
Generalized Product Accumulate Codes: Analysis and Performance

Jing Li, Krishna R. Narayanan, and Costas N. Georghiades
Department of Electrical Engineering

Texas A&M University, College Station, TX 77843

Abstract— In [1] [2], product accumulate (PA) codes were proposed
and shown to be a class of simple and provably good codes for rate���������

. This work investigates thegeneralized product accumulate
(GPA) codes which have rates over the entire range and which are also
“good” both in the maximum likelihood (ML) sense and under the it-
erative approach. Analysis concentrates on the weight distribution over
the code ensemble, the ML bounds, and the existence and computation
of threshold phenomenon in the iterative decoding. A tight upper bound
due to Divsalar and the thresholds computed using density evolution are
examined. Simulations are presented and evaluated, especially for rate�
	������

.

I. INTRODUCTION

Product accumulate (PA) codes, proposed in [1] [2] are a
class of interleaved serial concatenated codes where the inner
code is a rate-1 recursive convolutional code ������������ and the
outer code is a parallel concatenation of 2 single-parity check
(SPC) codes. They are promising codes in that (1) they are
provably “good” (see definition below) both in the maximum
likelihood (ML) sense and under the iterative decoding, (2) the
performance is within a few tenths of a dB from the capacity
at rate �������� , (3) they are linear time encodable and decod-
able, and (4) the decoding procedure is highly parallelizable.
As a benchmark, a (2000,1000) PA code performs a few tenths
of a dB away from the best known turbo code yet with much
lesser complexity. However, the proposed product accumu-
late codes therein only have rates �������� . In this paper, we
first extend product accumulate codes to rates below 1/2. We
then compute tight upper bounds on the performance of these
codes (for all rates) with ML decoding based on the simple
bound proposed by Divsalar [4]. Thresholds under the itera-
tive decoding are also examined. These results show that this
class of codes can achieve performance close to the capacity
limit. They also illustrate the asymptotic difference between
ML decoding and iterative decoding performance for this class
of codes.

For the analysis of GPA codes, we focus on the two princi-
ple issues: (1) to investigate the properties of the ensemble of
these codes and (2) to investigate the performance of the codes
with the iterative decoding algorithm. For the former, the con-
centration is on the ensemble average of weight distribution
and the quantification of the interleaving gain. Several bounds
based on distance spectrum, including the union bound and the
simple bound [4], are computed. For the latter, we use density
evolution (DE) [5] [6] [7] to compute the thresholds (in the it-
erative sense) for GPA codes. In [8], a “good” code is defined
as a code for which there exists a threshold above which an ar-
bitrary low error rate can be achieved as code length "!$# .
The upper bound on the performance of these codes under ML
decoding and the threshold computed using density evolution
indicate that GPA codes are provably “good” both in the ML
sense and in the iterative sense. Further, comparing the bounds
calculated under ML assumption and in the iterative setting,
the performance loss due to the suboptimality of iterative de-

coding as well as their implication in the code design can be
obtained.

The paper is organized as follows. Section 2 introduces the
system model of GPA codes. Section 3 and 4 analyzes GPA
codes from the ML perspective and from the iterative perspec-
tive, respectively. Section 5 discusses simulation results. Sec-
tion 6 concludes the paper.

II. STRUCTURE OF GPA CODES

Product accumulate codes proposed in [1] [2] are formed by
concatenating an outer code with an rate-1 accumulator (inner
code). The outer code is itself a parallel concatenation of 2
single-parity check (SPC) codes. For a generalized product ac-
cumulate code proposed here, the number of parallel branches
need not be restricted to 2. As shown in Fig. 1, % �&�
branches of �(')�*��+,'-� SPC codes are interleaved and paral-
lelly concatenated as the outer code. Further, as will be shown
later, in order to obtain interleaving gain, . blocks of SPC
codewords need to be combined and jointly interleaved in each
branch. The resulting GPA code thus has rate �0/1'���('2��%3�
and length 4/3.5�('6�7%3� . It is interesting to note that in an
extreme case when SPC codes are reduced to (2,1) repetition
codes, then the corresponding GPA codes are reduced to regu-
lar repeat accumulate (RA) codes [9], which, despite their sim-
plicity, have demonstrated surprisingly good performance and
are shown to have the potential for achieving AWGN chan-
nel capacity [3]. This also holds for GPA codes. RA codes
achieve good performance primarily at very low rates; how-
ever, GPA codes are capable of good performance for a wide
rate range, like �8/3�9�:;+<��=�;+��>�: . The capability to provide
good performance for a wide range of rates using one simple
structure is very useful in a variety of practical applications.

The decoding of GPA codes is via an iterative decoding
employing the turbo principle (message passing decoding).
Soft information in log-likelihood ratio (LLR) form iterates
among different component codes. An efficient sum-product
algorithm and its reduced-complexity form, the min-sum al-
gorithm, are described in [2] to decode product accumulate
codes, and can be readily applied to GPA codes. Hence, GPA
codes are also linear-time encodable and decodable.

III. ML-BASED ANALYSIS

A. Weight Distribution and Interleaving Gain

Assuming ML decoding, we quantify the interleaving gain
of GPA codes by investigating their weight distributions. From
Divsalar et al’s results [9] and Benedetto et al’s results [10],
we know that for a general serial concatenated system with
a recursive inner code, there exists a threshold ? such that
for any @BA== DCE�F? , the asymptotic word error rate is upper
bounded by: GIHKJL /NM 1OQPSR TUWVYXZ\[+ (1)

975

0-7803-7206-9/01/$17.00 © 2001 IEEE

where] C^ is the minimum distance of the outer code and is
the interleaver size. Although the above results offers a useful
guideline for designing concatenated schemes, it is well worth
computing the exact interleaving for GPA codes since it re-
veals somewhat important and interesting results that are not
obvious from (1).

The result in (1) indicates that in order to obtain an inter-
leaving gain, the minimum distance of the outer code needs
to be at least : . However, the outer codewords of GPA codes
(with random interleavers) have minimum distance of only � .
On the other hand, if _ -random interleavers are used such that
bits within _ distance are mapped to at least _ distance apart,
then the outer codewords are guaranteed to have a minimum
distance of at least : as long as _`�`' . Below we show that al-
though the minimum distance of the outer codewords over the
ensemble of all interleavers is only � , an interleaving gain still
exists for GPA codes with random interleavers. From [10], we
know that outer codewords of weight : or more will lead to an
interleaver gain. Hence we focus on weight-2 outer codewords
only, and show that the number vanishes as . increases (here
all-zero sequence is used as the reference).

It is convenient to employ the uniform interleaver which
represents the average behavior of the ensemble of the codes.
Denote acbedgfLihj as the input output weight enumerator (IOWE)
of the k=l j SPC branch code. The IOWE of the outer code,a b C fLih j , with 2 parallel concatenated branches (% /8�) aver-
aged over the code ensemble is given as:

a b C fLih j / j X
a bnmofLih j X a bqpSfLih j O j Xr L +�%s/`�>+ (2)

where t is the input sequence length.
Define the input output weight transfer probability

(IOWTP) of k=l j branch code,
G bedgfLih j , as the probability that a

particular input sequence of weight u is mapped to an output
sequence of weight v :

G bewxfLih j /�a bxwefLih j r L . Using induction
on (2), we have the average IOWE for the % -branch parallel
concatenation as:

a b C fLih j /j Xzy j Z yB{q{q{ y j�|~}Wja bomnfLih j X
G bqpSfLih j Z G b ��fLih j=�2�=��� G bx��fLih j�| +W�K%"���>� (3)

Since all component codes are �('>����+�'-� SPC codes,
G b p�fLih j /G b ��fLih j / �=��� / G be��fLih j , and t�/�.�' .

For each branch where .I��'9����+,'-� SPC codewords are com-
bined, the IOWE function is given as (assuming even parity
check):

aQ�������(u�+�vY�~/ l
d }K�

'k u d v p�� d��Sp��
�
+ (4)

where the coefficient of the term uc�>v�� denotes the number of
codewords with input weight � and output weight � . Using
(4), we can compute the IOWEs of the first SPC branch code,
denoted as a bnmof� h � (/8a ������ h �). For all other SPC branch codes,

since only parity bits are transmitted, a b p�f� h � /�a b ��f� h � / �=��� /

a be��f� h � /�a bnmof� h � y � . With a little computation, it is easy to see
that the number of weight-� outer codewords is given by:

aDb C fj=} p / L acb
C fLih j=} p /�. '� . lp� lp

� O m +
/ M �('i���5� p� . O be� O pSf +E�K%����>+ (5)

where the last equation assumes a large . (i.e. large block
size). Equation (5) shows that the number of weight-� outer
codewords decreases at some power of . if % �0: . In other
words, when there are at least 3 SPC branches, weight-� outer
codewords vanishes with the increase of block size and, hence,
an interleaving gain exists.

For the case when % /�� , (5) says that the number of
weight-2 outer codewords is a function of a single parameter,' , which is related to the rate of SPC codes. Now considering
the serial concatenation of outer codewords with inner ������~���� code, the overall output weight enumerator (OWE) aQ¡ ��¢j
is computed as:

a ¡ ��¢j�}¤£ / j�¥ a b
C fj ¥ aDmg�<bnm y5¦ fj�¥�h j§j ¥ / j�¥ L a b C fLih j ¥ acm¨�<bnm y5¦ fj<¥gh j§j ¥ + (6)

where the IOWE of �9©�����ª��� code is given by [9]:a mg�-bom yW¦ fLih j / § O jP L �Sp [
j O m� L �SpS� O m . In particular, when %«/*� ,

the number of weight- ¬ GPA codewords produced by weight-�
outer codewords, denoted as a¡ ��¢ pj�}¤£ , is given as:

a ¡ ��¢ pj�}¤£ / ��'2���5� p� ��7¬§
p

/�M��('�. O m ��+
%®/��;+ (7)

where �/�.5��'I���¯� is the GPA codeword length. This in-
dicates that the impact of weight-2 outer codewords on the
overall GPA codewords vanishes as the . increases. In other
words, for GPA codes with %°/±� , an interleaving gain also
exists and is proportional to . .
B. ML Decoding Based bounds

In this section, we quantify the asymptotic performance of
GPA codes with ML decoding, and show that these codes are
capable of near-capacity performance. We do so by comput-
ing their upper bounds. Among the various bounding tech-
niques developed, the union bound is the most popular but
is fairly loose above cutoff rate. Tighter and more compli-
cated bounds include the tangential sphere bound, Duman-
Salehi bound, Viterbi and Viterbi bound, the Hughes bound,
and etc. Recently, Divsalar developed a simple bound on the
error probability in [4] and showed that the resulting bound is
very tight when applied to RA codes, LDPC codes and turbo
codes. These new tight bounds are essentially based on the
bounding techniques developed by Gallager [11]:²B³ ��´Sµ<µ�¶�µ>�~· ²i³ �,´Sµ-µ�¶�µ5+;¸¹»º1¼ �½� ²i³ �=¸¹�º ¼ ��+ (8)

where ¸¹ is the received codeword (noise-corrupted), and ¼ is
a region in the observed space around the transmitted code-
word. To get a tight bound, the above methods usually re-
quire optimization and integration to determine a meaningful

976

¼ . Here, we apply this bounding technique to the analysis of
GPA codes.

We first quote and summarize the main results of [4]. De-
fine spectral shape of a code, µ § ��¾5� , as the normalized weight
distribution averaged over the code ensemble ¿ § :

µ § ��¾5�2À(/ � ÁÃÂ �,a j=} P Ä § [�,+�ÅÇÆ�¾DÆ0�9+ (9)

where is the code length, a j is the (average) output weight
enumerator of the code. Further define the ensemble spectral
shape as:

µ>��¾5�BÀÃ/ Á(ÈÃÉ§iÊ�Ë µ § ��¾5�,+EÅÇÆ±¾ÌÆF��� (10)

A minimum threshold (in dB) can be computed as [4]:

� @)Í »¶ � ^ wÃÎ / �� ÉÐÏ5Ñ�5Ò Ä�Ó bnm O;Ô f
Õ � ��¾5��+ (11)

where � is the code rate. For the Divsalar bound, Õ � ��¾5� is
given by:

Simple: Õ � �,¾5�2/ ���¾�>¾ ���´ O p×Ö-b Ä f � (12)

Since the above bound is based on the ensemble spectral
shape µ>��¾5� , they serve as the asymptotic performance limit
(i.e. "!$#) of the code ensemble assuming ML decoding.

The spectral shape for GPA codes can be computed since
the component codes are simple single parity check codes and�9©���6����� code; however, there does not seem to be a simple
closed form expression. Nevertheless a numerical approach
can be used; Using (3), (6) and (9) we can compute the spectral
shape of GPA codes, which is a function of all the parameters
of the code, including .�+,'�+�% . Fig. 2 compares the spectral
shape of rate ���� GPA codes with %Ø/7�;+�Ù>+�Ú and �/�Ù5Å5Å ,
respectively. As expected, for GPA codes of the same rate,
larger % leads to better spectral shape (and therefore better
code in the ML sense).

We approximate the ensemble spectral shape by choosing
a large . In general it is possible to encounter numerical
problems when computing the spectral shape; however, these
can be avoided by careful computation. Whenever possible,
input output weight transfer probability,

G Lih j , should be used
instead of input output weight enumerator, a Lih j , to eliminate
numerical overflow. The bounds for GPA codes are computed
and plotted in Fig. 3 (for clarity, only the simple bound and the
union bound are shown). GPA codes with %Û/7�>+�Ù are eval-
uated. For comparison, also shown are the Shannon limit and
the bounds for random codes and RA codes. Several things
can be observed. (1) the simple bounds for GPA codes are very
close to those of the random codes, indicating that GPA codes
have good distance spectrum. Researchers have shown that
irregular codes, like irregular LDPC codes or irregular repeat
accumulate (IRA) codes [12] have bounds extremely close to
the capacity. But for regular codes like GPA codes, Å>��Ü dB
from the capacity is still impressive. (2) the higher the rates,
the closer the bounds, indicating that GPA codes are probably
more advantageous at high rates than low rates (as opposed
to repeat accumulate codes). (3) the larger the value of % ,
the closer the bound, which matches with our analysis in the

previous subsection. It is expected that as %Ý!Þ# , the sim-
ple bound as well as the distance spectrum of GPA codes will
converge to those of the random codes. In other words, like
repeat accumulate codes, GPA codes also have the potential
for achieving AWGN channel capacity such that, as the rate
approaches Å , the average required Eb/No for arbitrarily small
error probability with ML decoding approaches

Á(ß5à � . This is
obvious, for, as mentioned above, RA codes are the special
case of GPA codes where all the (t+1,t) SPC codes have pa-
rameter 'á/â� . Further, it can be seen from the plot that, for
RA code of a given rate, we can always find a better GPA code
(in the ML sense) of the same rate by increasing both ' and %
(recall that GPA codes have rate �ã/
'�©��'i��%3�).

The implication of the above analysis is that GPA codes
are by nature good codes, and that larger % (i.e. more SPC
branches) leads to better distance spectrum. However, due to
the lack of a practical ML decoder, this behavior may not be
observable in practice. Since the performance of the subopti-
mal iterative decoder is also a function of % , it is necessary
to investigate the iterative decoding process in order to give a
more meaningful evaluation of the code performance.

IV. ANALYSIS OF GPA CODES UNDER ITERATIVE
DECODING

We use density evolution [6] to evaluate the asymptotic per-
formance of the iterative decoding. Here asymptotic refers to
the assumption of infinite code lengths, perfect random inter-
leavers and infinite number of iterations. The idea is to model
how decoding would proceed on an infinite block size and to
evaluate the distribution of the messages that are passed along
the code graph in each step. Incorrect messages are defined as
the messages that contribute towards a wrong decision, and the
portion of incorrect messages is evaluated as error probabilityG¯ä

.
Density evolution in general allows the computation of a

threshold, if it exists, through a deterministic algorithm for a
given code and a given decoding strategy. The threshold is de-
fined as the minimum SNR value å required to guarantee zero
error probability for infinite block size and infinite iteration
number æ :

å
/ È(Â�ç� § Ô �,_5 I�0À
ÁÃÈ(Éè Ê)Ë Á(ÈÃÉ§iÊ�Ë

G¯ä !"Å¯��� (13)

The component codes of the proposed GPA codes are single
parity check codes and since the inner rate-1 code �9©�S�������
has a simple graph representation without any cycles, it is pos-
sible to extend the density evolution technique used to analyze
LDPC codes to compute thresholds for GPA codes under mes-
sage passing decoding. The exact steps for product accumu-
late codes are described in [2] and can be extended straight-
forwardly to GPA codes. Here, we omit the details but present
and motivate the fundamental ideas and discuss the analytical
results.

A GPA code can be represented using a bipartite graph of
bits and checks, where messages are exchanged along the con-
necting edges. Representing messages in LLR form, the out-
going message along an edge is simply the “sum” of the re-
ceived messages which includes messages from all edges (and
the channel if applicable) except the message coming along
this very edge. For bit nodes, this “sum” is a regular sum in
the real domain, and thus the density of the outgoing message

977

is the convolution of the densities of the message participating
in this sum. For check nodes, it is a check sum, éê , operated
on messages:

?1/Në�éêíì4î�ïñð Ï5Â�ò�? � /�ð ÏóÂ�ò�ë� � ð Ï5Â;ò�ì � (14)

Since no simple closed form is available on the relations of
pdfs (probability density function) in a ð Ï5Â�ò or ð Ï5Â;ò O m op-
eration, a numerical method is taken which can determine
the threshold to any desired degree of accuracy. To further
simplify the computation, densities can be approximated as
a mixture of Gaussian densities, which leads to only a slight
decrease in accuracy [6]. It has been shown that for binary-
input, output-symmetric memoryless channels and binary lin-
ear codes, the distribution ô of messages passed in each step
satisfies ôK�(õ~�í/�ôK�,�Bõ~��´÷ö [5]. This consistency constraint,
when applied to Gaussian distributions, leads to the constraint
that variance of the message equals twice the mean. Hence,
the mean of the message becomes the one single quantity to
describe the process, which greatly reduces the complexity.

Fig. 4 plots the thresholds of GPA codes computed using
density evolution for % /"�>+�:;+SÙ , respectively. As can be
seen, at rates �ø�ø��=� , even with iterative approach, GPA
codes can perform close to capacity. At low rates, the thresh-
olds are about � dB from the capacity. The plot shows that
the more the branches, the worse the thresholds (and the more
the complexity). That GPA codes with fewer SPC branches
can perform better under iterative decoding is just opposite to
what is inferred from the weight spectrum analysis. This dis-
agreement indicates that the performance loss due to the sub-
optimality of the iterative decoder may be quite severe in the
presence of several component codes. Hence, in practise, it is
desirable to use a small number of SPC branches with more
powerful SPC codes in each branch. This way, the best perfor-
mance is achieved with the least complexity. But with smaller% , the achievable rate range is also smaller (pp y � ·±��Æ0�).

The codes are hence best suited for practical applications
which involve changing the rate of the code constantly, where
high rates (�úùû�9��) are used most of the time, whereas oc-
cassionally due to poor channel conditions, lower rates are re-
quired. The regular structure of these codes makes it easy to
change the rate at both the transmitter and then receiver.

V. SIMULATIONS

Fig. 5 shows the performance of a rate ���� GPA code with
2 branches of (3,2) SPC codes and a rate �9�: GPA code with
4 branches of (3,2) SPC codes. Interleaving gain is obvious
from the plot, and the performance is only Å>� Ú and ���z� dB
away from the Shannon limit, respectively.

Fig. 6 compares the performance of (2000,1000) GPA codes
with two different settings: � branches of (3,2) SPC codes withü Å5Å SPC codewords combined in each branch, and Ù branches
of (5,4) SPC codes with � ü Å codewords combined in each
branch. We see that 2-branch GPA codes outperform 4-branch
GPA codes in addition to the saving of about �9�: of the com-
plexity, which confirms the results from the iterative analysis.
For comparison purpose, also shown is the performance of the
turbo code of the same parameter [12]. Clearly, GPA code
with %ñ/*� is as good as turbo codes (yet with lesser com-
plexity). Further, there are no observable error floor due to the
serial concatenation with a ������6����� inner code.

VI. CONCLUSION

Generalized product accumulate codes are investigated and
shown to be provably “good” both in the ML sense and in
the iterative sense. They have low complexity and the perfor-
mance using sum-product decoding is close to the capacity
over the entire code range. Bounds and thresholds are ex-
amined from both the ML perspective and the iterative per-
spective. Although the ML analysis favors for larger SPC
branches, iterative analysis as well as simulation results in-
dicate that, whenever possible, the number of SPC branches
should be kept small (but should be at least 2). This is the best
choice in terms of both performance and complexity. Many
good features about PA codes as proposed in [1] [2] can be
conveniently adopted for GPA codes, like the algebraic inter-
leaving, which will make it flexible for GPA codes to change
rate and length adaptively. The regular structure of GPA codes
makes it appealing for hardware implementation particularly
in adaptive rate coding. GPA codes can conveniently adopt to
the rate change by reducing the rate of the SPC code and/or
increasing the number of parallel branches.

As indicated by the research on irregular LDPC codes and
repeat accumulate codes, irregularity seems to be the key for
a further improvement in performance. Irregularity offers un-
equal error protection where highly protected bits tend to be
decoded first and then help with the less protected bits. With
irregular GPA codes, input bits will not uniformly participate
in every SPC branch. Rather, the number of SPC branches
(checks) each bit is involved in, will follow a carefully-
designed profile. It is interesting to point out that irregular
GPA codes thereby become irregular repeat accumulate codes
[12].

REFERENCES

[1] J. Li, K. R. Narayanan, and C. N. Georghiades, “A class of linear-
complexity, soft-decodable, high-rate, “good” codes: construction,
properties and performance,” in Proc. Intl. Symp. Inform. Theory, pp.
122-122, Washington D.C, June, 2001

[2] J. Li, K. R. Narayanan, and C. N. Georghiades, “Product accumulate
codes: a class of capacity-approaching, linear-complexity codes,” sub-
mitted to IEEE Tran. Info Theory

[3] H. Jin, and R. J. McEliece, “RA codes achieve AWGN channel capac-
ity”, Proc. 13th Intl. Symp. Applied Algebra, Algebraic Algorithms, and
Error-Correcting Codes

[4] D. Divsalar, “A simple tight bound on error probability of block codes
with application to turbo codes,” TMO Progress Report, 42-139, Nov.
1999

[5] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity check codes,” IEEE Trans. In-
form. Theory, vol. 47, pp. 619-637, Feb. 2001

[6] S.-Y. Chung, R. Urbanke and T. J. Richardson, “Analysis of sum-product
decoding of low-density parity-check codes using a Gaussian approxi-
mation,” IEEE Trans. Inform. Theory, vol. 47, pp. 657-670, Feb. 2001

[7] T. Richardson, and R. Urbanke, “An introduction to the analysis of iter-
ative coding systems,” http://lthcwww.epfl.ch/ publica-
tions.html

[8] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inform. Theory, vol. 45, No. 2, Mar., 1999

[9] D. Divsalar, H. Jin and R. J. McEliece, “Coding theorems for ’turbo-
like’ codes,” Proc. 1998 Allerton Conf. Commun. and Control, pp. 201-
210, Sept. 1998

[10] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, “Serial concate-
nation of interleaved codes: performance analysis, design, and iterative
decoding,” IEEE Trans. Inform. Theory, vol. 44, No. 3, May 1998

[11] R. G. Gallager, Low Density Parity Check Codes, MIT Press, 1963
[12] H. Jin, A. Khandekar, and R. McEliece, ”Irregular repeat-accumulate

codes,” Proc. 2nd Intl. Symp. on Turbo Codes and Related Topics,
France, July, 2000

978

Input
(
ý

K=qt
þ

)
ÿ p

Outer code
�

D
�

Inner code
�

1/ (1+D)

q� codewords�

M
b

ra
nc

he
s

�
N

=
q(

t+
M

)

�

output�

(
ý

N=q(t+M)
�

)
ÿp	

1

p	
M-1

...

SPC

SPC

SPC

 x

x

Input
(
ý

K=qt
þ

)
ÿ p

Outer code
�

D
�

Inner code
�

1/ (1+D)

D
�

Inner code
�

1/ (1+D)

q� codewords�

M
b

ra
nc

he
s

�

N
=

q(
t+

M
)

�

output�

(
ý

N=q(t+M)
�

)
ÿp	

1p	
1

p	
M-1p	
M-1

...

SPC

SPC

SPC

SPC

SPC

SPC

SPC

SPC

SPC

 xx

xx

Fig. 1. System Model of GPA Codes

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Normalized codeword weight: δ=h/N

S
pe

ct
ra

l s
ha

pe
: r

N
(δ

)

Weight Spectrum of rate 1/2 GPA codes

Random Codes

rate 1/2 GPA Codes:
M=2
M=4
M=8

Fig. 2. Spectral Shape of GPA Codes

−2 −1 0 1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
od

e
ra

te

Eb/No (dB)

Bounds for GPA codes (ML−based)

Shannon limit

Random codes

RA code
(Simple)

M=2

M=4

M=2

M=4

GPA: M=2

GPA: M=4

Union bounds

Simple bounds

Fig. 3. The simple bound and the union bound

−1 0 1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Thresholds (Density Evolution)

Eb/No (dB)

C
od

e
ra

te

GPA Codes: M=2,3,4

M=2

M=3

M=4

Shannon limit

Fig. 4. Thresholds for GPA Codes

0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

Performance of GPA codes

R=1/2,2−branch,K=64K
R=1/2,2−branch,K=4K
R=1/2,2−branch,K=1K
R=1/3,4−branch,K=16K
R=1/3,4−branch,K=1K

Fig. 5. Performance of GPA Codes

1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(2K,1K) GPA Codes, AWGN

Eb/No (dB)

B
E

R

2−branch,10 iter
2−branch,20 iter
2−branch,35 iter
4−branch,10 iter
4−branch,20 iter
4−branch,35 iter
turbo

10

20

35 iterations

10

20

35 iterations

M=4 M=2

turbo

Fig. 6. Comparison of 2-Branch and 4-Branch GPA Codes

979

