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Abstract— Iterative analysis for low-density parity-check
(LDPC) codes uses the prevailing assumption that messages
exchanged between the variable nodes and the check nodes follow
a Gaussian distribution. However, the justification is largely
pragmatic rather than being based on any rigorous theory. This
paper provides a theoretic support by investigating when and
how well the Gaussian distribution approximates the real message
density and the far subtler why. The analytical results are verified
by extensive simulations.

I. INTRODUCTION

The breakthrough of turbo codes in 1993 had revolutionized

the coding research with new concepts for successful error

correction: a paradigm of constructing long, powerful codes

using short, weak component codes and decoding them using

soft, iterative decoders with manageable complexity.

The rediscovery of low-density parity-check (LDPC) codes

a few years later provided additional testimony to the marvel

of the soft-iterative paradigm. With variations of turbo codes

and LDPC codes demonstrating similar superb performance,

and with softly-decoded versions of the existing block codes

exceeding the error correction capability they once believed

to have, the importance of both ingredients in a soft-decision

decoder cannot be over-stated: “soft” enables extraction of

maximal benefit from the knowledge of the channel noise

statistics and refinement of useful probabilistic information

through the decoding process, and “iterative” enables im-

plementation of soft-decision decoders with efficiency and

acceptable complexity.

Toward a deep theoretic understanding of soft iterative

decoding, researchers have conducted active analysis. A soft

iterative decoder generally consists of several component soft

decoders connected in a parallel, serial or hybrid fashion,

passing probabilistic message along the connecting edges

between the component decoders. Message-passing algorithm,

for which the a posterior probability decoding for turbo

codes is a specialization, forms the majority of soft iterative

decoding. Since almost all message-passing decoders are high-

dimensional nonlinear mapping, analysis using conventional

methods (such as those on the codeword space) appears

ineffective. On the other hand, stochastic approaches offer a

rich source for analyzing the properties of iterative decoding,
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enabling the modeling of the input and output of a soft decoder

as random processes and the tracking of the evolution of their

statistic characteristics through iterations. Density evolution

(DE), proposed by Richardson et al in [3], was one of the

pioneering stochastic methods to investigate the convergence

behavior for iterative decoding. Density evolution, when ap-

plied to code graphs with asymptotically unbounded girth,

can compute thresholds for the performance of LDPC codes

and turbo codes with iterative decoding, but tracking the

probability density function (pdf) of the messages involve

infinite dimensional algebra, and is therefore computationally

prohibitive.

To simplify the analysis, researchers started to look into the

widely-adapted Gaussian model. Wiberg [7] first demonstrated

that the pdf of extrinsic information (exchanged between

component decoders) may be approximated by a Gaussian

distribution. This discovery quite simplified the stochastic

analysis, since a Gaussian distribution can be completely

characterized by its mean and variance. Following this ap-

proximation, [4] succeeded in estimating the thresholds for

both regular and irregular LDPC codes. At the same time,

[8] showed that the pdf of extrinsic information in message-

passing decoding satisfies and preserves a symmetry condition.

Realizing that a probabilistic density that is both “symmetric”

and Gaussian distributed satisfies σ2 = 2m, where m and

σ2 are the mean and variance of the Gaussian distribution,

researchers were able to further simplify the analysis by using

a single parameter, either the mean or the variance of the

message density, to track down the probabilistic evolution.

Following the success of density evolution, ten Brink [5]

proposed to use extrinsic information transfer (EXIT) charts

to visualize the behavior of an iterative decoder as the tem-

poral evolution of a one-dimensional quantity: the extrinsic

information exchanged between different computational units

during iterative decoding. At its proposition, EXIT charts were

considered an effective tool, but one providing not much more

knowledge than visualizing the repeated application of the

density evolution algorithm with different channel signal-to-

noise ratios (SNR) and at different stages of iterative decoding.

However, recent studies by Ashikmin and ten Brink, et al and

Montanari and Urbanke et al, reveal surprisingly elegant and

useful properties of EXIT charts, including, for example, the

convergence property and the area property [6] [14].

EXIT charts and their underlying tool of density evolution
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both make essential use of the prevailing assumption that

messages, as they pass between two component decoders at

an arbitrary stage of iterative decoding, follow approximately

Gaussian distribution. However, the justification of Gaussian

approximation is largely pragmatic, except for messages ex-

tracted from Gaussian channel outputs which are provenly

Gaussian. This seems-to-work philosophy has underlined the

iterative analysis of message-passing decoding for much of

the short history of the topic, and it is only very recently

that [10] attempted a theoretic analysis on the accuracy of

Gaussian assumption for turbo codes. In this paper, we provide

a statistical support for LDPC codes by investigating when

and how well the Gaussian distribution approximates the

real message density, and the far subtler why. Experimental

verifications are provided along with the discussion.

The remainder of the paper is organized as follows. The

background of LDPC decoding and the notations used in the

paper are introduced in Section II. Section III discusses log-

normal distributions and establishes several properties useful

for our analysis. The main results of the paper, namely, the

accuracy and applicable region of the Gaussian approximation,

are provided in Section IV. Finally, concluding remarks are

provided in Section V.

II. BACKGROUND AND NOTATIONS

LDPC codes are a class of linear codes characterized by

sparse parity check matrices. Message-passing decoding for

LDPC codes make essential use of graphs, known as Tanner
graphs or their generalization factor graphs, to represent

codes, passing probabilistic message along the edges of the

graph. The Tanner graph for an (n, k) LDPC code consists of

n variable nodes representing all the bits in the codeword, (at

least) (n − k) check nodes representing the parity constraints

imposed to the coded bits, and multiple edges connecting the

two types of nodes. The number of the edges connected to a

node is termed the degree of this node. We will use Dv and

Dc to represent the degree of the variable nodes and check

nodes respectively.

Consider message-passing decoding over an LDPC Tanner

graph, where soft extrinsic information iterates between vari-

able nodes and check nodes, and updates itself after each

iteration. Let superscript � denote the number of decoding

iterations, and subscript i and j denote, respectively, variable

nodes and check nodes. At the �-th iteration, the extrinsic

information passed from variable node i to check node j, m�
ij ,

and the information from check node j to variable node i, m�
ji,

are updated as follows:

m�
ij =

⎧⎨
⎩

mi, � = 0,

mi +
∑

j′∈Nc(i)\{j}
m�

j′i, � > 0. (1)

m�
ji = ln

(
1 +

∏
i′∈Nv(j)\{i} tanhm�−1

i′j /2

1 − ∏
i′∈Nv(j)\{i} tanhm�−1

i′j /2

)
, (2)

= 2 tanh−1
( ∏

i′∈Nv(j)\{i}
tanh

m�−1
i′j

2

)
, (3)

=
( ∏
i′∈Nv(j)\{i}

sign(m�−1
i′j )

)
· Φ

( ∑
i′∈Nv(j)\{i}

Φ
(
m�−1

i′j

))
, (4)

where Nc(i) is the set of check nodes connected with the i-th
variable node, Nv(j) is the set of variable nodes connected

with the j-th check node, and mi is the log likelihood ratio

(LLR) of signal si, extracted from the ith channel output ri:

mi = log
Pr(si = +1|ri)
Pr(si = −1|ri)

(5)

For additive white Gaussian noise (AWGN) channels with

Gaussian noise of mean zero and variance σ2 and i.i.d. input,

mi = 2ri/σ2, (6)

and hence follows a Gaussian distribution.

Φ function is defined as:

Φ(x) = ln
(

e|x| + 1
e|x| − 1

)
, (7)

where for convenience we assume Φ(0) = ln(2/0) = ∞.

The formulations in (2), (3) and (4) describe the same check

update operation but in different forms. Our Gaussian analysis

will be exclusively carried out on (4).

III. LOGNORMAL DISTRIBUTIONS

Before providing the main results, let us first establish a few

useful properties of lognormal distributions, upon which our

analysis is based.

Definition 1: A random variable (r.v.) X is said to be

lognormal distributed if its logarithm value ln(X) follows a

Gaussian distribution. Using the Jacobian rule, the lognormal

pdf for X can be formulated as:

fX(x) =
1√

2πxσ
e−

(ln(x)−µ)2

2σ2 , for x > 0, (8)

where µ and σ2 are the mean and variance of ln(X).
To provide a visual impression of how lognormal densities

look like, Figure 1 plots the pdf curves for 4 lognormal dis-

tributions with µ = 0 and σ = 0.5, 1.0, 1.5, 3.0, respectively.
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Fig. 1. Illustration of lognormal pdf’s µ = 0 and σ = 0.5, 1.0, 1.5, 3.0.

A long-recognized fact in statistics is that the sum of

lognormal random variables is also lognormal. Works in this
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area can be traced back to the sixties [9] and based on this

assumption, a number of models on the distribution function

and moments have been developed(see [9]-[13] and the refer-

ences therein). This rule is also widely applied in many science

and engineering fields including, for example, the coherent

channel interference model in wireless communications [11],

analysis of the BCJR algorithm in coding [10] and risk

measuring in finance [12]. Below we formally state the results

developed in literatures by differentiating between correlated

and uncorrelated random variables and between finite and

infinite terms.

Proposition 1: The sum of a set of correlated lognormal

random variables follows a lognormal distribution, regardless

of whether the set is finite or countable infinite. The sum of a

set of independent lognormal random variables approximates

lognormal when the set size is small, transforms from lognor-

mal to Gaussian as the set size increases, and becomes exactly

Gaussian in the unlimited case.

The case of correlated random variables may be verified

by simulations (see Figure 2) as well as [11] [10] [12]. For

independent random variables, [13] showed that the lognormal

approximation holds for a set size of 10 or smaller. Gaussianity

in the unlimited case follows from the central limit theorem.
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Fig. 2. Histograms for ln(S) with k = 2, 5, 10, 100.

Proposition 2: Let X be a lognormal random variable, its

power sum, defined as

S =
k∑

i=1

aiX
bi , (9)

follows a lognormal distribution, where {ai} is a set of

arbitrary non-zero constants, {bi} is a set of arbitrary negative

integers and k may be either finite or infinite.

Proof: Since X follows a lognormal distribution, there

exists a Gaussian random variable Z that satisfies the equality

X = eZ . Rewrite Xbi as ebiZ . Since biZ satisfies Gaussian

distributions for bi < 0, according to the definition of log-

normal distributions, ebiZ’s, and hence Xbi’s and aiX
bi’s for

ai �= 0, form a set of correlated lognormal random variables.

Following Proposition 1, their sum S will also be lognormal.

�

Since the proof of Proposition 2 uses Proposition 1 which is

a statistical rule-of-thumb, we perform experimental tests to

verify Proposition 2. Figure2 presents the histograms, each

collected over 10000 test samples, for ln(S) with set size

k = 2, 5, 10, 100 and randomly selected negative integers bi’s.

The plot shows that ln(S) looks consistently Gaussian-like

regardless of the set size.

To further provide a quantifiable evaluation of how close

the empirical data matches the true Gaussian distribution, we

resort to a goodness-of-fit tool named Kolmogorov-Smirnov

(KS) test. The KS test compares the cumulative density

function (cdf) of normalized empirical data with a standard

Gaussian cdf by noting the maximal difference between the

two cdf’s. Mathematically, the KS evaluation metric is ex-

pressed as:
KS = max

x
(|F (x) − G(x)|), (10)

where F (x) represents the proportion of the (normalized)

experimental outcomes that are less than or equal to x, and

G(x) represents the standard Gaussian cdf evaluated at x.

The KS test results of the experimental data in Figure 2 are

listed in Table I. That the KS values are very small confirms

that ln(S) is very close to Gaussian and hence S is very close

to lognormal.
TABLE I

KS TEST VALUE FOR ln(S) WITH k = 2, 5, 10, 100

KS test value

k = 2 0.0047345

k = 5 0.0048123

k = 10 0.0087541

k = 100 0.0077152

Proposition 3: If |X| follows an (approximate) Gaussian

distribution, then Φ(X) in (7) follows an (approximate) log-

normal distribution.

Proof: Consider an auxiliary function ξ(z) defined for z ≥ 1
as

ξ(z) = ln(
z + 1
z − 1

), z ≥ 1, (11)

Using Tailor expansions, ξ(z) can be expressed as

ξ(z) = 2
∞∑

k=1

1
(2 × k − 1)

z1−2×k. (12)

Since e|x| ≥ 1, we substitute z in (12) with e|x| and get

Φ(X) = ξ(e|X|) (13)

= 2
∞∑

k=1

1
(2 × k − 1)

e(1−2×k)|X| (14)

= 2 (e|X|)−1 +
2
3

(e|X|)−3 +
2
5

(e|X|)−5 + ...(15)

Since |X| is (approximately) Gaussian, e|X| satisfies an

(approximate) lognormal distribution. Hence, according to

Proposition 2, Φ(X), the power sum of lognormal random

variable e|X| follows an (approximated) lognormal distribu-

tion. �

Comment 1: Since |X| ≥ 0, |X| cannot be exactly Gaussian.

If X is a Gaussian random variable such that Pr(X ≥ 0) >>
Pr(X < 0) (or Pr(X ≤ 0) >> Pr(X > 0)), then |X|
equals X (or −X) most of the time and will follow the
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Gaussian distribution closely. Hence, if we let a Gaussian

random variable X , whose probability mass is primarily on

one side of the origin, be the input to Φ(·), then the output

from Φ(·) will follow a lognormal distribution.

Proposition 4: If X (X ≥ 0) follows a lognormal distribution,

then Φ(X) will follow a Gaussian distribution.

Proof: Let Φ−1(x) denote the inverse function for Φ(x). It

is easy to verify that

Φ−1(x) = ln(
e|x| + 1
e|x| − 1

) = Φ(x). (16)

Since the inverse function for Φ(X) is itself, and since

Proposition 3 states that a Gaussian distribution at the input

to Φ(X) will produce a lognormal distribution at the output,

it follows that a lognormal distribution at the input to Φ(X)
will produce a Gaussian distribution at the output. �

IV. ACCURACY OF GAUSSIAN APPROXIMATION

This section provides a theoretic validation for when and

how the Gaussian assumption holds.

A. Validation of Gaussian Assumption in Message-Passing

Since the transmit channel is symmetric and memoryless,

i.e. Pr(ri = q|xi = 1) = Pr(ri = −q|xi = −1), and

since LDPC codes are linear codes, without loss of generality,

we assume that the all-zero codeword, which is mapped to

si = +1 for all i, is transmitted. Following the conventions,

we assume the message-passing algorithm is operated on a

Tanner graph with asymptotically unbounded girth. Hence, the

messages passed through different edges from variable nodes

to check nodes (as well as from check nodes to variable nodes)

are considered to follow the same distribution but independent.

We focus our discussion on additive white Gaussian noise

(AWGN) channels.

Consider the variable node update in (1) and the check

node update in (4). Initially, m0
ij = mi for all i and j.

According to (6), the LLR information mi extracted from the

Gaussian channel is Gaussian distributed. Hence, the first set

of messages, m0
ij , passed from variable nodes to check nodes,

follow a Gaussian density.

Now assuming that the messages exchanged at the (� −
1)th iteration are Gaussian, we wish to show whether or when

Gaussianity is preserved through the variable node update and

the check node update in the �th iteration. We state our main

results below:

Theorem 1: The outbound messages from check nodes to

variable nodes at the �th iteration, m�
ji, can preserve Gaus-

sianity from the previous iteration, provided that the inbound

messages are reasonably reliable and the degrees of check

nodes are small.

Proof: Consider the check node update in (4). Since +1’s

are transmitted, reasonably reliable inbound messages imply

that majority of m�−1
i′j ’s take positive values. Following Propo-

sition 3 and Comment 1, |m�−1
i′j | will then approximate a Gaus-

sian distribution and so Φ(m�−1
i′j ) will follow an (approximate)

lognormal distribution. Further, Φ(m�−1
i′j )’s are independent

from each other, since m�
i′j’s, transmitted through different

edges, are independent. Now Proposition 2 states that only the

sum of a small set of independent lognormal random variables

will continue to be lognormal. Hence,
∑

i′∈Nc(j)\{i} Φ(m�−1
i′j )

will be lognormal when (and only when) the check node de-

gree (Dc) is small. Finally, using Proposition 4 that lognormal

distribution at the input to Φ(·) makes the output Gaussian,

we get that φ(
∑

i′∈Nc(j)\{i} Φ(m�−1
i′j )) and subsequently m�

ji

follow Gaussian distributions.

The proof is best summarized as

m�
ji =

( ∏
i′∈Nv(j)\{i}

sign(m�−1
i′j )

)

· Φ
(

lognormal 3︷ ︸︸ ︷
∑

i′∈Nv(j)\{i}

lognormal 2︷ ︸︸ ︷
Φ

(
m�−1

i′j︸ ︷︷ ︸
Gaussian 1

) )
︸ ︷︷ ︸

Gaussian 4

, (17)

where from “Gaussian 1” to “lognormal 2” it requires m�−1
i′j

to be a Gaussian r.v. with a small tailing probability (i.e.

reliable messages), and from “lognormal 2” to “lognormal 3”

it requires the terms in the summation to be small (i.e. small

check degrees). �

Theorem 2: The outbound messages from variable nodes to

check nodes at the �th iteration, m�
ij , preserves Gaussianity

from the previous iteration.

Proof: Since all the inbound messages, m�
j′i, and the

message extracted from the channel, mi, are independent and

Gaussian, and since the sum of independent Gaussian is also

Gaussian, m�
ij is Gaussian.

Additionally, even when the inbound messages to the vari-

able nodes m�
j′i’s are not exactly Gaussian, as long as the

variable node degree Dv is large,
∑

j′∈Nv(i)\{j} m�
j′i tends to

be Gaussian according to the central limit theorem. Hence

outbound messages from variable nodes help enforce the

Gaussian assumption when the code rate is small. �

B. Comments and Simulation Verifications

It is clear from Theorem 1 and Theorem 2 that in order for

the message density to approximate a Gaussian distribution

well, the following conditions need to be satisfied:

First, the messages passed along the edges are reasonably

reliable to start with. In general, the message reliability im-

proves with iterations (may stuck or saturate at a certain stage);

but to ensure reliability in the first few iterations, the operating

channel SNR needs to be reasonably high.

To demonstrate the impact of channel SNR on the message

density, we demonstrate in Figure 3 the histograms of mes-

sages passed from check nodes to variable nodes during the

first iteration. It is evident from the figure that the message

density is close to Gaussian at high SNRs, but deviates

severely from Gaussian as the SNR drops low.
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Fig. 3. Histogram of messages at different SNRs with code rate 1/2.

Second, the degrees of the check nodes cannot be large. A

regular LDPC code with variable node degree of 3 will require

check node degree to be 6 for rate 1/2, 9 for rate 2/3, 12 for

rate 3/4, 15 for rate 4/5 and so on. The implication here is

that the Gaussian approximation does work well for high-rate

codes (such as rates above 0.8). To illustrate, Figure 4 plots

the histograms of messages for different check node degrees

at the channel SNR of 5db. A check node degree of 30 and

above has clearly caused a large discrepancy from Gaussian

density (at this SNR).
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Fig. 4. Histograms of messages for different check node degrees at SNR=5db.

It should be noted that the two conditions we just discussed

speak for different dimensions of the problem, and a favorable

condition for one may mitigate the negative impact of the

other. To evaluate the effect with both conditions combined,

we show in Figure 5 the KS test values of the first round

check node messages, m1
ji, for different SNRs and check node

degrees. A KS value below a threshold of 0.04, marked out in

black horizontal line, indicates a close approximation to the

Gaussian distribution. Not surprisingly, “a high SNR” points

to different db values for different check node degrees. For a

check degree of 4, 0db appears to be adequate, whereas for a

check degree of 30, it takes 4.5db to start with to make the

Gaussian assumption a reasonable one.

V. CONCLUSION

While the prevailing assumption of Gaussian density, and

the simplicity it brings to density evolution and EXIT charts,
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Fig. 5. Goodness-to-fit of the distribution of check node with Gaussian
distribution

contribute substantially to the flourishing of iterative analysis,

its theoretic justification is largely lacking. This paper fills the

gap for LDPC codes by performing a theoretic analysis for

when, how and how well the Gaussian distribution approxi-

mates the real message densities in message-passing decoding.

The analytical results are verified by extensive simulations.
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