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Abstract— This paper presents an efficient structured binning
scheme for solving the noiseless distributed source coding problem
with parallel concatenated convolutional codes, or turbo codes.
The novelty in the proposed scheme is the introduction of a
syndrome former and an inverse syndrome former to efficiently
and optimally exploit an existing turbo code without the need to
redesign or modify the code structure and/or decoding algorithms.
Extension of the proposed approach to serially concatenated codes
is also briefed and examples including conventional turbo codes
and asymmetric turbo codes are given to show the efficiency and
the general applicability of the approach. Simulation results reveal
good performance which is close to theoretic limit.

I. INTRODUCTION

The challenging nature of multi-user communication prob-
lems [1] has been recognized for decades and many of these
problems still remain unsolved. Among them is the distributed
source coding (DSC) problem, which refers to the compression
of two or more physically-separated but statistically-correlated
information sources, where the sources (e.g. sensors) send the
(compressed) information to a central point (e.g. monitoring
station) without communicating with each other. The theory
and conceptual underpinnings of the noiseless DSC problem
started to appear back in the seventies [2][3][4][5]. In particular,
Slepian-Wolf theorem states that separate encoding (but joint
decoding) does not incur a loss in capacity from joint encoding
[2]. The random binning idea used in the proof of Slepian-
Wolf theorem requires a structured binning implementation in
practice [6]. The first constructive algebraic binning scheme
was demonstrated by Wyner [1] where cosets of a linear parity
check code are used as bins and a syndrome decoder is used
to decode the codes. This approach was further extended to
include non-syndrome decoders by Pradhan and Ramchandram
[7]. Since then, several practical coding schemes have been pro-
posed for use in DSC, including coset codes [7], lattice codes
[8][6], low density parity check (LDPC) codes [9][10][11] and
more recently turbo codes [12][13][14][15][16].
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In this work, we propose to exploit parallel concatenated
convolutional codes (PCCC), or turbo codes, for near-lossless
DSC. The goal is to get close to the theoretic limit with
as low complexity as possible. The reasons for using turbo
codes are three-fold: (i) turbo codes are capacity-approaching
channel codes, (ii) a turbo encoder is cheap to implement
(thus appealing for applications like sensor networks where the
computation on the transmitter side needs to be minimized),
(iii) unlike random LDPC codes, the length of a turbo code is
flexible (easily changed), making it possible to track and adapt
to the varying correlation between sources.

Among the available turbo-DSC literature, Garcia-Frias and
Zhao were the first to propose an interesting turbo scheme
where two sources were separately turbo encoded and decoded
in an interwoven way akin to a four-branch turbo code [12].
A similar scheme that works for asymmetric compression was
independently devised by Aaron and Girod [13]. In [14], Bajcsy
and Mitran proposed yet another turbo structure based on
finite-state machine codes. The work of Liveris, Xiong and
Georghiades is particularly worth mentioning [16]. It is the
first to optimally exploit an existing turbo code, but does not
make explicit use of the binning scheme. The implicit binning
approach therein involves merging a principle trellis with a
complementary trellis to construct a source coding trellis that
contains parallel branches. If the component convolutional code
has rate 1/k, then there are 2k−1 parallel branches between a
valid pair of states. Encoding is performed by a walk through
the trellis (or the state diagram) and decoding requires a
modified turbo decoder to accommodate the time-varying trellis
[16]. These pioneering works [12][13][14][16] revealed the
potential of the turbo-DSC solution, but simple and universal
binning schemes to fully exploit an existing turbo code without
redesigning the code or modifying the decoder are not entirely
clear. This is where this paper fits in. Compared to the approach
in [16], the proposed one provides an explicit algebraic binning
realization for turbo codes which is simpler and more efficient
since there is no need to go through code trellis during encoding
and the decoding trellis is not time-variant.

We note that the binning idea first introduced in [2][1]
provides a fresh and sharp tool that allows all linear channel
codes (also known as error correction codes or ECC) to be



fully exploited for distributed source coding. The idea is to
group data sequences (i.e. virtual codewords) into bins/cosets
and, by transmitting the (short) bin-indexes instead of the
(long) codewords, compression is achieved. In order to (near-
)losslessly recover the information at the decoder, a “geomet-
rical uniformity” property needs to be preserved in all bins.
More details will follow in Section II. Here, we wish to
point out that, capitalizing the general framework of binning
approach, the task left for a specific channel code is to find
a practical and efficient way to bin codewords and to index
bins. Whereas block codes are easily “binned”, the random
interleaver in a turbo code makes the task tricky. This probably
explains why previous works on turbo-DSC problems have not
fully exploited the binning approach. (As mentioned before,
the turbo-DSC works of Liveris et al [16] are the only ones
known to the authors that have implicitly used the binning
idea.) The novelty in the proposed method is that we introduce a
simple way to construct a syndrome former (SF) and an inverse
syndrome former (ISF) at the encoder and decoder, respectively,
to efficiently bin codewords without the need to explicitly
write out the parity check matrix (near-impossible task) or
redesign/modify the code structure or the decoding algorithms.
The approach is simple, optimal, and generally applicable
to all turbo codes, including asymmetric turbo codes [17].
Simulations on both conventional turbo codes and asymmetric
turbo codes with fairly large block sizes reveal a compression
rate that is extremely close to the theoretic limit.

The rest of the paper is organized as follows. Section II
formulates the DSC problem and presents the generic binning
scheme for compression with side information (SI). Section
III discusses in detail the proposed approach, starting with
convolutional codes, and moving on to parallel turbo codes
and finally serial turbo codes. Section IV presents simulation
results and Section V concludes the paper.

II. BACKGROUND

A. System Model of the DSC Problem

Let us first formulate the setting for discussion. Consider
two correlated binary memoryless sources X and Y encoded
by separated encoders and decoded by a joint decoder. The
achievable rate region is given by the Slepian-Wolf boundary
[2]:

R1 ≥ H(X |Y ) (1)

R2 ≥ H(Y |X) (2)

R1 + R2 ≥ H(X, Y ) (3)

where R1 and R2 are the compression rates of X and Y ,
respectively. A typical illustration is given in Fig. 1.

For most cases of practical interest, zero-error DSC is pos-
sible only asymptotically [18]. For discrete symmetric sources,
however, corner points on the Slepian-Wolf boundary can
be achieved by considering one source (e.g. Y ) as the side
information and compressing the other (i.e. X) to its conditional
entropy (H(X |Y )). The line connecting the corner points can
then be achieved through time-sharing.

B. The Generic Binning Scheme with Binary Linear Codes

This subsection outlines the generic binning approach to
achieve the corner point of A or B, which is essentially the
problem of compression with side information. The correlation
between X and Y is modeled by a virtual binary symmetric
channel (BSC) as X = Y ⊕Z, where Z is a Bernoulli process
with Prob(Z = 1) = p and is independent of Y . Fig. 2 shows
the system diagram.
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Fig. 2. Source coding with side information at decoder

The binning/coset/syndrome approach of DSC uses a (pow-
erful) linear error correction code to construct the bins or the
non-overlapping cosets of the codeword/sequence space. The
assignment of the bin-indexes or the syndromes are not unique,
except for the coset of valid codewords whose coset syndrome
is always 0. Let c(s) denote a codeword c having syndrome s.
The encoder and decoder proceed as follows:

• Encoder: compress source sequence x = c1(s) to its
syndrome s.

• Noiseless channel: send s to the decoder without error.
• Decoder: Choose an arbitrary sequence c2(s) from the

coset of s, subtract it from side information y, treat the
resulting sequence as a noisy codeword and perform ECC
decoding. Notice

y ⊕ c2(s) = x ⊕ c2(s) ⊕ z (4)

= c1(s) ⊕ c2(s) ⊕ z (5)

= c3(0) ⊕ z; (6)

i.e., y ⊕ c2(s) can be equivalently viewed as a noise-
corrupted version of c3(0) (transmitted through a virtual
BSC). Hence, if the ECC is powerful enough, codeword
c3(0) can be recovered with vanishing error probability.
Adding c2(s) back to ĉ3(0) then yields the estimate for
the original source sequence x (or c1(s)), denoted by x̂.
Notice Prob(x̂ 6= x) = Prob(ĉ3(0) 6= c3(0)). It follows
that x is also recovered with vanishing distortion.



Notice that the capacity of the virtual BSC is 1−H(Z).
A capacity-achieving code has rate R ≈ 1 − H(Z), and
the syndrome sequence has rate (1 − R) which achieves the
theoretic limit H(X |Y ) = H(Z). This shows the optimality
of the binning approach. The immediate implication is that
a capacity-approaching channel code can achieve capacity-
approaching source coding or, equivalently, to find a good
distributed source coding scheme is to find a good channel
coding scheme on the virtual channel and to implement an
efficient binning scheme for it.

III. STRUCTURED BINNING WITH PARALLEL AND SERIAL

TURBO CODES

Following the algebraic binning scheme illustrated above, we
discuss in detail below how to efficiently and optimally exploit
it with turbo codes. We start with convolutional codes which
are the component codes of a turbo code, followed by a detailed
discussion on (parallel) turbo codes. Extensions to serial turbo
codes, or serially concatenated convolutional codes (SCCC), is
also presented, but in brevity.
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Fig. 3. (a) A rate 1/2 systematic recursive convolutional encoder. (b) Syndrome
Former. (c) Inverse Syndrome Former.

A. A Component Convolutional Code

In his 1992 paper on trellis shaping [19], Forney described
a simple way to construct syndrome formers and inverse syn-
drome formers for convolutional codes. For a rate k/n binary
linear convolutional code C with k×n generator matrix G1, it
is shown that the SF can be implemented using an n/(n − k)
linear sequential circuit specified by an n × (n − k) transfer
matrix HT with rank (n − k) such that

GHT = 0. (7)

This constraint makes sure that all valid codewords are as-
sociated with the all-zero syndrome 0 and that length-n

1It should be noted that the generator matrix of a binary convolutional code
considered in this work is formed of generator polynomials and, hence, is
different from the {0, 1} generator matrices of a block code.

codewords/sequences have the same syndrome if and only if
they belong to the same coset. The inverse syndrome former,
(H−1)T , takes the left inverse of the SF and generates a coset
representative sequence from a syndrome sequence s, i.e.

(H−1)T HT = I. (8)

It should be noted that the SF-ISF pairs are not unique for
a given code. Any linear sequential circuit having the required
number of inputs and outputs and meeting the constraints of (7)
and (8) should work, but complexity could vary. As an example,
consider a rate 1/2 recursive systematic convolutional (RSC)
code with generator matrix G = [1, 1+D2

1+D+D2 ]. It is convenient

to choose the SF to be HT = [ 1+D2

1+D+D2 , 1]T and the ISF to be
(H−1)T = [0, 1]. Clearly, constraints (7) and (8) are satisfied
since [1, 1+D2

1+D+D2 ][ 1+D2

1+D+D2 , 1]T = 1+D2

1+D+D2 ⊕ 1+D2

1+D+D2 = 0

and [0, 1][ 1+D2

1+D+D2 , 1]T = 1. The encoder, the SF and the
ISF of this convolutional code are illustrated in Fig 3. Another
valid SF-ISF pair is to choose HT = [1 + D2, 1 + D + D2]T

and (H−1)T = [1 + D, D].

B. Parallel Concatenated Convolutional Codes

Consider a parallel turbo code with two RSC component
codes connected by a random interleaver. Assume that the first
component code has rate R1 = k/n1 and generator matrix
G1 = [I, P1], where I is the k×k identity matrix to generate k
systematic bits and P1 is a k×(n1−k) matrix to generate (n1−
k) parity check bits for every block of k input bits. Similarly,
assume that the second component code has rate R2 = k/n2

and generator matrix G2 = [I, P2] where P2 is a k× (n2 − k)
matrix to generate (n2−k) check bits for every k input bits. For
each block, the systematic bits and parity check bits from the
G1 and G2 are denoted by ys,y1, ỹs,y2 respectively. Since ỹs

is a scrambled version of ys, it is not transmitted. Hence, the
overall rate for the concatenated code is R = k/(n1+n2−k) =
R1R2/(R1 + R2 − R1R2).

The syndrome sequence of the overall parallel turbo code
can be formed of two parts s = [s1, s2] where s1 comes
from the first component code and s2 the second. Due to
the random interleaver, the overall syndrome former of the
turbo code does not have a simple closed-form expression.
Nevertheless, by exploiting the original structure of the turbo
encoder, a simple SF in the form of linear sequential circuit
can still be implemented with turbo codes.

Following the discussion in the previous subsection, we can
easily obtain the (sub) syndrome formers for the two RSC
component codes. An obvious choice is to choose

HT
1 = [P1, I ]T , (9)

and HT
2 = [P2, I ]T . (10)

The overall SF is then formed by parallel concatenating the
two sub SFs with a random interleaver in a form similar to the
original turbo encoder. This structure is illustrated in Fig. 4.
Clearly, for every (n1 +n2−k) bits at the input of the SF, HT

1

outputs (n1−k) bits and HT
2 outputs (n2−k) bits. The overall

SF thus has a transfer matrix operating on (n1 + n2 − k) and



producing (n1 + n2 − 2k) bits as required. It is also easy to
verify that for all valid codewords, the SF outputs the all-zero
syndrome 0. Notice that if the interleaver is fixed, this SF is
still a linear circuit. Hence, it is a simple and valid syndrome
former for the subject parallel turbo code.

The role of the ISF is, for a given syndrome s, to find an
auxiliary sequence (not necessarily a valid codeword of the
channel code) that is associated with this syndrome. For each
of the RSC component codes, the (sub) ISF that performs a left
inverse of the (sub) SF will output a sequence that contains both
a systematic part and a parity part, i.e, [ys, y1] from sub ISF1
and [ỹs, y2] from sub ISF2. Due to the random interleaver, the
bit sequence fed into the second component code is a scrambled
version of what is fed into the first one, causing a potential
misalignment of the systematic bits ys and ỹs. This seems to
suggest the need for some form of interleaving/deinterleaving
at the decoder which can be tricky and complex2. However, a
bit more thought reveals a simple and effective solution, that is,
to force the systematic part of the ISF to always output all-zero
sequences (which are invariant regardless of what interleaver is
used). Hence, the choice of the sub ISF for the component RSC
code is restricted to (H−1

1,2 )T = [0, J ], where the left part is
a zero matrix and right part J is a square matrix. Specifically,
for the sub SFs we select (9) and (10) and the corresponding
sub ISFs take the form of [0, I ]. Implied in this practice is that
for any syndrome/coset-leader, there exists one and only one
codeword/sequence which falls in this bin/coset and which has
all-zero systematic part. This can be easily shown to be valid
for linear codes. The general structure of the ISF of the overall
turbo code is shown in Fig. 4.
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Fig. 4. (a) General SF for PCCC. (b) General ISF for PCCC

Now that we have constructed the SF and the ISF for parallel
turbo codes, the rest of the work with source coding can follow
the steps discussed in Section II. For the readers’ convenience,
we summarize the whole process as follows:

• Parallel Turbo Code: the turbo code in use has two RSC
component codes with generator matrices of G1 = [I, P1]
and G2 = [I, P2], respectively.

2For example, in the implicit turbo-binning scheme in [16], auxiliary bits
(and parallel branches) are introduced to the source coding trellis to handle the
random scrambling in a turbo code.

• Syndrome Former: the SF is formed of an interleaved
parallel concatenation of two sub SFs corresponding to
the two component codes (Fig. 4).

• Inverse Syndrome Former: the ISF is formed by parallel
concatenating the two corresponding sub ISFs, (H−1

1 )T =
[0, J1] and (H−1

2 )T = [0, J2] (Fig. 4).
• Encoder: the encoder is nothing but a syndrome for-

mer. The source sequence at the input is viewed as a
three-segment virtual codeword of the turbo code: x =
[xs, x1, x2], where xs, x1, x2 are treated as
virtual systematic bits and virtual parity bits from the first
and second component code, respectively. The source se-
quence x is passed into the SF, compressed to a syndrome
sequence, s = [s1, s2] which is sent over the channel.

• Channel: send s = [s1, s2] to decoder without error i.e.,
noiseless channel.

• Decoder: the decoder (Fig. 5) is composed of an ISF and a
conventional turbo decoder. The auxiliary sequence at the
output of the ISF is subtracted from the side information,
y, and then fed into the turbo decoder. At the output of
the turbo decoder, the auxiliary sequence is added back to
recover the original sequence x as x̂.
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Fig. 5. System diagram for source coding with side information

C. Serial Concatenated Convolutional Codes

Following the same line of thinking as in PCCC codes,
SCCC codes can also be exploited for compression with side
information. Due to the space limitation, we only pinpoint the
key steps here. Interested readers please refer to [20]. Again, the
SF-ISF pair of a serial turbo code is based on the SF-ISF pairs
of its component codes. To avoid the potential misalignment
caused by the random interleaver, it is convenient to restrict
the inner code to be systematic. The syndrome of the overall
serial code can be decomposed of two parts s = [s1, s2] where
s1 comes from the inner code and s2 the outer code. s1 can
be obtained by applying the codeword to the SF of the inner
code, and s2 by passing the de-scrambled systematic part of
codeword to the SF of the outer code. The auxiliary sequence,
i.e. the output of the ISF, can be obtained from the binary
addition of two parts: (i) the output from the sub ISF of the
inner code (with s1 as the input); It should be noted that this
sub ISF needs to force the systematic part of the output to
be all zeros. (ii) the output of the inner encoder fed with the
scrambled output of the sub ISF of the outer code (with s2 as
the input).



IV. SIMULATION RESULTS

The proposed scheme represents a direct exploitation of the
binning/coset/syndrome approach discussed in Section II, and
is immediately applicable to any parallel turbo code and many
serial turbo codes. To evaluate its performance, we simulate
the proposed binning scheme on a rate-1/3, 8-state parallel
turbo code with the same component codes as in [12][16]:
G1 = G2 = [1, 1+D+D2

+D3

1+D2+D3 ]. A length 104 S-random
interleaver with a spreading factor 17 and a length 103 S-
random interleaver with a spreading factor 11 are used for
simulation, and ten decoding iterations are performed before the
turbo decoder outputs its estimates. Appropriate clip-values are
also used to avoid numerical overflows/downflows in the turbo
decoder. Table I lists the simulation results where n denotes
the interleaver length and for each crossover probability p,
3×107 bits are simulated except for p = 0.14/0.145, n = 104

where 3× 109 bits are simulated. The interleaving gain can be
easily seen from the table. If a normalized distortion of 10−6

is considered near-lossless, then this turbo coding scheme can
support a virtual BSC with p = 0.145. Since the compression
rate is 2/3, there is a gap of only 2/3−H(0.145) = 0.07 from
the theoretic limit, which is among the closest gaps reported
so far. We mention that in [12] and [16], the same turbo code
with the same interleaver size but different code rate is used.
The achievable performances therein are about 0.15 and 0.09
from the theoretic limit, respectively.

In addition to conventional binary turbo codes, asymmet-
ric turbo codes which employ a different component code
at each branch can also be applied for capacity-approaching
DSC. Asymmetric turbo codes bear certain advantages in joint
optimizing the performance at both the water-fall region and
the error floor region [17].

We simulated the NP16-P16 code in [17] with G1 =
[1, 1+D4

1+D+D2+D3+D4 ] and G2 = [1, 1+D+D2
+D4

1+D3+D4 ]. A length 104

S-random interleaver with a spreading factor 17 is applied
and 15 turbo decoding iterations are performed. Simulation
results show that the proposed turbo-binning scheme provides
a distortion of 5.6× 10−7 when p = 0.15. This translates to a
gap less than 0.06 from the theoretic limit.

V. CONCLUSION

We have proposed an efficient turbo-binning scheme for
the noiseless DSC problem using a syndrome former and an
inverse syndrome former. The proposed approach is simple,
optimal and widely applicable. Computer simulations reveal
good performance which is close to the theoretic limit. With
this proposed turbo-binning scheme in mind, implementing
turbo codes for the noiseless DSC problem is simplified to
two steps: (i) Choose an appropriate parallel/serial turbo code
for the virtual BSC which models the correlation between
the two binary sources, and compress one source with a
conventional compression method. (ii) Follow the scheme we
outlined to construct an efficient SF-ISF pair for this code,
and subsequently to encode (i.e. compress) and decode (i.e.
decompress) the other source using the binning approach.

Aside from simplicity, a particularly nice feature about the
proposed turbo-binning scheme is its unaltered use of an
existing parallel turbo code (no redesign of the code structure
or decoding algorithm is needed). This allows the rich results
available in the literature of turbo codes to serve immediately
and directly the DSC problem at hand.

TABLE I

PERFORMANCE OF THE PROPOSED TURBO-BINNING SCHEME

Crossover Prob. Distortion
p n = 103 n = 104

0.10 0 0
0.11 1.5 × 10

−6 0
0.14 8.0 × 10

−4
4.1 × 10

−7

0.145 4.0 × 10
−3

6.4 × 10
−7

0.155 3.5 × 10
−2

4.2 × 10
−3
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