
An Efficient Decoding Algorithm for Cycle-free Convolutional Codes
and Its Applications

Jing Li, Krishna R. Narayanan and Costas N. Georghiades
Department of Electrical Engineering

Texas A&M University, College Station, TX 77843-3128
E-mail: {jingli, krishna, georghia}@ee.tamu.edu

Abstract— This paper proposes efficient message-passing algorithms
for decoding 1/(1 + Dn) codes, whose Tanner graphs are cycle-free.
A sum-product algorithm is first proposed, whose serial realization is
shown to perform equivalently to the log-domain maximum a posterior
(log-MAP) implementation of the BCJR algorithm. Next, a min-sum algo-
rithm is proposed, which is shown to perform equivalently to the max-log-
MAP algorithm. Additionally, a parallel realization of the sum-product
algorithm is discussed and shown to resemble low-density parity-check
(LDPC) decoding. In this, the paper presents an explicit example which
confirms the claim that the message-passing algorithm is optimal on cycle-
free graphs. Complexity analysis reveals that the sum-product and the
min-sum algorithms consume only 1/5 and 1/8 of the computational com-
plexity of their trellis-based counterparts, respectively. Finally, prospec-
tive applications which can take advantage of the proposed efficient algo-
rithms are discussed along with simulations.

I. INTRODUCTION

The discovery and rediscovery of low density parity check
(LDPC) codes have aroused great interest in the study of code
graphs. Tanner graphs, factor graphs, Bayesian networks and
code geometries have been investigated and shown to offer an
umbrella under which many different codes, including Ham-
ming codes, convolutional codes, turbo codes, LDPC codes,
and product codes, can be unified [1]-[6]. Code graphs, sim-
ple as they are, effectively capture the constraints governing
the code and provide a model upon which graph-based decod-
ing algorithms can be derived. The most notable graph-based
decoding algorithm is the message-passing algorithm, which
rooted back to Pearl’s belief propagation algorithm [7]. Al-
though the message-passing algorithm has found great success
in LDPC codes, it is much less studied in convolutional codes.
A major reason is that the code graph of a convolutional code
is generally multi-connected and contains many cycles. It is
therefore not obvious how probabilistic inference should be
conducted, nor is there any guarantee for close approximation
to optimal decoding.

This paper investigates message-passing decoding of a spe-
cial class of convolutional codes, 1/(1 + Dn), whose code
graphs are cycle-free. When n = 1, we have 1/(1+D), which
is known as the differential encoder or the accumulator. Since
the code 1/(1 + D) performs better and is more popular in
practice (e.g. as the inner code of a serially concatenated code)
than the other codes in the family, we therefore focus the dis-
cussion on this code only. However, the proposed algorithms
and the optimality arguments hold for all n ≥ 1.

We consider two sub-categories of the message-passing al-
gorithm, formally known as the sum-product algorithm and the
min-sum algorithm. We first propose a (serial) sum-product
algorithm and demonstrate its equivalence to the log-domain
maximum a posterior (log-MAP) implementation of the BCJR
algorithm. For ease of hardware implementation, a parallel re-
alization is then presented and its resemblance to LDPC de-
coding is discussed. This provides an alternative viewpoint on
the structural properties of this special class of convolutional

codes. To cater for applications with restrictive complexity, we
further propose a low-complexity approximation of the sum-
product algorithm, namely, the min-sum algorithm. We show
that the min-sum algorithm is equivalent to the max-log-MAP
algorithm. Complexity analysis reveals that the proposed sum-
product and the min-sum algorithms lead to some 80% and
87.5% reduction in complexity compared to their trellis-based
counterparts. Finally, applications which can take advantage
of the proposed algorithms are noted, and simulation results of
product accumulate (PA) codes [11] are provided.

The basic idea of this paper is implied in Tanner’s pioneer-
ing work in 1981 [1], including the fundamental idea of graph
representation and the generic iterative probabilistic decoding
algorithm, which has since been investigated by Frey, Forney,
Koetter, Luby, Richardson, Urbanke, Wiberg, Offer and Sol-
jamin et al [2]-[8]. this paper explicitly connects the trellis-
based BCJR algorithm, LDPC decoding and the sum-product
decoding through the case study of 1/(1 + Dn) code. While
preparing the paper, we became aware of Wiberg’s dissertation
[6] and papers by Forney [4] and Frey [5] et al, where the sum-
product algorithm is developed as a generalization of the trel-
lis decoding, the LDPC decoding and a variety of other algo-
rithms in signal processing and digital communications. These
independent research papers point out the potential optimality
of the sum-product algorithm on cycle-free trellis codes, but
no examples were provided. The contribution of this work is
to present a concrete example to confirm the above claim and,
by providing efficient alternatives to the trellis-based BCJR al-
gorithm, to save complexity for a variety of applications where
1/(1 + Dn) code is used.

The paper is organized as follows. Section 2 discusses the
(serial) sum-product, the parallel sum-product and the min-
sum algorithms for decoding 1/(1+D), and demonstrates their
equivalence to the log-MAP, the LDPC and the max-log-MAP
decoding. Section 3 analyzes the complexity of the proposed
algorithms, extends them to 1/(1 + Dn) codes, and discusses
potential applications. Section 4 concludes the paper.

II. EFFICIENT DECODING ALGORITHMS FOR 1/(1 + D)

A. Sum-Product Decoding Algorithm

The rate-1 convolutional code 1/(1 + D) is typically de-
coded using a 2-state log-MAP decoder implementing the
BCJR algorithm. Below we show how lower-complexity al-
gorithms can be implemented without sacrificing the perfor-
mance optimality by means of graph-based decoding.

As shown in Fig. 1(b), a cycle-free bipartite Tanner graph
capturing the relation of yi = xi ⊕ yi−1 (⊕ denotes modulo-2
addition) can be used to describe the code 1/(1 + D). The
bipartite graph consists of two types of nodes, bits and checks,
connected by undirected edges. A check presents a constraint

on the code such that all the bits connecting to it should sum
up (modulo-2) zero.

The key challenge of sum-product decoding is to specify a
proper order in which messages propagate, since this order af-
fects the ultimate decoder performance as well as the speed
of decoding convergence. In this subsection, we discuss a se-
rial update schedule where messages are passed onward from
bit 1 to bit N , then backward from bit N to bit 1, and finally
combined and released. Fig. 2 illustrates the message flow.
The fundamental rule governing the sum-product algorithm is
the partial independence rule, which states that no message
should be routed back to its source. In other words, the out-
bound message along an edge should be a function of the mes-
sages obtained from all the other sources except the inbound
message along this very edge. For example, in Fig. 2, bit yi

gathers messages (in log-likelihood ratio or LLR form) from
three sources: Lch(yi) from the channel, Lef

(yi) from check i
and Leb

(yi) from check i+1. Since Lef
(yi) comes from check

i, it should be excluded when bit yi computes (extrinsic) mes-
sages for check i; see Fig. 2(c)). Similar rules are observed for
all the other checks and bits.

Clearly, the decoding of 1/(1 + D) alone does not involve
any iteration, but simply a “forward pass” and a “backward
pass” before the final LLR values are computed at each source
bit (Fig. 2). However, since 1/(1 + D) by itself does not pro-
vide any error protection and since it is primarily used as an
inner code in a serial concatenated code, we therefore discuss
the decoding algorithm in the more general context and use a
superscript (k) to indicate the kth round of global iteration be-
tween the inner and outer code. The superscript (k) can simply
be dropped if no global iteration is involved.

Following the illustration in Fig. 2(a), the messages associ-
ated with check i to be sent to (source) bit xi at the kth global
iteration, denoted as L

(k)
e (xi), is computed by:

L(k)
e (xi)=

(

Lch(yi−1)+L(k)
ef

(yi−1)
)

u±
(

Lch(yi)+L(k)
eb

(yi)
)

,

(1)
where Lch(yi) = log Pr(ri|yi=0)

Pr(ri|yi=1) denotes the message obtained
from the transmission channel upon receiving noisy signal ri,
Lef

(yi) denotes the message passed “forward” to bit yi from
the sequence of bits/checks before the ith position, and Leb

(yi)
denotes the message passed “backward” to bit yi from the
sequence of bits/checks after the ith position. Operation u±
refers to a “check” operation and is mathematically expressed
as:

γ = α u±β ⇐⇒ γ = log
1 + eα+β

eα + eβ
, (2)

⇐⇒ tanh
γ

2
= tanh

α

2
· tanh

β

2
. (3)

Following the rule of partial independence, Lef
(yi) and

Leb
(yi), which correspond to messages passed forward and

backward along the code graph, can be calculated using (see
Fig. 2(b,c) for illustration):

L(k)
ef

(yi) = L(k−1)
o (xi) u±

(

Lch(yi−1) + L(k)
ef

(yi−1)
)

, (4)

L(k)
eb

(yi) = L(k−1)
o (xi+1) u±

(

Lch(yi+1)+L(k)
eb

(yi+1)
)

, (5)

where L
(k)
o (xi) denotes the a priori information of (source)

bit xi. Specifically, in a serially concatenated system where
the 1/(1 + D) code acts as the inner code, L

(k)
o (xi), k > 0,

contains the message obtained from the outer code after the
kth global iteration. Apparently, L

(0)
o (xi) = 0, ∀i, since there

is no message from the outer code in the first global iteration.
It is easy to see from Fig. 2 that the boundary conditions of

(4) and (5) are:

L(k)
ef

(y1) = L(k−1)
o (x1) u±∞ = L(k−1)

o (x1), (6)

L(k)
eb

(yN) = 0. (7)

Consider all the bits in the context of time series, we see that
the total message computed at time i, L

(k)
e (xi), has utilized all

the dependences of the past and the future (through Lef
(xi−1)

and Leb
(xi)) to their fullest extend without looping-back or

over-processing any information (Fig. 2(a)). This message-
passing algorithm is therefore a best-effort solution. In the
next subsection, we provide a rigorous optimality proof, which
confirms Wiberg’s claim that it is possible to find an efficient
updating order (where each intermediate “cost function” is cal-
culated only once) in a cycle-free structure like trellis (and yet
get optimal performance) [6].

B. Optimality of the Sum-Product Decoding

We prove the optimality of the proposed sum-product de-
coding by revealing its equivalence to the BCJR algorithm of
the per-symbol max a posteriori probabilistic decoding [12].
Due to the space limitation, we skip basic introduction to the
BCJR algorithm. Interested readers are referred to [12] [13]
[14]. We use xt, yt, st, rt to represent respectively the source
bit, the coded bit, the (binary) modulated bit (signals to be
transmitted over the channel) and the noisy received bit at the
destination. Their relations are illustrated as follows:

yt =yt−1⊕xt BPSK +noise
xt ∈(0,1) =⇒ yt ∈(0,1) =⇒ st ∈(±1) =⇒ rt

(8)

The following definitions and notations are needed in the dis-
cussion:

• Pr(St = m) — the probability the decoder is in state m
at time t, (m ∈ {0, 1} in a 2-state case).

• r
j
i = (ri, ri+1, · · · , rj) — received sequence.

• αt(m) = Pr(St = m, rt
1) — forward path metric.

• βt(m) = Pr(rN
t+1|St = m) — backward path metric.

• γt(m
′,m)=Pr(St =m, rt|St−1 =m′) — branch metric.

• Λt = log
Pr(xt=0|rN

1)

Pr(xt=1|rN
1

)
— output LLR of bit xt.

The branch metric of 1/(1 + D) code is given by (see the
trellis in Fig. 1(a)):

γt(0, 0) = Pr(xt = 0) Pr(rt|yt = 0), (9)
γt(0, 1) = Pr(xt = 1) Pr(rt|yt = 1), (10)
γt(1, 0) = Pr(xt = 1) Pr(rt|yt = 0), (11)
γt(1, 1) = Pr(xt = 0) Pr(rt|yt = 1). (12)

In the log-MAP implementation of the BCJR algorithm, the
forward metric is computed recursively using:

αt(0)

αt(1)
=

αt−1(0)γt(0, 0) + αt−1(1)γt(1, 0)

αt−1(0)γt(0, 1) + αt−1(1)γt(1, 1)
(13)

Substituting (9)-(12) to (13), and dividing both the nominator
and the denominator by αt−1(1) Pr(xt =1) Pr(rt|yt =1), we
get:

αt(0)

αt(1)
=

(

αt−1(0)
αt−1(1)

Pr(xt=0)
Pr(xt=1) + 1

)

· Pr(rt|yt=0)
Pr(rt|yt=1)

αt−1(0)
αt−1(1) + Pr(xt=0)

Pr(xt=1)

(14)

Define:
ᾱt := log

αt(0)

αt(1)
, (15)

Lch(yt) := log
Pr(rt|yt = 0)

Pr(rt|yt = 1)
, (16)

Lo(xt) := log
Pr(xt = 0)

Pr(xt = 1)
. (17)

Taking logarithm on both sides of (14), we get:

ᾱt = log
eᾱt−1 · eLo(xt) + 1

eᾱt−1 + eLo(xt)
+ Lch(yt),

=
(

ᾱt−1 u±Lo(xt)
)

+ Lch(yt). (18)

Likewise, in the backward recursion we have:

β̄t := log
βt(0)

βt(1)
,

= log
γt+1(0, 0)βt+1(0) + γt+1(0, 1)βt+1(1)

γt+1(1, 0)βt+1(0) + γt+1(1, 1)βt+1(1)
,

= log

Pr(xt+1=0)
Pr(xt+1=1) ·

Pr(rt+1|yt+1=0)
Pr(rt+1|yt+1=1) ·

βt+1(0)
βt+1(1)

+ 1

Pr(xt+1=0)
Pr(xt+1=1) + Pr(rt+1|yt+1=0)

Pr(rt+1|yt+1=1) ·
βt+1(0)
βt+1(1)

,

= log
eLo(xt+1) · eLch(yt+1)+β̄t+1 + 1

eLo(xt+1) + eLch(yt+1)+β̄t+1

,

= Lo(xt+1) u±
(

Lch(yt+1) + β̄t+1

)

. (19)

Finally, we compute the output (extrinsic) information us-
ing:

Λt = log
Pr(xt = 0|YN

1)

Pr(xt = 1|YN
1)

,

= log

∑

m

∑

m′

∑

xt=0 αt−1(m
′)γt(m

′, m)βt(m)
∑

m

∑

m′

∑

xt=1 αt−1(m′)γt(m′, m)βt(m)
,

= log

αt−1(0) Pr(rt|yt=0)βt(0)
+αt−1(1) Pr(rt|yt=1)βt(1)

αt−1(0) Pr(rt|yt=1)βt(1)
+αt−1(1) Pr(rt|yt=0)βt(0)

,

= log
eᾱt−1 · eLch(yt)+β̄t + 1

eᾱt−1 + eLch(yt)+β̄t
,

= ᾱt−1 u± (Lch(yt) + β̄t). (20)

For clarity, Table II summarizes the above results from the
log-MAP algorithm and compares them with the sum-product
algorithm described in the previous subsection. It is obvious
that the two algorithms are performing exactly the same op-
erations, where ᾱt = Lch(yt) + Lef

(yt), β̄t = Leb
(yt) and

Λt = Le(xt). Hence, the sum-product decoding of 1/(1 + D)
presents an efficient alternative to the conventional BCJR al-
gorithm.

C. Parallel Sum-Product Algorithm and Its Relation to LDPC
Decoding

Parallelization is highly desired in hardware implementa-
tion. When fully parallelized, the system can assign one pro-
cessing unit to each bit and each check, such that all the check-
to-bit updates can be processed in one time slot, and all the
bit-to-check updates can be processed in the next time slot.
In the sum-product algorithm discussed previously, serial pro-
cedures include the forward pass (4), where the computation
of L

(l)
ef

(yi+1) depends on L
(l)
ef

(yi), and the backward pass (5),

where the computation of L
(l)
eb (yi−1) depends on L

(l)
eb (yi). To

parallelize the process, we adopt a batch mode update, where
the forward message of the (i+1)th bit and the backward mes-
sage of the (i−1)th bit are computed from the message of the
ith bit from the previous iteration, rather than that from the
current iteration. Hence, (4) and (5) can be rewritten as:

L(k)
ef

(yi) ≈ L(k−1)
o (xi) u±

(

Lch(yi−1)+L(k−1)
ef

(yi−1)
)

, (21)

L(k)
eb

(yi) ≈ L(k−1)
o (xi+1) u±

(

Lch(yi+1)+L(k−1)
eb

(yi+1)
)

. (22)

Fig. 1(c) presents the 1/(1+D) code in a sparse parity check
matrix form. It is instructive to note that the aforementioned
parallelization essentially turns the 1/(1 + D) decoder into an
LDPC decoder, where a batch mode of bit-to-check and check-
to-bit updates is performed. This parallel approach is what
is used in the decoding of irregular repeat accumulate (IRA)
codes [9] [10].

D. Min-Sum Algorithm and Its Relation to Max-log-MAP

Observe that the main complexity of the sum-product al-
gorithm comes from u± operation. A straight-forward imple-
mentation of u± requires 1 addition and 3 table lookups (as-
suming log(tanh(x

2)) and its reverse operation 2 tanh−1(ex)
are implemented via table lookup). Considerable amount of
complexity can be saved by approximating u± with a simple
min-max operation:

γ = α u±β = log
1 + eα+β

eα + eβ
,

= sign(α) · sign(β) · min(|α|, |β|)

+ log
1 + e−|α+β|

1+e−|α−β|
,

≈ sign(α) · sign(β) · min(|α|, |β|) (23)

The above approximation reduces the sum-product algo-
rithm to the min-sum algorithm. It is interesting to note that,
just as the sum-product algorithm is equivalent to the log-
MAP algorithm, the min-sum algorithm is equivalent to the
max-log-MAP algorithm. To see this, recall that the max-
log-MAP algorithm approximates the log-MAP algorithm by
using a max operation instead of the max∗ operation [14]:
max∗(x, y) = log(eα + eβ) ≈ max(α, β). It immediately
follows that:

γ = α u±β,

= log(e0 + eα+β) − log(eα + eβ),

≈ max(0, α + β) − max(α, β),

= sign(α) · sign(β) · min(α, β). (24)

III. COMPLEXITY AND APPLICATIONS

A. Complexity

Table I compares the complexity of the log-MAP, max-log-
MAP [14], sum-product and min-sum algorithms for decoding
1/(1 + D). We see that the sum-product and the min-sum
algorithms require only about 1/5 and 1/8 the complexity of
their trellis-based equivalents respectively. This is because in
the sum-product decoding, a single table lookup log(tanh x

2)
is used instead of several max∗ operations which greatly re-
duces the computational complexity.

Extending the aforementioned algorithms of 1/(1 + D) to
1/(1 + Dn) is straightforward, since the latter has essentially
the same code graphs as the former. Fig. 3 shows the code
graph of a 1/(1 + D2) code. From the graph perspective, a
1/(1 + Dn) code is like a n-multiplexed 1/(1 + D) code.

TABLE I
COMPLEXITY OF LOG-MAP, MAX-LOG-MAP, SUM-PRODUCT AND

MIN-SUM DECODING FOR 1/(1 + D) CODE (OPERATIONS PER BIT)

Oper log-map max-log-map sum-pro min-sum
add 39 31 5 2

min/max 8 8 3
lookup 8 6

B. Applications and Simulations

The class of 1/(1+Dn) codes and particularly the 1/(1+D)
code is becoming a popular inner code in a serially concate-
nated code where interleaving gain can be achieved without
reduction in overall code rate. The growing class of “accumu-
lated codes” include, for example, convolutional accumulated
codes (serial turbo codes), regular/irregular repeat accumulate
codes [9] [10] and product accumulated (PA) codes [11]. All
of these codes can benefit from the he proposed algorithms.

To evaluate the performance of the proposed algorithms,
consider the example of product accumulate codes [11]. Prod-
uct accumulate codes are a class of interleaved serial concate-
nated codes where the inner code is 1/(1 + D), and the outer
code is a parallel concatenation of 2 single parity check codes
[11]. Like turbo and repeat accumulate codes, product accu-
mulate codes have shown performance impressively close to
the capacity.

We examine the performance of both the serial and the par-
allel sum-product decoding. In general, serial update leads to
a faster convergence and possibly a better performance than
parallel update. Fig. 4 demonstrates the performance of an
(8K,4K) product accumulate code. That parallelization incurs
only about 0.1 dB loss presents the parallel sum-product algo-
rithm as a strong candidate for hardware implementation.

Fig. 5 compares the performance of a (2K,1K) PA code us-
ing the sum-product and the min-sum algorithms. Bit error
rates after 5, 10, 15, 20 iterations are evaluated. At all those it-
erations, the min-sum algorithm incurs about 0.2 dB loss. This
points to the min-sum algorithm as an appealing solution for
simple, low-cost systems.

IV. CONCLUSION

An efficient and optimal sum-product algorithm is proposed
for decoding 1/(1 + Dn) codes. Its parallel realization and

low-complexity approximation (i.e. the min-sum algorithm)
are discussed. Prospective applications which can take advan-
tage of the proposed algorithms are also investigated. The pro-
posed algorithms are expected to be useful both in theory and
in practice.

REFERENCES

[1] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inform. Theory, vol. IT-27, pp.533-547, Sept. 1981

[2] B. J. Frey, Graphical models for machine learning and digital commu-
nication, The MIT Press, Cambridge, Massachusetts, London, England,
1998

[3] E. Offer, and E. Soljamin, “LDPC codes: a group algebra formulation”,
presented at Intl. Workshop on Coding and Cryptography, Paris, Jan.,
2001

[4] G. D. Forney, Jr, “Codes on graphs: normal realizations,” Trans. Inform.
Theory, vol. 47, pp. 520-548, Feb. 2001

[5] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” Trans. Inform. Theory, vol. 47, pp. 498-519,
Feb. 2001

[6] N. Wiberg, Codes and decoding on general graphs, Doctoral disserta-
tion, 1996

[7] R. J McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as
an instance of Pearl’s “Belief Propagation” algorithm,” IEEE Jour. Sele.
Areas Commun., Vol. 16, pp.140-152, Feb. 1998

[8] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spiel-
man, “Analysis of low density codes and improved designs using irregu-
lar graphs,” ACM Symposium, pp. 249-258, 1998

[9] D. Divsalar, H. Jin and R. J. McEliece, “Coding theorems for ’turbo-like’
codes”, Proc. 1998 Allerton Conf. Commun. and Control, pp. 201-210,
Sept. 1998

[10] H. Jin, A. Khandekar and R. McEliece, “Irregular repeat-accumulate
codes,” Proc. 2nd Intl. Symp. on Turbo Codes and Related Topics, Brest,
France, Sept. 2000

[11] J. Li, K. R. Narayanan and C. N. Georghiades, “A class of linear-
complexity, soft-decodable, high-rate, “good” codes: construction, prop-
erties and performance”, to be presented Proc. Intl. Symp. Inform. The-
ory, Washington D.C., June, 2001

[12] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
pp. 284-287, Mar., 1974

[13] W. E. Ryan, “A turbo code tutorial,” http://
www.ece.arizona.edu/∼ryan/

[14] P. Robertson, E. Villebrum, and P. Hoeher, “A comparison of optimal
and sub-optimal MAP decoding algorithms operating in the log domain,”
Proc. Intl. Conf. Commun., Seattle, 1995

x1 y1

y3

y2
x2

x3

0

State 0

State 1

0/0

0/1

1/1

 1/0

0

1

1
1 1

1 1
1 1

.
.

1
1

1
1

.
.

x1 x2 x3 x4. . . y1 y2 y3 y4. . .

1
1 1

1 1
1 1

.
.

1
1

1
1

.
.

x1 x2 x3 x4. . . y1 y2 y3 y4. . .

Fig. 1. Structure of 1/(1 +D) code . (a) Trellis; (b) Tanner graph; (c) Sparse
parity check matrix form.

TABLE II
SUMMARY OF SUM-PRODUCT AND MAP DECODING

BCJR Sum-product
forward ᾱt = (ᾱt−1 u±Lo(xt)) + Lch(yt) Lef

(yt) = (Lef
(yt−1) + Lch(yt−1)) u±Lo(xt)

backward β̄t = (β̄t+1 + Lch(yt+1)) u±Lo(xt+1) Leb
(yt) = (Leb

(yt+1) + Lch(yt+1)) u±Lo(xt+1)
extrinsic LLR Λt = ᾱt−1 u± (β̄t + Lch(yt)) Le(xt) = (Lef

(yt−1) + Lch(yt−1)) u± (Leb
(yt) + Lch(yt))

(a). Message flow

Lch(yi-1)

Lch(yi)

Lch(yi+1)

xi-1

xi

xi+1

Lo(xi-1)

Le(xi)

Leb(y
i)

Lef(yi-1)

Lo(xi+1)

Leb(y
i+1)

yi+1

yi-1

yi

i-1

i+1

i

(a). Message flow

Lch(yi-1)

Lch(yi)

Lch(yi+1)

xi-1

xi

xi+1

Lo(xi-1)

Le(xi)

Leb(y
i)

Lef(yi-1)

Lo(xi+1)

Leb(y
i+1)

yi+1

yi-1

yi

i-1

i+1

i

Lch(yi-1)

Lch(yi)

Lch(yi+1)

xi-1

xi

xi+1

Lo(xi-1)

Le(xi)

Leb(y
i)

Lef(yi-1)

Lo(xi+1)

Leb(y
i+1)

yi+1

yi-1

yi

i-1

i+1

i

Lch(yi-1)

Lch(yi)

Lch(yi+1)

xi-1

xi

xi+1

Lo(xi-1)

Lo(xi)

Lef(yi-1)

Lo(xi+1)
yi+1

yi-1

yi

(b). Forward pass

Lef(yi)

Lef(yi+1)

i-1

i+1

i

Lch(yi-1)

Lch(yi)

Lch(yi+1)

xi-1

xi

xi+1

Lo(xi-1)

Lo(xi)

Lef(yi-1)

Lo(xi+1)
yi+1

yi-1

yi

(b). Forward pass

Lef(yi)

Lef(yi+1)

i-1

i+1

i

Leb(y
i+2)

Lch(yi-1)

Lch(yi)

Lch(yi+1)

xi-1

xi

xi+1

Lo(xi-1)

Lo(xi)

Lo(xi+1)
yi+1

yi-1

yi

(c). Backward pass

Leb(y
i-1)

Leb(y
i+1)

Leb(y
i)

i-1

i+1

i

Leb(y
i+2)

Lch(yi-1)

Lch(yi)

Lch(yi+1)

xi-1

xi

xi+1

Lo(xi-1)

Lo(xi)

Lo(xi+1)
yi+1

yi-1

yi

(c). Backward pass

Leb(y
i-1)

Leb(y
i+1)

Leb(y
i)

i-1

i+1

i

Fig. 2. Sum-product decoding of 1/(1 + D) code

x1 y1

y4

y2x2

x3

0

x4

y3

0

x1 y1

y4

y2x2

x3

0

x4

y3

0

x1 y1

y4

y2x2

x3

0

x4

y3

0

Fig. 3. Tanner graph of 1/(1 + D2) code

0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

(2K,1K) PA Code

serial sum−product
parallel sum−product

 5
15
30 iterations

5
5

15

15

30
30

Fig. 4. Sum-product decoding: serial vs parallel

1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

(8K,4K) PA Code

sum−product
min−sum

5

5

10

10

15

20

15

20

 5
10
15
20 iterations

Fig. 5. Sum-product decoding vs min-sum decoding

