
Product Accumulate Codes on Fading Channels

Krishna R. Narayanan, Jing Li and Costas Georghiades
Dept of Electrical Engineering

Texas A&M University, College Station, TX 77843

Abstract
Product accumulate codes are a special case of differen-

tially coded low density parity check (LDPC) codes. This
work analyzes the noncoherent performance of PA codes and
general differentially-coded LDPC codes on flat Rayleigh
fading channels using extrinsic information transfer charts,
and proposes a convergence-constraint method to design
good LDPC ensembles matched to differential coding.

1 Introduction
Product accumulate (PA) codes are a serially concatenated

codes whose inner code is a differential code and outer code
is 2 parallel branches of single parity check codes (or a spe-
cial type of low density parity check (LDPC) codes with only
degree-1 and 2 variable nodes) [1]. This work investigates
the performance of noncoherently detected PA codes on fad-
ing channels, and extend it to the general case where the outer
code can be any LDPC code (i.e. differentially coded LDPC
codes). The motivation is two-fold. First, previous work on
PA codes has established them as a class of low-complexity,
capacity-approaching good codes on additive white Gaussian
noise (AWGN) channels [1]. Second, PA codes are inher-
ently differentially coded which permits simple (noncoher-
ent) differential detection.

The channel model we consider is flat Rayleigh fading
channels with antipodal signaling. The received signal is
given by rk = αkejθksk + nk, where sk, nk, αk and
θk are the transmitted signals, the i.i.d. complex AWGN
noise with zero mean and power spectrum density N0/2
in each dimension, the Rayleigh fading amplitude with pdf
pA(αk) = 2αk exp(−α2

k) for αk > 0, and the channel phase
with a uniform distribution over [0, 2π), respectively. Fur-
ther, the fading amplitudes and phases are correlated with
auto-correlation Rk = 1

2J0(2kπfdTs), where fdTs is the
normalized Doppler spread, and J0(·) is the 0th order Bessel
function of the first kind.

To preserve the simplicity of PA codes, instead of using
complex multiple-symbol differential detection, we consider
pilot symbol assisted modulation (PASM) and a simple it-
erative differential detection and decoding (IDDD) receiver
which has been shown to perform stably at different Doppler
rates [2]. In each decoding iteration, an estimation of the
fading amplitude and phase is first conducted using a Wiener
filter, followed by the “coherent” decoding of the inner dif-
ferential code 1/(1 + D) and the outer code. Soft decision

feedback is also used to assist the channel estimation. De-
tailed discussion on the receiver strategy can be found in [2].

We use extrinsic information transfer (EXIT) charts [4]
to discuss a few interesting issues concerning noncoherent
differential coding. First, we show that the popular prac-
tice of inserting pilot symbols to periodically terminate the
differential trellis could cause additional performance loss
and/or high error floors due to a “trellis segmentation” ef-
fect. Hence, a better way of inserting pilot symbols should
be to separate them from the trellis structure. Second, in
studying the convergence property of the iterative process,
we show that while the performance/convergence behavior
of the outer code of a (high-rate) PA code matches well with
that of the differential code, a conventional LDPC code does
not. Both analysis and simulations confirm that conventional
LDPC codes perform better without a differential code than
with one.

To further insight into what (outer) codes match well with
differential coding, we propose and discuss a “convergence-
constraint” method that uses density evolution on EXIT
charts to optimize the degree profiles of LDPC codes for
use with inner differential coding. Unlike the conventional
“threshold-constraint” method that targets at the best asymp-
totic threshold, the convergence-constraint method controls
the convergence behavior of the iterative interaction between
the inner differential code and the outer LDPC code. We
show that the proposed method is efficient and that the re-
sulting optimal code is more that 1 dB better than the PA
code. We expect the method to be useful in designing good
LDPC ensembles matched with other inner decoder, demod-
ulator and receiver.

2 EXIT Chart Analysis
In EXIT charts, the exchange of extrinsic information is

visualized as a decoding/detection trajectory, which allows
the prediction of the convergence and other performance be-
havior of the iterative process [3] [4]. We use mutual in-
formation between the code bit and the corresponding log-
likelihood ratio (LLR) to depict the characteristics and rela-
tions of the component decoders . X-axis denotes the mutual
information to the inner code (a prior) or from the outer code
(extrinsic), denoted as Ia,i/Ie,o, and Y-axis the mutual infor-
mation from the inner code or to the outer code, denoted as
Ie,i/Ia,o.

[Pilot Insertion:] It is well-known that either insufficient
or excessive pilot symbols could cause performance degra-
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dation. The former is due to poor channel estimation, and
the latter is attributed to the fact that the performance gain
obtained in channel tracking is not enough to compensate for
the energy/rate loss caused by pilot symbols. However, little
attention has been paid to the fact that improperly inserted pi-
lots could cause an intrinsic loss in capacity in a differential
code. Fig. 1(A) shows the popular practice of inserting pilots
in a differential code. By periodically terminating the trel-
lis, pilots here assume a dual role of channel estimation and
1/(1⊕D) decoding. Unfortunately, this is in fact not a good
strategy since segmenting the trellis into small chunks causes
a significant amount of short error events (an “inverse” ef-
fect of spectrum thinning), and consequently a loss in ca-
pacity. This “segmentation effect” is best illustrated using
Fig. 2, where EXIT curves for the differential decoder with
0%, 4%, 10% and 20% pilots terminating the trellis are plot-
ted for two different SNR values. We assume that the four
curves in each family have the same energy per transmitted
symbol, and that perfect channel information is known to the
receiver (irrespect of the number of pilot symbols). Hence,
the difference of the curves in each family is only due to the
difference in pilot spacing. At the left end of the curves, we
see that the curves with more pilot symbols are slightly bet-
ter. This is because when there is little feedback information
from the outer code, pilot symbols are the major contribu-
tion to a priori information. However, at the right end, when
there is sufficient information provided by the outer code,
pilot symbols are no longer an important source of a pri-
ori information. Rather, their negative impact of segmenting
the trellis and shortening the (average) error events becomes
dominant, causing a considerable performance loss. The per-
formance degradation is more severe when more pilot sym-
bols are inserted and when the code is operating at a lower
SNR level. This suggests that the popular practice of termi-
nating the trellis is not a good strategy and that a better way of
inserting pilots may be to separate them the trellis as shown
in Fig. 1(B). This is confirmed by the simulation result in
Fig. 3 where more than 3 dB loss in performance is observed
due to trellis segmentation for a rate 1/2, code length 64K
PA code (solid lines assume perfect channel information and
dashed line uses noncoherent detection). It is interesting to
see that if we overlook the impact of the different strategies
of pilot insertion, we might get the “surprising” result that
noncoherent detection (dashed line) performs noticeably bet-
ter than coherent detection (rightmost solid line)!

[Codes Matched to Differential Coding:] As mentioned
before, the outer code of PA codes is a special type of LDPC
code. Given PA codes perform well (especially at high rates),
one tend to ask how a general LDPC code will perform with
differential coding. This is an interesting question, since it
directs to the solution of how to perform noncoherent de-
tection with LDPC codes. Before we answer the question,
we first note two important facts about EXIT analysis. First,
in order for iterative decoding to converge successfully, the

outer EXIT curve should be strictly below the inner EXIT
curve, leaving an open passage between the curves. Second,
the area under the EXIT curve, A =

∫ 1

0 IedIa, has shown
to be closely related to the capacity of the code (we use “ca-
pacity” to loosely denote the information rate). When the a
priori information is coming from the erasure channel and
when the decoder is an optimal decoder, the area is exactly
the capacity of the code [4]. For other channels, this may not
be exact, but is nevertheless a good approximation as veri-
fied by empirical results. The implication of the above two
facts is that, in order to fully achieve the capacity provided by
the inner code, the outer code needs to have an EXIT curve
closely matched in shape and in position to that of the in-
ner code. Unfortunately, this not is the case of a conven-
tional LDPC code (outer code) and a differential code (inner
code). In Fig. 4, we plot a set of three outer EXIT curves
corresponding to a regular LDPC code, an irregular LDPC
code and the outer code of a PA code, and a set of two inner
EXIT curves corresponding to a differential code (on corre-
lated Rayleigh channel) and the plain Rayleigh fading chan-
nel. The regular LDPC code in the plot is (3,12)-regular,
and the irregular one is optimized with variable node degree
profile ρ(x) = x20 and check node degree profile γ(x) =
0.1510x + 0.1978x2 + 0.2201x6 + 0.03537 + 0.3958x29,
which has a threshold of 0.6726 (about 0.0576 dB away from
the AWGN capacity) [5]. We observe that while the outer
code of (high-rate) PA codes shows a good match with an in-
ner differential code, a conventional LDPC code (regular or
irregular) will either intersect with the differential code (de-
coder failure) or leave a huge area between them (a waste in
code capacity). The observation that LDPC codes match bet-
ter with a plain channel than with a differential code indicates
that, unless specifically designed, LDPC codes should not be
used with a differential encoder (or more generally with any
recursive inner code/modulation). Put another way, an LDPC
code that is optimal in the conventional sense (i.e. BPSK
modulated on memoryless channels) is not optimal when
combined with an inner recursive code/modulation. How-
ever, not using differential coding typically requires more pi-
lot symbols in order to track the channel well. Hence, it is
expected that on (fast) fading channels where only limited
bandwidth expansion is allowed, conventional LDPC codes
do not perform well with noncoherent detection (whether or
not a differential code is used). On the other hand, (high-rate)
PA codes are able to make use of the intrinsic differential
code for noncoherent detection, and are thus a better choice.

As a verification of the above EXIT analysis, Fig. 5 plots
the performance curves of noncoherently detected PA codes
and LDPC codes on Rayleigh channels. LDPC codes are
evaluated either with or without a differential code and their
degree profiles are the same as specified in Fig. 4. First, we
see that the differentially-coded irregular LDPC code is more
than 1.7 dB worse than its BPSK-coded peer at BER of 10−4.



This confirms that (conventional) LDPC codes suffer a per-
formance loss when used with a differential code. Second,
while the performance gap between BPSK-coded irregular
LDPC codes and PA codes is acceptable (about 0.5 dB) with
4% of pilot symbols, it becomes drastically large when pi-
lot symbols are reduced in half, since 2% of pilot symbols
are insufficient for non-differentially coded LDPC codes to
track the channel. The observations are in good agreement
with the EXIT analysis.

3 Code Design Matched to the Receiver
The above analysis leads to a more interesting problem:

what LDPC ensembles are good for differential coding and
how to optimize them? Below we proposes a “convergence-
constraint” method that uses density evolution on EXIT
charts to optimize (outer) LDPC degree profiles matched to
an inner receiver. The proposed method focuses on the inter-
action (or the convergence behavior) between the inner and
outer code during the iterative process, and is a useful ex-
tension of the conventional method for designing LDPC en-
sembles with good thresholds (call it “threshold-constraint”
method) [6].

In order to design an outer code whose EXIT curve will
match closely with the given inner EXIT curve, a nature and
simple thinking is to “sample” the inner EXIT curve and de-
sign an EXIT curve that matches with these sample points
(or the “control points”). Mathematically, if we choose a set
of M control points in the EXIT chart, denoted as (vi, wi),
i = 1, 2, · · · , M , and if we use To(·) to denote the input-
output mutual information transfer function of the resulting
LDPC code (exact expression of To will be defined later in
(4)), the optimization problem can be formulated as

max
∑

λi=1
∑

ρj=1

{

R=1−
∑

ρj/j
∑

λi/i

∣

∣

∣

∣

To(wk)≥vk, k=1, 2, · · · , M
}

,

where R denotes the code rate, λi and ρi denote the frac-
tion of edges in the bipartite graph that are connected to vari-
able nodes and check nodes of degree i. Collectively, we
use λ(x) =

∑

λix
i−1 and ρ(x) =

∑

ρix
i−1 to describe

the degree profiles from the edge perspective, and similarly,
λ′(x) =

∑

λ′
ix

i−1 and ρ′(x) =
∑

ρ′ix
i−1 from the node

perspective [6], where λ′
i = λi/i

∑

λj/j , and ρ′
i = ρi/i

∑

ρj/j . The
following functions are also useful for the discussion

I(x)
∆
= 1 −

∫ ∞

−∞

1√
2πx

e−
(z−x)2

4x log(1 + e−z)dz,(1)

φ(x)
∆
=

{

1− 1√
4πx

∫

tanh z
2 e−

(z−x)2

4x dz, x>0,

1, x=0.
(2)

The code design process is a dual constraint optimization
process that progressively optimizes λ(x) and ρ(x) based on
the other. Below we discuss only the optimization of λ(x)
for a given ρ(x). The optimization of ρ(x) can be derived
similarly.

Under the assumption that the messages passed along all
edges are i.i.d. and Gaussian distributed, the average mes-
sages variable nodes receive from their neighbors are mixed
Gaussian distributed. From (l−1)th iteration to lth local it-
eration (in the LDPC decoder), the mean of the messages
associated with the variable node, mv , evolves as

m(l)
v =

∑

i

λiφ
(

m0+(i−1)
∑

j

ρjφ
−1(1−(1−m(l−1)

v )j−1
)

,

where m0 denotes the mean of the initial messages received
from the channel (or the inner code). Let us denote

hi(m0, r)
∆
= φ

(

m0 + (i − 1)
∑

j

ρjφ
−1

(

1 − (1 − r)j−1
)

)

,

the evolution of the message mean associated with vari-

able nodes can then be described as rl = h(m0, rl−1)
∆
=

∑

i λihi(m0, rl−1). The conventional threshold-constraint
density evolution forces the resulting code to converge to the
zero-error state for a given m0 by setting r > h(m0, r) for
all r ∈ (0, φ(m0)] [6]. This has implicitly use a control point
(v, w) = (1, I(m0)), i.e., the resulting EXIT curve will stay
strictly below point (1, I(m0)). In general, a control point
(v, w) can choose any value from 0 to 1, and the above con-
dition is relaxed to r > h(m0, r) for all r ∈ (r∗, φ(m0)],
where r∗ is the critical value that ensures To(w) ≥ v. For-
mally, the problem is stated as: given a check node degree
profile ρ(x) and a control point (v, w), where 0 ≤ v, w ≤ 1,

max
∑

i λi=1

∑

i

λi/i, (3)

subject to: (i)
∑

iλi = 1,

(ii)
∑

i

λi

(

hi(m0, r)−r
)

<0, ∀r∈ (r∗, φ(m0)],

where m0 = I−1(w) and r∗ satisfies

To(w)
∆
=

∑

i

λ′
i I

(

i
∑

j

ρjφ
−1

(

1−(1−r∗)j−1
)

)

≥ v. (4)

For a set of M control points, (v1, w1), (v2, w2), · · ·,
(vM , wM ), we can combine the constraints associated with
each individual control point and perform a joint optimiza-
tion on all of them, which will result in an EXIT curve whose
shape and position are closely match to the control points.

Note that the above constraint (ii) is a nonlinear function
of λi’s, and that the computation of r∗ from (4) requires
the knowledge of λ(x), which is yet to be optimized. To
get around with this, one possible approach is to consider
an approximation of λ(x) in (4) to compute r∗. Specifi-
cally, we consider only the two lowest degree variable nodes
λi1 and λi2 , and approximate the degree profile as λ̃(x) ≈
λi1x

i1−1 + λi2x
i2−1.

In a conventional LDPC ensemble, i1 = 2, i.e., degree-
1 nodes are not allowed, since the outbound messages from



these nodes do not improve in the message-passing decod-
ing. However, when an LDPC code is used together with a
differential code (or other inner code and/or modulation with
memory), weight-1 nodes in the outer LDPC decoder will get
extrinsic information from the inner code as the iteration pro-
gresses and their estimates will improve accordingly. In this
case, the first and the second nonzero λi’s are λ1 and λ2. An
analytical bound on λ′

1 is difficult, but empirical results show
that λ′

1 ≤ 1−R is a reasonable assumption1. This is because,
otherwise there are at least two degree-1 variable nodes, say
the pth and qth node, connecting to the same check, which
creates a very vulnerable link. As shown in Fig. 6, when the
four bits denoted by solid circles flip altogether, another valid
codeword results and the decoder is unable to detect. In other
words, for any finite length construction, the minimum dis-
tance of this LDPC ensemble is (at the most) 4, which is not
desirable. Using the approximation λ̃(x) = (1−R) + Rx
in (4), we are able to compute (a lower bound of) r∗ to be
used in constraint (ii). Code design is thus solvable using
linear programming. Experiments show that the optimized
EXIT curve has a shape as desired, but the position is slightly
lower, i.e. code rate is slightly pessimistic. This can be com-
pensated by pre-setting the control points slightly higher than
we actually want them to be.

[Optimization Results:] We observe that the LDPC
ensemble optimal for differential coding always contains
degree-1 and degree-2 variable nodes. For high rate codes
above 0.75, these nodes are dominant, or in some cases
the only types of variable nodes; for medium rates around
0.5, there are also a good portion of high-degree variable
nodes. Hence, it is fair to say that the degree profile of
the outer code of high-rate PA codes is (near-)optimal for
differential coding. The optimization result of the target
rate 0.5 is shown in Fig. 7. The resulting LDPC ensemble
has rate R = 0.5037 and degree profile λ(x) = 0.0672 +
0.4599x+0.0264x8+0.0495x9+0.0720x10+0.0828x11+
0.0855x12+0.0807x13+0.0760x14 and ρ(x) = x5. We see
that it matches closely with the noncoherent receiver operat-
ing at 0.25 dB. Accounting for the rate of the outer code, we
see that the resulting differentially-coded LDPC ensemble
requires 0.25 − 10 log10(0.5037) = 3.2283 dB (asymptot-
ically) in order for the iterative differential detection and de-
coding to converge successfully. Compared to a rate 0.50 PA
code which requires 1.26 − 10 log10(0.5) = 4.2703 dB, the
optimized LDPC ensemble is about 1.04 dB better asymp-
totically. Simulation results show a good agreement with the
analytical result (Fig. 8), and the 64K long code performs
about 0.75 dB away from the analytical threshold at BER of
10−4.

1The exact code rate is dependent on the optimization result, but we
know of the target code rate which is in the vicinity of the final code rate.

4 Conclusion
The major conclusions and contributions of this paper are

as follows: First, we show that the popular practice of in-
serting pilots to periodically terminate the trellis incurs an
intrinsic loss in code capacity and is likely to cause severe
BER performance loss to the overall code performance. A
better way of inserting pilot symbols is suggested which is
to separate pilots from trellis. Second, we investigate the
performance of conventional LDPC codes using noncoher-
ent detection. We show that conventional LDPC codes suf-
fer a performance loss when used with an inner differential
code, yet without the differential code, more pilot symbols
are needed to track the channel. Hence, it is fair to say that
noncoherently detected LDPC codes do not perform as desir-
ably as the coherent case. Finally, we propose a convergence-
constraint method to design good LDPC ensembles matched
with differential coding (and in general any receiver). We ob-
serve that the LDPC ensemble optimal for differential coding
always contains degree-1 and 2 variable nodes, and that for
high code rates, these nodes are dominant. The resulting op-
timal LDPC code shows a 1.04 dB gain over the existing PA
code. It is worth mentioning that optimal differentially-coded
LDPC codes are in fact (optimal) irregular repeat accumulate
(IRA) codes [7], but the proposed optimization procedure has
a far-reaching implication and application since it has explic-
itly taken into account the property and the imperfectness of
the receiver.
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Figure 1: Different strategies of pilot insertion in a differential
code.
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Figure 2: The effect of pilot symbols segmenting the trellis.
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Figure 3: Performance of PA codes with different pilot insertion
strategies.
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Figure 4: EXIT curves of LDPC codes and PA codes.
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Figure 5: Noncoherently detected PA codes and LDPC codes on
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Figure 6: Defect in code structure when λ
′

1 > 1−R.
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Figure 7: EXIT chart of a rate 0.5 LDPC ensemble optimized using
convergence-evolution for differential coding.
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Figure 8: Simulations of optimized LDPC code with differential
coding and iterative differential detection and decoding.


