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Abstract— In this paper, a new scheme for solving the Slepian-
Wolf problem over noisy channels using serially concatenated
codes is proposed. An outer low density parity check code is used
to perform distributed source coding, and an inner convolutional
code adds error protecting capability to the compressed data.
Soft iterative joint source-channel decoder is performed, where
the decoder side information is provided to the sub outer decoder
instead of the sub inner decoder. The scheme is attractive since
separate refining of compression rate (outer code) and error
protection power (inner code) makes the design easy and the
performance controllable, and joint iterative decoding exploits
the power of serial concatenated structure as much as possible.
Simulations reveal encouraging joint decoding gain especially at
low signal-to-noise ratios.

I. INTRODUCTION

The Slepian-Wolf theorem [1], which forms the basis
of lossless distributed source coding (DSC) problem, de-
fines the achievable rate region when two physically sep-
arated and statistically correlated sources are independently
encoded and jointly decoded for a lossless channel. The bin-
ning/coset/syndrome approach used in the proof of the Slepian-
Wolf theorem provides a fresh and sharp tool for powerful
linear channels codes to be optimally exploited in distributed
source coding [1][2]. The first constructive realization of the
Slepian-Wolf boundary using practical channel codes was
proposed in [3] where single-parity check codes were used with
the binning scheme. Advanced formulations using powerful
turbo codes (e.g. [5]-[9]) and low density parity check (LDPC)
codes (e.g. [13][14]) were subsequently proposed to solve the
lossless-channel DSC problem.

When the transmission channel is noisy (as in a practi-
cal case), the problem becomes more involved since it now
requires an error-resilient distributed source coding solution.
Excellent schemes have been proposed employing turbo codes
[10]-[12] and LDPC/LDPC-like codes [15] for noisy-channel
DSC. The idea, first demonstrated in [10], is to absorb com-
pression in channel coding and to use a single channel code for
the dual purpose of source and channel coding. The efficiency
and efficacy of this idea is best exemplified in [15], where
density evolution is exploited to design and optimize irregular
repeat accumulate (IRA) codes to match to the channel. While
the performance in [15] is impressive, it should be noted that
density evolution targets asymptotic performance (or very large
block sizes), warranting little optimality for short block sizes
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like a few hundred bits to a few thousand bits (which are typical
in practical applications).

In this paper, we propose to attack the noisy-channel DSC
problem using serially concatenated codes (SCC). The source-
channel separation theorem states that separate DSC and chan-
nel coding need not incur loss in capacity compared to joint
source-channel coding, provided both parts are done optimally
[16]. While this theorem sets us free from the very tricky
and tedious task of joint design, due to various limitations
and constraints, however, sub-optimal codes are often used,
causing a performance degradation. For example, in practical
systems using separate source and channel coding, the residual
errors at the output of the channel decoder can often be
catastrophic to the source decoder. It is this dilemma of for-
and-against that inspires the idea of separately designing a
good source code and a good channel code, and unifying
them using one combined decoder. Serially concatenated codes,
which have two separate sub-codes that are jointly decoded
using one soft iterative decoder, and which are among the
most powerful coding schemes known today, fit naturally into
the scenario. Unlike the single-code approach [10]-[12] which
provides little information on how code rate is allocated be-
tween compression and error protection, the proposed approach
provides the freedom to independently selecting compression
and error protection rates, making the performance predictable
and controllable. At the same time, the use of joint iterative
decoding makes it possible to harness the power of serially
concatenated structure as much as possible.

Realizing the power of the proposed idea requires that both
sub codes be soft decodable. This can be tricky for the outer
code, since it is a channel code that assumes the role of source
coding. If the binning framework is used (the only generic
and provenly optimal framework for DSC, details follow in
Section II), then this outer code will map data sequences
(viewed as virtual codewords) to their respective syndromes to
perform compression. Hence, to enable effective soft decoding
at the decoder, it is important that the reliability information
of the syndrome sequences can be exploited in decoding. This
is difficult for a general linear channel code including turbo
codes. Fortunately, the unique features in the structure and the
decoding method of LDPC codes makes it not only feasible,
but also efficient. As will be discussed later, by exploiting
an extended parity check matrix, the same message-passing
algorithm can be used to soft decode the “LDPC source
code”. Further, considering that LDPC are very powerful codes,
capable of performance very close to the theoretic limit in a
lossless-channel DSC setup [14], the use of LDPC codes as



the outer “source” code is particularly appealing. For the inner
code, we focus on convolutional codes, since (i) they are soft-
decodable, and (ii) they offer flexible code rates via puncturing,
making it easy to adapt to the channel condition.

Following the discussion of individual sub encoders and sub
decoders, we propose in Section III a joint iterative decoder
that iterates soft information between component decoders.
Unlike the conventional channel SCC decoder where the side
information (SI), if any, is fed into the inner sub-decoder, with
this source-channel SCC decoder, the SI will be provided to
the outer sub-decoder, used directly for source decoding and
indirectly (through decoding iterations) for channel decoding.
Simulations show that considerable “joint decoding gain” can
be achieved over a sequential decoding approach for the same
complexity.

II. SYSTEM MODEL

A. Preliminaries and System Model

Consider two i.i.d (independent and identically distributed)
binary memoryless sources, X and Y , with output sequences
x1, x2, · · · and y1, y2, · · ·. When the two sources are separately
encoded and jointly decoded, the achievable rate region is
bounded by the Slepian-Wolf boundary [1]:

Rx≥H(X |Y ), Ry≥H(Y |X), Rx+Ry≥H(X, Y ). (1)

Specifically, the corner points on the Slepian-Wolf boundary,
known as asymmetric DSC, can be achieved by considering
one source (e.g. Y ) as the side information (i.e. compressed
using a conventional entropy-achieving compression method)
and compressing the other (i.e. X) to its conditional entropy
(H(X |Y )). The line connecting the corner points can then be
achieved through time-sharing.

It has been shown that the key to efficient DSC lies in
powerful linear channel codes. Specifically, the binning ap-
proach [1] provides a general framework for asymmetric DSC
to achieve a side compression rate of n : (n−k) using an (n, k)
linear code. The idea is to view length n source sequences
X as virtual codewords, group them (2n altogether) to 2n−k

bins, and to index the bins using 2n−k syndrome sequences.
By transmitting the length n−k syndrome sequences instead
of the original length n codewords, compression is achieved.
To enable lossless recovery of the source sequences at the
joint decoder, the following constraints need to be observed:
(i) the rate of the channel code k/n ≤ 1−H(X |Y ); (ii) a
geometrical uniformity property needs to be preserved in each
bin [1]; (iii) the channel code needs to be powerful enough to
support the virtual transmission channel which is specified by
the correlation between sources X and Y . Detailed discussion
on the binning idea can be found in [1] [2].

In our approach, the source coding part will closely follow
the binning idea. The following assumptions are used for the
system setup: (i) X and Y are equiprobable memoryless binary
random sources; (ii) X and Y are correlated at the same time
instant: Pr[X 6= Y ] = p < 0.5.; (iii) One of the sources,
Y , is losslessly available at the joint decoder, and the other
source, X , is to be compressed and transmitted through an

additive white Gaussian noise (AWGN) channel. This “one-
noisy-channel” setup is a special case of the general case where
Y may also be corrupted. %enditemize

Since X and Y are correlated, let us treat Y (side infor-
mation) as a distorted version of X . This is equivalent to
modeling X and Y as the respective input and output of a
binary symmetric channel (BSC) with crossover probability p.
This thus results in a parallel-channel model for the noisy-
channel DSC problem as shown in Fig. 1.
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Fig. 1. A parallel-channel model for the one noisy-channel DSC problem.
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Fig. 2. System model for the SCC approach to the Slepian-Wolf Problem.

B. SCC approach to the Slepian-Wolf Problem

As mentioned earlier, we employ SCC codes in the asym-
metric Slepian-Wolf compression with lossless side informa-
tion (i.e. Y ) available at the decoder. The system model is
shown in Fig. 2. At the encoder, source sequences X will firstly
be compressed to their syndrome sequences Sx at compression
rate Rx ≥ H(X |Y ) using the outer code. The syndrome
sequences will then be error protected by the inner code
before putting onto the noisy channel. The decoder employs an
iterative process, where the extrinsic reliability information of
Sx is iteratively exchanged between the two soft sub decoders.
It should be noted that unlike conventional iterative decoders,
here the SI Y is used to provide a priori information of X
to the outer decoder rather than the inner decoder. In general,
a random interleaver needs to reside between the outer and
inner code to break up the correlation and to trigger a possible
interleaving gain as shown in Fig. 2. When the outer code is an
LDPC code, due to the randomness in its parity check matrix,
this interleaver may not be needed..

III. CODING PROCEDURE

The previous section has provided a general view of the
SCC approach. This section discusses in detail the design and
implementation of the LDPC-convolutional SCC scheme.



A. Encoding Procedure

An (n, k) low density parity check code is described either
by an m×n parity-check matrix H (where m=n−k) or by its
associated bipartite graph with m check nodes and n message
nodes. A message node j is connected to a check node i if
and only if the corresponding element (i, j) in H has a value
of 1. The parity check matrix H usually contains randomly
and sparsely distributed 1’s, whose distribution is specified by
the row/check degree polynomial ρ(x) and column/bit degree
polynomial λ(x). If the degree distribution polynomials have
only one term, then this LDPC code is considered regular;
otherwise, it is irregular.

As discussed before, compression using channel codes is
achieved by mapping long (codeword) sequences to short
(syndrome) sequences. It is straight-forward to see that, for an
(n, k) linear block code with a parity check matrix H , finding
the length m syndrome sequence, Sx, for a length n message
sequence, X , consists essentially of matrix multiplication of
H with X . For an LDPC code represented in the bipartite
graph form, this is equivalent to feeding information bits X
at the message nodes, and computing the syndrome bits Sx at
the check nodes using binary addition of all the message node
values that are connected to the same check node:

sj =
∑

i∈
�

j

⊕xi, j = 1, 2, · · · , m, (2)

where sj denotes the jth syndrome bit, xi the ith message bit,
and Cj the set of message bits associated with the jth check.
This procedure is illustrated in Fig. 3.
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Fig. 3. LDPC source encoder (using the original H matrix).
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Fig. 4. LDPC source decoder (using the extended H matrix).

Since the syndrome sequence Sx is to be transmitted over a
noisy channel, convolutional codes will be used to add redun-
dancy bits for error resilience. The addition of the redundant
bits will reduce the overall code/compression rate, but is a

necessary step toward reliable transmission. Since a separate
convolutional code is used for error protection, we have the
luxury of adjusting the code rate (by puncturing) such that
just-enough amount of redundancy is inserted for best channel
utilization.

B. Decoding Procedure

The joint iterative decoder consists of two soft sub decoders
corresponding to the inner convolutional code and the outer
LDPC code. Below we discuss in detail how each individual
sub decoder works and how soft messages are efficiently
exchanged between them (Fig. 4 and 5).

We use log-likelihood ratio (LLR) values to represent the
soft message. Notice that while there is global message ex-
change between the inner and outer sub decoders (Fig. 5), there
is also local message exchange within the outer sub decoder
(Fig. 4). For ease of proposition, let (g, l) denote the number
of iterations, where g refers to the total number of global
iterations, and l the total number of local iterations. Hence, an
average of l/g rounds of message exchange is performed within
the outer sub decoder before the message goes back to the inner
sub decoder for refinement. It should be noted that subject to
a constraint on the overall complexity, the number of local
iterations vs the number of global iterations need to be carefully
balanced. It should also be emphasized that no matter at what
iteration and in which sub decoder, message exchange should
always follow the turbo principle, that is, the outbound message
to a processing unit should contain minimal correlation with
the inbound message from that specific processing unit.

LDPC Source Decoder: We start with the LDPC sub de-
coder. It should have been clear from the LDPC source
encoding procedure (see Eqn. (2)) that

sj ⊕
∑

i∈
�

j

⊕xi = 0, j = 1, 2, · · · , m. (3)

That is, if m additional message nodes are introduced to pass
the values of the syndrome bits to the associated check nodes,
then the combination of the original n message bits and the m
syndrome bits will have completed all checks. Equivalently,
if we construct an extended parity check matrix Hext by
concatenating an m × m identity matrix to the original parity
check matrix H as shown in Fig. 4, then we have [X, Sx] as a
valid codeword to this extended LDPC code (for convenience,
we abuse the notation and assume both X and Sx are row
vectors):

Hext × [X, Sx] = 0. (4)

Hence, to recover the original data source X is to find a valid
codeword [X, Sx] from the noise-corrupted version [Y S̃x] for
the extended LDPC code. This can be conveniently done by
applying the message-passing algorithm to Hext. We note that
the same source decoding procedure is also used in [14] for
noiseless-channel DSC. It should be noted that the a priori
LLR information of Sx at the input of the message-passing
decoder is obtained from the inner convolutional decoder,



whereas that of X is computed from Y using the BSC
correlation model:

Lap(X) = (2Y − 1) log
p

1 − p
. (5)

Upon each (local) message-passing iteration, the overall LLR
information of X can be used to detect X , and the extrinsic
LLR information of Sx (i.e. the overall LLR subtracts the a
priori LLR) can be passed to the inner convolutional code.

The Convolutional Channel Decoder: The inner convolu-
tional code uses a maximum a posteriori probability (APP)
decoder or the BCJR algorithm to decode Sx. At the first
global iteration, the input to the BCJR decoder consists only of
AWGN-corrupted syndrome bits (from the channel). Starting
from the second global iteration, feedback information from the
outer LDPC code will be also be used as a priori information.
The global message exchange is illustrated in Fig. 5.
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Fig. 5. Joint soft source-channel decoding.

IV. SIMULATION

This section evaluates the performance of the proposed
scheme using computer simulations. Since the block size is
typically limited to a few thousand bits in practical cases, we
use n=2000 bits as the length of the message sequences. It has
been shown in [17] that at such short block sizes, regular LDPC
codes tend to outperform irregular ones. Hence, regular LDPC
codes with column weight 3 are used as the outer source code.
A 16-state convolutional code with a generator polynomial
[1+D+D4, 1+D2 +D3 +D4] is used as the base channel
code for error protection (can be punctured to other rates).

A. Compression Rate

One key advantage of the proposed scheme is that the
compression rate and error protection capability can be in-
dependently tuned and controlled for any finite block size,
whereas this is not possible with the joint source-channel DSC
approaches in previous works (e.g. [10]-[12]). The first step in
our system implementation is to determine the maximum com-
pression rate that can be supported. Suppose that the inner error
protection code is powerful enough to successfully recover the
syndrome sequence Sx. Then, the equivalent channel as seen by
the outer LDPC source code appears noiseless, and a noiseless-
channel DSC setup can therefore be used to test and determine
the rate of the LDPC code. Computer simulations show that
an extended LDPC code based on an (n, k) = (2000, 1000)
regular LDPC code with λ(x)=x2 and ρ(x)=x5 can achieve
a bit error rate (BER) of 10−6 when p = 0.0533. (Due to the
space limitation, the performance plot is left out.) This suggests

that a compression rate of no larger than 1/2 should be used
for length 2000 source sequences withs a correlation factor
p=0.0533.

B. Error Resilient Capability

The next step is to determine how much redundancy is
needed for satisfactory error protection of the compressed data
(i.e. syndrome sequences). Again, this can be adjusted by using
different inner codes and different code rates. Fig. 6 shows
the performance when the inner convolutional code has rate
Rc = 3/4 (punctured from the rate 1/2 mother code mentioned
previously). If a distortion of around 10−6 is considered
lossless, then this concatenated LDPC-convolutional scheme
can achieve a compression rate of R1Rc = 2

1

3

4
=3:2 for source

sequences having a length of 2000 bits and a correlation level
p=0.0533 on AWGN channels with SNR =1 dB.

To provide a better compression rate for the same setup
or to provide the same compression rate for a worse setup,
either a stronger convolutional code, or a stronger LDPC code
or a longer block size is needed. For example, by lowering
the channel code rate to Rc = 1/2, an SNR of only -1 dB
is needed for transmission over the noisy AWGN channel
(Fig. 7). Alternatively, by increasing the sequence length to
n=6000 and subsequently using a (6000, 3000) LDPC code,
an correlation level of p = 0.064 can be supported with an
AWGN SNR slight lower than 1 dB (plot not shown).

C. Joint Decoding Gain

From the above plots, we observe that the BER decreases
with the increase of the number of the global iterations (up
to a saturation point). This confirms that iterative interaction
between the inner channel decoder and the outer source de-
coder improves the performance. Specifically, in Fig. 6, we
have also plotted the performance of the sequential decoding
where no feedback is provided from the outer source decoder
back to the inner channel decoder. For the specific case that
is shown (in dashed lines), one round of BCJR decoding of
the inner channel code is performed, followed by 71 rounds
of message-passing decoding of the outer source code. As will
be clear from the complexity analysis in the next Subsection
(Tab. I), this (1, 71) sequential decoding scheme is of the same
complexity as the (6, 36) iterative decoding scheme, but of
much worse performance especially at low SNRs. (The high
error floor in the figure is in part due to the short code length.)

D. Complexity Analysis

In addition to adjusting the individual code rates and
lengths to meet a performance requirement (i.e. guaranteed
performance), the proposed scheme also makes it possible to,
subject to a given complexity, fine-tune the performance by
adopting different decoding scheduling schemes (i.e. best-effort
performance). The latter can be facilitated by the complexity
analysis.

Tab. I lists the complexity incurred in the inner BCJR de-
coder and the outer message-passing decoder (for the extended
LDPC code). All computations are in the log domain, and table



lookup is assumed for any nonlinear operation. In the table, M
is used to denote the memory size of the convolutional code,
g the number of global iterations, l the total number of local
iterations in the LDPC decoder, m the length of the syndrome
sequences of the LDPC code (i.e. the size of the compressed
message), and λ and ρ the column weight and row weight of
the (original) LDPC code. (Due to the space limitation, the
actual computation is omitted.)

V. CONCLUSION AND FUTURE WORKS

We have proposed a novel LDPC-convolutional scheme
for noisy-channel Slepian-Wolf coding. The key advantages
include (i) separate tuning and refining of the compression
rate (provided by the outer code) and the error protection
power (provided by the inner code) is made possible and the
overall performance is thus predictable and controllable, (ii)
the use of the joint iterative decoder maximally exploits the
performance without involving the tricky task of joint source-
channel optimization, and (iii) many useful findings and results
about serially concatenated codes can be borrowed, making
system design and implementation a much lighter task.

The paper has also explored possible optimization to achieve
better performance. We show that for short block sizes, a
performance gain of 2.5 dB can be achieved using joint iterative
decoding over separate decoding for the same decoding com-
plexity, For large block sizes, irregular LDPC codes are known
to perform better than regular LDPC codes. The application of
irregular LDPC codes to our system model and its effect on
the performance of the system will be further studied. It is
interesting to note that when an outer irregular LDPC code
is used and when the inner convolutional code is limited to
an accumulator, the resulting serial concatenation essentially
becomes a systematic IRA code [15]. Additionally, the above
work can be extended to a case where the side information is
not perfect.

TABLE I

COMPLEXITY ANALYSIS OF LOG-MAP AND MP

log-MAP MP
max ops gm(5 · 2M

− 2)
additions gm(15 · 2M + 9) ((2λ)n + (2ρ − 1)m)l
look-ups gm(5 · 2M

− 2) (2ρ − 2)l + mg
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