
Punctured Convolutional Codes Revisited: the
Exact State Diagram and Its Implications

Jing Li (Tiffany) Erozan Kurtas
Department of Electrical and Computer Engineering Seagate Research

Lehigh University, Bethlehem, PA 18015 Seagate Technology, Pittsburgh, PA 15222

Abstract— Accurate analysis of (non-punctured) convolu-
tional codes using the state diagram and transfer function has
been well-established; but for punctured convolutional codes,
approximation has been the typical treatment. This paper
discusses a simple way to derive the exact state diagram and
transfer function of a punctured convolutional code. The key
is to represent the punctured code in an equivalent closed-
form form. It is shown that such a representation is always
possible and that the new code typically has the same or fewer
number of states. Implications and applications of this finding
on performance bounds, puncturing pattern design, decoder
implementation for punctured convolutional and punctured
turbo codes are also discussed.

I. INTRODUCTION

Convolutional codes are a class of important codes due
to their flexibility in code length, soft decodability (e.g.
using the BCJR algorithm or soft output Viterbi algorithm
(SOVA)), short decoding delay (e.g. using windowed Viterbi
algorithm) and their role as component codes in paral-
lelly/serially concatenated codes. Puncturing allows convo-
lutional codes to flexibly change rates and is widely used in
applications where high code rates are required (e.g. optical
communications and digital recording systems) and where
rate adaptivity is desired [1][2].

The state diagram and transfer function (SD-TF) approach
is the most popular approach for performance analysis of
convolutional codes (see for example, [1]). However, the
method is well-defined only when the code is non-punctured,
i.e. having a closed-form generator matrix. For punctured
codes, most approaches reply on either heuristic search or
approximated state diagrams. In this paper, we propose an
efficient and systematic way to derive the exact state diagram
and transfer function of a punctured convolutional code and
subsequently extend it to turbo codes. The key is to represent
the punctured code in an equivalent (non-punctured) closed
form. It is shown that (i) such a transformation exists for
both recursive and nonrecursive codes, and (ii) the new
representation typically has the same or fewer number of
states in trellis than that of the original representation (i.e.
trellis of the mother code). The latter may be exploited for
implementation of a simpler trellis decoder.

The research is supported by the National Science Foundation under
Grant No. CCF-0430634, by Seagate Technology, and by the Common-
wealth of Pennsylvania, Department of Community and Economic Devel-
opment, through the Pennsylvania Infrastrusture Technology Alliance.

The proposed method makes it easier to evaluate the
code performance of a punctured convolutional code (or a
convolutional-based code) using maximum-likelihood (ML)
bounds. It also facilitates the design for good puncturing
pattern and the implementation for Slepian-Wolf codes [5].

The rest of the paper is organized as follows. Section II
summarizes a few possible approximated SD-TF approaches
for punctured convolutional codes. Section III discusses the
proposed method of computing the exact state diagram of
the punctured code. Section IV extends the discussion to
code design, performance bounds and Slepian-Wolf code.
Section V concludes the paper.

II. APPROXIMATED SD-TF FOR PUNCTURED CODES

Since the codes we discuss are all linear codes, without
loss of generality, let us use the all-zero sequence as the
reference codeword. Let Aw,d be the input-output weight
enumerator, which denote the number of single error event
having input weight w and output weight d. By single
error event, we refer to a path in the trellis that diverges
from and merges back to the all-zero sequence only once.
Several of the performance bounds, including the (truncated)
union bound and the Divsalar simple bound [3], require the
knowledge of all or a first few terms of Aw,d. A heuristic
way to obtain Aw,d for a punctured trellis code is via
exhaustive search or a walk through the trellis. This leads
to the exact values of Aw,d, but is limited to only the few
terms before the complexity becomes prohibitive. For a more
systematic and elegant approach, or to obtain the entire
spectrum of Aw,d for the punctured code (which is needed,
for example, for the Divsalar simple bound), researchers
have modified the conventional SD-TF approach that was
developed for non-punctured convolutional codes.

Below we briefly discuss three modified SD-FT ap-
proaches for punctured codes via a simple example. Con-
sider a mother generator matrix [1, 1

1+D] and a puncturing
pattern [1, 1; 0, 1] which punctures off the odd-positioned
parity check bits, leading to a code rate of 2/3. The trellis
and the open-loop state diagram of the mother code is shown
in Fig. 1(A).

Modified Method I - Averaged Trellis: The simplest ap-
proximation is to account for the puncturing effect by re-
labeling the branch output using the average of the odd-
and even-staged output. This assumes that the four branches

20150-7803-8622-1/04/$20.00 ©2004 IEEE

connecting the two states (see Fig. 1(A)) are statistically
independent and equally likely. The corresponding trellis
and state diagram are shown in Fig. 1(B), and the resulting
transfer function can be derived using the Mason’s rule [1]
as

T(w, d)(I) =
X2Y 2 + X2Y 3

1 − Y
,

=(X2Y 2+X2Y 3)(1+Y +Y 2+· · ·), (1)

where the power of X and Y denote the input and output
weight, and the coefficient of term XwY d is Aw,d.

Modified Method II - Extended Trellis: A more sophisti-
cated strategy is to take the odd- and even-staged trellis
and combine them in an extended trellis through “trellis
product”. As shown in Fig. 1(C), the extended trellis has
2 × 2 = 4 states, obtained from coupling the states of two
consecutive stages, i.e. states at time k−1 and k are combined
to form new states < k−1, k >, and so are states at k
and k +1. Similarly, the branches of the extended trellis
are labeled with the cascade of inputs/outputs of the two
relevant stages. The corresponding transfer function can be
computed as

T(w, d)(II) =
X4Y 5

1 − Y − X4Y 5
,

=X4Y 5
(
1+(Y +X4Y 5)+(Y +X4Y 5)2+· · ·). (2)

We note that while this method captures the puncturing
nature better than the previous one, it is nevertheless not
accurate. This is because that the new state diagram con-
siders only (00) as the all-zero or reset state, whereas in
reality, both (00) and (01) can be the diverging state, and
both (00) and (10) can be the re-merging state.

Modified Method III - Condensed Trellis: The third
method also separately considers odd- and even-staged
trellis, but instead of trellis product, it squeezes trellis by
taking away the states between the two stages, i.e. states at
time k in Fig. 1(D). Thus the condensed trellis preserves
the same number of states as before (2 in this case), but
will instead have parallel branches between any pair of
connecting states at consecutive stages. In general, if the
puncturing period is t, then the condensed trellis will have
2t−1 parallel branches. The following transfer function can
be derived from Fig. 1(D):

T(w, d)(III) = X2Y 2+
4X2Y 3

1−Y −X2Y 3
,

=X2Y 2+4X2Y 3(1+Y+X2Y 3+(Y+X2Y 3)2+· · ·). (3)

Although hard to prove, we note that this third method
actually yields the true state diagram and transfer function
(assuming input sequences have even lengths; if not, pad
zeros). This will become clear after we compare the re-
sults here with those from the proposed, provenly-accurate
method.

0

1

0

1

0/00

1/10

1/11

0/01

0 1 0
xyXY

Y

2

0

1

0

1
0/0, 0/01

0/1, 0/00

1/1, 1/10

1/1, 1/11 0 1 0

(Y+1)/2

2 xy(XY+XY)/2

X Y 22

0 1 0

X Y2 3

XY2 2XY

Y+

2

��

��

��

��� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �� � � � � � �� � � � � � � �� � � � � � �

1 1

0 0
10/100
01/010

00/001
11/111

11/110
00/000

10/101
01/011

t 1 t+1

00

01

10

11

10

01

00

00/001

00/000

01/010 10/101
11

11/110

11/111

10/10001/011

<t 1,t> <t,t+1>

11

001000
X Y 22XY2

X Y2 3

XY

XY XY

Y

2

01

1

00

1 1

0

0/0 0/01

1/10

1/11

0/000/0

1/1

1/1

t t+1t 1

(B)

(A)

(C)

(D)

Fig. 1. (A) Non-punctured mother code. (B) Modifi ed method I. (C)
Modifi ed method II. (D) Modifi ed method III.

III. THE PROPOSED APPROACH

A. A Non-punctured Representation for Punctured Codes

For (provenly) accurate analysis of a punctured code,
we propose to first represent a punctured convolutional
code (i.e. its generator matrix) in an equivalent closed-
form (non-punctured) representation and to subsequently
apply the convolutional SD-TF approach. Since punctured
convolutional codes are still linear codes and since the
coded bits still exhibit periodic relations, it should not be
surprising that a punctured convolutional code should also
be implementable using “non-punctured” finite-state linear
circuits and could therefore adopt a closed-form generator
matrix. Below we introduce an efficient method to convert
a general punctured convolutional code to a non-punctured
equivalency.

Consider a punctured convolutional code, Cp, obtained

2016

from puncturing a rate R0 = k/n mother code C0. Let G0

denote the k × n generator matrix of C0 and let t denote
the puncturing period. The new closed-form representation
of Cp, Gp, can be obtained by first expanding G0 to
an equivalent matrix Gt of dimensionality kt × nt, and
then extracting the unwanted columns (i.e. the columns
corresponding to the punctured bits). The question is how to
efficiently expand an arbitrary generator matrix by a factor
of t in rows and columns.

Before proceeding to the main result, let us first dis-
cuss the notations. Let ā

∆= [a0, a1, · · · , am] be a binary
sequence. Let A(D) =

∑m
i=0 aiD

i be its equivalent rep-
resentation in the � -domain. The sequence ā can be split
in t sub sequences with respect to the modulo-t positions,
termed the cyclic-t phases:

ā
(t)
0

∆= [a0, at, a2t, · · ·],
ā
(t)
1

∆= [a1, at+1, a2t+1, · · ·],
· · · · · ·

ā
(t)
t−1

∆= [at−1, a2t−1, a3t−1, · · ·].
The corresponding � -domain representations of these
phases are given by

A
(t)
j (D) =

m∑
i=0

ait+jD
i, j = 0, 1, · · · , t − 1. (4)

Clearly, the entire sequence A(D) can adopt a poly-phase
representation using A

(t)
j (D)’s as:

A(D)=A
(t)
0 (Dt)+DA

(t)
1 (Dt)+· · ·+Dt−1A

(t)
t−1(D

t). (5)

For notational convenience, the superscript (t) will be omit-
ted where there is no confusion.

Define Γ(t)
A (D) ∆=⎡

⎢⎢⎣
A0(D) A1(D) · · · At−2(D) At−1(D)

DAt−1(D) A0(D) · · · At−3(D) At−2(D)
· · · · · · · · · · · · · · ·

DA1(D) DA2(D) · · · DAt−1(D) A0(D)

⎤
⎥⎥⎦ ,

as the t-cyclic phase elementary matrix, or simply, the
elementary matrix, of a feed-forward polynomial A(D). We
see that Γ(t)

A (D) is a t× t square matrix that contains t2 � -
domain feed-forward polynomials. It is easy to verify that
Γ(t)

A (D) has the following properties:

Lemma: (Properties of a t-cyclic phase elementary matrix)
• Γ(t)

A (D) is a full rank matrix for all A(D) �= 0.
• If A(D) = 1, then Γ(t)

A (D) is an identity matrix.

Theorem: For a rate k/n convolutional code with generator

matrix G(D) ∆= [Gij(D)]k×n, where each entry Gij(D) =
Uij(D)/Vij(D), and Uij(D) and Vij(D) are feed-forward
polynomials, the equivalent expanded generator matrix Gt

can be obtained by replacing each entry Gij(D), with a t×t

square matrix Γ(t)
Uij

(D)(Γ(t)
Vij

(D))−1.

Proof: It is enough to prove that each element Fij(D) =
Uij(D)/Vij(D) can be expanded to a t × t square matrix
Γ(t)

Uij
(D)(Γ(t)

Vij
(D))−1. For notational simplicity, let us drop

the subscripts ij. Let X(D) = X0(Dt) + DX1(Dt) +
· · · + Dt−1Xt−1(Dt) be the input sequence and Y (D) =
Y0(Dt) + DY1(Dt) + · · · + Dt−1Yt−1(Dt) be the corre-
sponding output sequence, i.e.,

Y (D) = X(D)
U(D)
V (D)

. (6)

We need to show that[
Y0(D), Y1(D), · · · , Yt−1(D)

]
=[

X0(D), X1(D), · · · , Xt−1(D)
]
Γ(t)

U (D)
(
Γ(t)

V (D)
)−1

,
(7)

Expanding (6) yields(
Y0(Dt)+DY1(Dt)+· · ·+Dt−1Yt−1(Dt))

)(
V0(Dt)+DV1(Dt)+· · ·+Dt−1Vt−1(Dt))

)
=

(
X0(Dt)+DX1(Dt)+· · ·+Dt−1Xt−1(Dt)

)(
U0(Dt)+DU1(Dt)+· · ·+Dt−1Ut−1(Dt)

)
. (8)

Gathering the terms with respect to the order of the power,
we obtain

X0(Dt)U0(Dt) + DtX1(Dt)Ut−1(Dt)+
DtX2(Dt)Ut−2(Dt) + · · · + DtXt−1(Dt)U1(Dt)

=Y0(Dt)V0(Dt) + DtY1(Dt)Vt−1(Dt)+
DtY2(Dt)Vt−2(Dt) + · · · + DtYt−1(Dt)V1(Dt),

DX0(Dt)U1(Dt) + DX1(Dt)U0(Dt)+
Dt+1X2(Dt)Ut−1(Dt) + · · · + Dt+1Xt−1(Dt)U2(Dt)

=DY0(Dt)V1(Dt) + DY1(Dt)V0(Dt)+

Dt+1Y2(Dt)Vt−1(Dt) + · · · + Dt+1Yt−1(Dt)V2(Dt),
· · ·
Dt−1X0(Dt)Ut−1(Dt) + Dt−1X1(Dt)Ut−2(Dt)+

Dt−1X2(Dt)Ut−3(Dt) + · · · + Dt−1Xt−1(Dt)U0(Dt)

=Dt−1Y0(Dt)Vt−1(Dt) + Dt−1Y1(Dt)Vt−2(Dt)+
Dt−1Y2(Dt)Vt−3(Dt) + · · · + Dt−1Yt−1(Dt)V0(Dt),

which can be simplified to:

X0(D)U0(D) + DX1(D)Ut−1(D)+
DX2(D)Ut−2(D) + · · · + DXt−1(D)U1(D)

, =Y0(D)V0(D) + DY1(D)Vt−1(D)+
DY2(D)Vt−2(D) + · · · + DYt−1(D)V1(D) (9)

X0(D)U1(D) + X1(D)U0(D)+
DX2(D)Ut−1(D) + · · · + DXt−1(D)U2(D)

=Y0(D)V1(D) + Y1(D)V0(D)+
DY2(D)Vt−1(D) + · · · + DYt−1(D)V2(D), (10)

2017

· · ·
X0(D)Ut−1(D) + X1(D)Ut−2(D)+

X2(D)Ut−3(D) + · · · + Xt−1(D)U0(D)
=Y0(D)Vt−1(D) + Y1(D)Vt−2(D)+

Y2(D)Vt−3(D) + · · · + Yt−1(D)V0(D). (11)

Rewrite the above linear equations in a matrix form, we get[
Y0(D), Y1(D), · · · , Yt−1(D)

]

×

⎡
⎢⎢⎢⎢⎣

V0(D), V1(D), · · · , Vt−1(D)
DVt−1(D), V0(D), · · · , Vt−2(D)
DVt−2(D), DVt−1(D), · · · , Vt−3(D)

· · · , · · · , · · · , · · ·
DV1(D), DV2(D), · · · , V0(D)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Γ

(t)
V (D)

=
[
X0(D), X1(D), · · · , Xt−1(D)

]

×

⎡
⎢⎢⎢⎢⎣

U0(D), U1(D), · · · , Ut−1(D)
DUt−1(D), U0(D), · · · , Ut−2(D)
DUt−2(D), DUt−1(D), · · · , Ut−3(D)

· · · , · · · , · · · , · · ·
DU1(D), DU2(D), · · · , U0(D)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Γ

(t)
U (D)

Since � (t)(D) is a full-rank square matrix, it follows that
(7) holds. �

We note that the above practice of expanding a generator
matrix is applicable to any convolutional code, be it sys-
tematic or non-systematic, recursive or non-recursive. For
example, when the code is a non-recursive convolutional
code, i.e., Vij(D) = 1 for all 1 ≤ i ≤ k and 1 ≤ j ≤ n,
then each term in the generator matrix becomes Gij(D) =
Uij(D)/Vij(D) = Uij(D), and the corresponding t × t
expansion is

Γ(t)
Uij

(D)(Γ(t)
Vij

(D))−1 = Γ(t)
Uij

(D)Ik(D) = Γ(t)
Uij

(D). (12)

B. Examples

Example I: Consider the following example where a
rate 3/4 recursive systematic convolutional (RSC) code is
punctured from a rate 1/2 mother code with generator
matrix [1, 1+D+D2+D3

1+D2+D3] and puncturing pattern [1, 1; 0, 1]
(see Fig. 2(A)).

Let U(D) ∆=1+D +D2 +D3 and V (D) ∆=1+D2 +D3.
The 2-cyclic phases of U(D) and V (D) are

U0(D) = 1 + D, U1(D) = 1 + D, (13)

V0(D) = 1 + D, V1(D) = D, (14)

which lead to elementary matrices:

Γ(2)
U (D) =

[
1+D, 1+D

D+D2, 1+D

]
,

Γ(2)
V (D) =

[
1+D, D
D2, 1+D

]
,

According to the Theorem, the expanded matrix of G is
given by

Gt =
[

I2, Γ(2)
U

(
Γ(2)

V

)−1]
2×4

=

[
I2,

[
1+D, 1+D

D+D2, 1+D

] [
1+D

1+D2+D3 , D
1+D2+D3

D2

1+D2+D3 , 1+D
1+D2+D3

]]

=

[
1, 0, 1+D3

1+D2+D3 , 1+D
1+D2+D3

0, 1, D+D2

1+D2+D3 , 1+D3

1+D2+D3

]
(15)

Puncturing the parity bits in odd positions means deleting
the last column of Gt. Hence, the punctured code takes the
following closed form[

1, 0, 1+D
1+D2+D3

0, 1, 1+D3

1+D2+D3

]
. (16)

The linear circuits implementation of the punctured code in
non-closed-form and closed-form are shown in Fig 2.

+

+

+ ++

 1 1
 0 1

DDD
puncture
patternX

X

Y

(A)

+ ++ +

+

D D D

X0

X1

X0

X1

Y1

(B)

Fig. 2. A rate 2/3 punctured RSC code. (A) Punctured representation. (B)
The equivalent (non-punctured) closed form.

Example II: In the above example, the new closed-form
representation (Fig. 2(B)) results in the same number of
states as that of the mother code (Fig. 2(A)). It is also
possible for the expanded generator matrix to have fewer
number of states. This happens when the code is recursive
and when (all) the feedback polynomial(s) arefactorisable.
For example, an RSC convolutional code with generator
matrix [1, 1+D2+D3

1+D+D2+D3] has memory 3 and hence 8 states
in the trellis. Its equivalent expanded generator matrix takes
the form of: [

1, 0, 1
1+D2 , 1

1+D2

0, 1, D
1+D2 , 1

1+D2

]
. (17)

Thus, the linear circuits implementation of the new repre-
sentation (as well as any of its punctured codes) has only
2 delay elements, leading to only 4 states in the trellis.
This feature may be exploited for implementation of a

2018

simpler decoder for convolutional codes and turbo codes.
We note that for turbo codes, the component RSC codes
are typically chosen to have primitive (and hence non-
factorisable) feedback polynomials. Nevertheless, as pointed
out in [4], non-primitive feedback polynomials may also be
desirable in certain cases, since although they make the turbo
code perform worse at the water-fall region, but the error
floor appears at a lower stage.

Example III: Consider the same example we used in
Section II, i.e., G(D) = [1, 1/(1 + D)] generator matrix
with [1, 1; 0, 1] puncturing pattern. The closed-form repre-
sentation of the punctured code is obtained by deleting the
third column of the expanded matrix

Gt =
[

1, 0, 1
D , 1

D ,
0, 1, 1, 1

D

]
. (18)

We see that it will produce the same state diagram and
transfer function as Method III in Section II (see Fig. 1(C)).
This indicates that the heuristic “condensed trellis” approach
is also accurate, but the proposed method can be rigorously
proven. Further, as discussed in Section IV, the availability
of closed-form generator matrices make it convenient to
exploit punctured convolutional/turbo codes in other appli-
cations including Slepian-Wolf coding [5].

IV. IMPLICATIONS AND APPLICATIONS

Among other applications, the proposed method facili-
tates performance analysis using ML bounds, code design,
decoder implementation and Slepian-Wolf coding.

Performance Bounds: The general form of union bounds
on bit error rate is given by

Pb ≤
∑
w

w
∑

d

Aw,dP2(d), (19)

where Aw,d is the IOWE that is dependent on the code,
and P2(d) is the pair-wise error probability (PEP) that is
dependent on the channel. For additive white Gaussian noise
(AWGN) channels,

P2(d) = Q

(√
2dREb

N0

)
≤ 1

2
exp

(
−dREb

N0

)
. (20)

For convolutional codes, Aw,h can be obtained from the
coefficients of the transfer function. For turbo codes formed
from parallel or serial concatenation of two convolutional
codes, Aw,h can be computed using the concept of a uniform
interleaver:

Parallel : Aw,d =
∑

d1+d2=d

A
(1)
w,d1

A
(2)
w,d2(

L
w

) , (21)

Serial : Aw,d =
L∑

l=1

A
(o)
w,lA

(i)
l,d(

L
l

) (22)

where L is the interleaver size, A(1) and A(2) are the
IOWE’s for the first and second component code of the

parallel code, and A(o) and A(i) are the IOWE’s for the
outer and inner component code of the serial code. Hence,
using the exact transfer function and the above formulas,
union bounds for punctured convolutional codes as well as
punctured serial/parallel turbo codes can be conveniently
evaluated. For example, the performance of a convolutional
code with transfer function Tw,d(X, Y) over AWGN channel
is upper bounded by:

Pb ≤ 1
2

∂Tw,d(X, Y)
∂X

∣∣∣∣
x=1,Y =exp(−REb/N0)

, (23)

where Tw,d(X, Y) = X2Y 2+ 4X2Y 3

1−Y−X2Y 3 .
Puncturing Pattern: The performance of a punctured

convolutional/turbo code not only depends on the mother
code, but also the puncturing pattern [2]. Computer search,
accompanied with lengthy Monte-Carlo simulation, has been
the conventional method of searching for good puncturing
pattern. Now that a simple and systematic way is available
to evaluate the distance spectrum of a punctured code,
simulation is no longer needed and the search process can
be considerably expedited as well as made more accurate.

Decoder Implementation: As mentioned previously, since
the new expanded generator matrix may have fewer states
than the original generator matrix, a simpler trellis decoder
may be implemented for the mother code as well as any of
its punctured codes.

Slepian-Wolf Coding: Additionally, the availability of
a closed-form representation for punctured convolu-
tional/turbo codes also makes them readily applicable
in Slepian-Wolf coding using the SF-ISF framework[5].
Specifically, using the simple construction method described
in [5], syndrome formers (SF) and inverse syndrome formers
(ISF) can be conveniently derived from the closed-form gen-
erator matrices, and subsequently form an efficient Slepian-
Wolf source codec.

V. CONCLUSION

A efficient and general method is proposed to derive the
equivalent closed-form generator matrix, and subsequently
the exact state-diagram and transfer function, of a punctured
convolutional code. The proposed method has implication
and application in a number of places including code design
and analysis for both punctured convolutional codes and
punctured turbo codes.

REFERENCES

[1] S. Lin, and D. J. Costello, Error Control Coding, Prentice Hall, 2nd
edition, 2004.

[2] R. D. Wesel, X. Liu, and W. Shi, “Trellis Codes for Periodic
Erasures,” IEEE Trans. Commun., pp 938-947, June 2000.

[3] D. Divsalar, “A simple tight bound on error probability of block codes
with application to turbo codes,” TMO Progress Report 42-139, Nov.
1999.

[4] O. Takeshita, O. Collins, P. Massey and D.Costello Jr, “A note on
asymmetric turbo codes,” IEEE Comm. Let, pp. 69-71, March, 1999.

[5] Z. Tu, J. Li, and R. S. Blum, “An effi cient SF-ISF approach for the
Slepian-Wolf source coding problem,” to appear Eurasip J. on Applied
Signal Processing.

2019

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

