≤ i, j ≤ 2k − 1. Without loss of generality,
assume s0 is the all-zero syndrome and c0(s0) the all-zero codeword.

• Fact 1: Each row in the coset table (see Figure 4) represents a coset consisting of 2k

codewords having the same syndrome:

c0(su), c1(su), · · · , c2k−1(su).

Specifically, the first row/coset (i.e. ci(s0)’s) contains all the valid codewords of this
channel code.

• Fact 2: Each column in the coset table represents the set of outputs from a particular
inverse syndrome former:

ci(u0), ci(u1), · · · , ci(u2n−k−1).

• Fact 3: Every four codewords in rectangular positions are related in the following
manner:

ci(su) ⊕ ci(sv) = cj(su) ⊕ cj(sv). (7)

Specifically, for v = 0 and j = 0,

ci(su) ⊕ ci(s0) = c0(su) ⊕ c0(s0) = c0(su). (8)

• Fact 4: The valid codeword closest (in Hamming distance) to ci(su) is ci(s0). In other
words, given a (noisy) sequence ci(su), a maximum likelihood (ML) decoder will output
ci(s0) (or the k-bit information sequence corresponding to ci(s0) ).



• Fact 5: Let z be an n-bit noise vector of a binary symmetric channel. For a given (n, k)
linear channel code, treat z as a virtual codeword with syndrome sz, i.e. z = ci(sz) for
some i between 0 and 2k −1. If the channel code is sufficient to support this BSC, then
z = c0(sz).
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Fig. 4. Coset partition.

The first four facts follow directly from the basic properties of a linear channel code. Fact
5 can be easily proved by contradiction. Recall that a sufficiently powerful channel code on
a BSC should recover the all-zero sequence, i.e. the valid codeword c0(s0), from the noise
vector z. If z = ci(sz) such that i 6= 0, then the channel decoder will produce ci(s0) (Fact
4), rather than c0(s0).

Equipped with these facts of a linear channel code, we will now demonstrate how decoder
A in Figure 3 can successfully retrieve the difference sequence z.

Upon receiving the syndromes of the source sequences, sx and sy, the decoder will first
add them together to get the syndrome of the difference sequence, sz. This is due to the
linearity of the syndrome former:

sx ⊕ sy = Hx ⊕ Hy = H(x ⊕ y) = Hz = sz. (9)

Next, the decoder passes sz through the inverse syndrome former to obtain an n-bit codeword
ci(sz) (Fact 2), and subsequently through the channel decoder to obtain a valid codeword
ci(s0) (Fact 4). Finally, the decoder combines ci(s0) and ci(sz) to capture the difference
pattern sz:

ci(s0) ⊕ ci(sz) = c0(s0) ⊕ c0(sz) (Fact 3)

= c0(sz)

= s (Fact 5) (10)

Decoder B

Decoder B recovers the sources x and y from z, sx, sy, xk1

1 and yk
k1+1 by means of

syndrome former partitioning.
First, the missing parts of the first k bits of both sources can be easily recovered using

the difference pattern (see Figure 5 where the gray area represents the bits known before
Decoder B):

xk
k1+1 = yk

k1+1 ⊕ zk
k1+1, (11)

yk1

1 = xk1

1 ⊕ zk1

1 . (12)

Next, notice that the syndrome former, H, can be partitioned to two sub-matrices:

H(n−k)×n =
[

A(n−k)×k,Bn−k

]

, (13)



where B is a square matrix. Without loss of generality, assume B is full-rank. Since

sx = Hx =
[

A,B
]

[

xk
1

xn
k+1

]

= Axk
1 ⊕ Bxn

k+1, (14)

sy = Hy =
[

A,B
]

[

yk
1

yn
k+1

]

= Ayk
1 ⊕ Byn

k+1 (15)

we can then recover the remaining n−k source bits using:

xn
k+1 = B−1

(

sx ⊕ Axk
1

)

, (16)

yn
k+1 = B−1

(

sy ⊕ Ayk
1

)

. (17)

Alternatively, after recovering one source, we can recover the other using the difference
pattern z.

X:

Y:

Sx

Sy

z:

k1 k-k1 n-k n-k

n

H
a H

b

Fig. 5. Illustration for Decoder B. The gray areas represent the bits known before Decoder B.

IV. EXAMPLES USING LDPC CODES

In this section, we demonstrate the feasibility and efficiency of the symmetric SF-ISF
framework using a popular and powerful class of linear channel codes, namely, LDPC codes.

Consider an (n, k) LDPC code with parity check matrix H(n−k)×n = [A(n−k)×k,B(n−k)].
Without loss of generality, assume that the columns of H have been pre-arranged such that
the right part B is a full rank square matrix. By letting P = I in (3), we get the syndrome
former:

SF = H = [A,B] (n−k)×n. (18)

A matching inverse syndrome former can be obtained by solving (4). A possible solution is:

ISF =

[

0

B−1

]

n×(n−k)

. (19)

Equipped with this SF-ISF pair and a message-passing LDPC decoder, SW compression
using the SSIF framework becomes rather straight-forward.

In our simulation, we take two independent and identically distributed (i.i.d.) binary sources
X and Y with a BSC(p) correlation. We consider rate 1/2 regular (n, k) LDPC codes with
a constant column weight of 3. This means that two sources of length n bits each will be
compressed to 2n− k = 1.5n bits altogether. The information block lengths we tested were
k = 1000, 2000 and 3000 bits, respectively. The experimental results are obtained based on the
compression of at least 108 bits. Figure 6 plots the LDPC SSIF performance of a symmetric
compression case where Rx = Ry = 0.75 bit/symbol. The X-axis denotes different correlation
level p and the Y-axis denotes the average (normalized) Hamming distortion, averaged over
the two sources. We see that the compression quality improves with the block length, as one
would expect from the behavior of LDPC codes.

To see whether the proposed SSIF framework performs equally well for symmetric and
asymmetric compression alike, we test the LDPC code with k = 5000 bits for different
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allocations of compression rates: Rx : Ry = 2 : 1, 7 : 5, 1 : 1, 5 : 7, 1 : 2, and examine
their respective gaps to the SW limit. It should be noted that although we target lossless
compression, the imperfectness of the channel code will introduce a small number of errors,
or a slight distortion, in the recovered sources. Following the convention, we consider a
normalized Hamming distortion of 10−6 and below as near-lossless. The experimental results
of the achievable rate pairs are shown as hexagrams in Figure 7. We note that all the five
rate allocations support exactly the same crossover probability of p = 0.070. Hence, their
rate pairs fall in a straight line that is parallel to the SW bound, demonstrating a robust
performance that is insensitive to Rx : Ry rate allocations. Due to the short block size and
therefore the relatively weak performance of the LDPC code, the gaps between the actual
rate pairs and the SW bound are not very small. We have not had time to conduct a lengthy
simulation on long and powerful LDPC codes, but the results demonstrated in Figure 7) are
sufficient to show that that the SSIF can uniformly approach the SW bound. In light of the
facts that the SSIF incurs no rate loss when converting a linear channel code to a SW code
and that long LDPC codes are capacity-approaching channel codes, it is fair to say that the
SSIF is capable of getting arbitrarily close to any point in the SW bound.

V. CONCLUSIONS

We have proposed a constructive framework, termed the symmetric SF-ISF framework,
for efficient Slepian-Wolf coding of memoryless binary symmetric sources. The framework
is an extension and generalization of the asymmetric SF-ISF framework we proposed earlier,
and can now achieve the entire rate region promised by the theory. The key advantages of
the new framework include:

1) The framework is a simple but powerful one that can be easily applied to a general
linear channel code including systematic codes and non-systematic codes;

2) The framework can achieve an arbitrary point in the SW rate region (including all
the points in the boundary) by simply choosing the appropriate channel code and by
adjusting the appropriate subsets of the source bits to be transmitted;

3) While we have focused the discussion on the probabilistic correlation model (i.e. BSC
model), the framework generalizes to other constrained correlation model such as the
Hamming correlation model [13].
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Examples using LDPC codes are provided to demonstrate the practicality and efficiency
of the framework. We see that the compression performances improve with the increase of
the block length, and they uniformly approach the SW limit regardless of rate allocation
between the sources. This result is consistent with the error correction performances of
LDPC codes, and reflects the lossless conversion property of the framework. For future
research, we will consider binary asymmetric sources and sources with memory. We will
examine the optimality of the framework in the new context, and search for ways to exploit
the additional information, i.e. the a prior probability and the temporal correlation of the
sources, in compression.
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