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An Efficient Algorithm to Compute the Euclidean Distance Spectrum of a
General Intersymbol Interference Channel and Its Applications
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Abstract—We present an efficient algorithm to compute the dis-
tance spectrum of a general finite intersymbol interference (ISI)
channel, whose complexity is lower than those of existing methods.
Closed-form expressions are derived for both input–output Eu-
clidean distance enumerators and asymptotic distance spectrum
shapes for 2-tap and 3-tap ISI channels. Coded and/or precoded
ISI channels are also discussed.

Index Terms—Distance spectrum, input–output Euclidean dis-
tance enumerator (IOEDE), input–output weight enumerator, in-
tersymbol interference (ISI) channel, precoding.

I. INTRODUCTION

WE investigate the distance spectrum of a finite inter-
symbol interference (ISI) channel which is interpreted

as a nonregular, binary input, real-valued output trellis code.
Although the knowledge of distance spectrum is much desired
to understand the channel and to make use of tight bounds at
low signal-to-noise ratios (SNRs) [1], [23] the computation is
nontrivial.

There has been rich literature investigating error events and/or
distance spectra of linear trellis codes. In terms of code space,
linearity is very similar to the concept of regularity in [2], super-
linearity in [3], and geometrical uniformity in [4]. The classic
approach for this class of codes is to use the state diagram and
transfer function. Other approaches include the one-step transi-
tion matrix [1], [23].

When the code is nonregular, such as the equivalent code of an
ISI channel, the problem becomes considerably more complex,
since the distance between an incorrect path and the correct path
not only depends upon the error event, but also the correct path.
For simple two-state channels, it is possible to label the edges
of the state diagram as the average of two typical sequences
(all zeros and all ones), and treat the “equivalent code” as if
it were linear [18], [19], [21]. In the general case, a nonregular
code requires the extension of either the state diagram or the
transfer function. For instance, the generalized pairwise-state
diagram in [6] requires states instead of states, as for
regular trellis codes ( is the memory size). Alternatively, the
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number of states can remain unincreased, but the edge labels
need to be square matrices of dimension [7] rather
than scalars. Similarly, if a one-step state transition matrix is
used, it will be of dimensionality [8]. Due to the
complexity involved, the practical use of these approaches have
been limited.

Several papers are particularly worth mentioning in the litera-
ture on nonregular trellis codes. In a series of works by Rouanne
et al. [10]–[13], quasi-regularity, a property similar to sym-
metry [14], was exploited to compute the distance spectrum as-
suming an arbitrary correct sequence. Since the reduction in
complexity relies on (weak) symmetry conditions, the method
is most useful for codes that satisfy the quasi-regular condition.
Similarly, Trofimov and Kudryashov showed that the generating
function could be obtained by inversion of a matrix, instead
of a matrix, if certain constraints were imposed [15].

In [5], a general method that applies to all trellis codes was de-
veloped. By mapping binary error events to ternary error events,
Forney showed that the number of states can be reduced from

to without complicating edge labels. This method
was further developed by Altekar et al. [9]. Another work by
Raghavan et al. [18] paired states into cosets, and, by labeling
the edges of the modified state diagram as the average of the
nonlinear mapping, closed-form transfer functions for 2-tap and
3-tap ISI channels are derived. However, since the state diagram
deals with single error events only, to derive the entire distance
spectrum, concatenation of single error events (the number of
single error events, their types, lengths, and positions) need to
be resolved, which significantly increases the complexity, espe-
cially at large block sizes.

The only works known to the authors that have accounted
for multiple error events for an ISI channel are [16] and [17]
by Oberg and Siegel, where a dicode channel is analyzed. The
approach exploited the specific characteristics of the dicode
channel and, hence, is not extensible to the general case.

This letter presents a new way to compute the distance spectra
for general ISI channels. Like [16] and [17], we work directly on
error sequences of length (i.e., concatenated error events); but
unlike [16] and [17], the way we enumerate and evaluate error
sequences is general and extensible. The main advantage of
the proposed approach is its relative efficiency, compared with
many existing methods. Specifically, for 2-tap and 3-tap chan-
nels of any finite length , as well as infinite length, closed-form
expressions of the entire distance spectra (normalized) are de-
rived. For channels with larger memories, the approach is still
applicable, but the algebra will be involved.

In the latter part of the letter, coded (and/or precoded) ISI
channels are also investigated to show that knowledge of dis-
tance spectra can help understand ISI systems (under maximum-
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likelihood decoding). The rest of the letter is organized as fol-
lows. Section II presents the preliminaries. Section III discusses
the proposed method and presents the results for 2-tap and 3-tap
channels. Section IV applies this method to coded/precoded ISI
channels, and Section V concludes the paper.

II. SYSTEM MODEL AND PRELIMINARY

We consider a finite ISI channel in its discrete form given by

(1)

where is the memory size, , and
. We assume that the input to the ISI channel is binary phase-

shift keying (BPSK) modulated, such that , and
.

Below are some definitions and preliminaries used in the
letter (superscript refers to the channel response and can
be omitted where there is no ambiguity).

• : The input–output Euclidean distance enumerator
(IOEDE); it denotes the average number of sequence pairs
with input Hamming distance and output squared Eu-
clidean distance , where the average is taken over all

input sequences with equal probability.
• : The output Euclidean distance enumerator

(OEDE); .

• : The Euclidean distance spectrum shape (with
block size ): .

• : The asymptotic Euclidean distance spectrum
shape; .

Proposition 1: [Transformation Rules:] Let be the
memory of the ISI channel with response and be any
integer

Shift

Symmetry

Scaling

Time Reversal

Proof: Proof is omitted for the sake of brevity. These rules
can help simplify computation as well as revealing certain prop-
erties of ISI channels. For example, the time-reversal rule jus-
tifies the assumption of , and the symmetry rule
indicates that for 2-tap channels, is only dependent on

, but irrelevant to their respective signs.

III. COMPUTING EUCLIDEAN DISTANCE SPECTRA

A. General Idea

A simple idea to evaluate the distance spectra of ISI channels
is to examine codeword pairs exhaustively. Here, we first fix an
error sequence, evaluate its effect on the ensemble average of
input sequences, and do it for all possible error sequences. Obvi-
ously, a brute-force application of this idea is prohibitively com-
plex. The complexity reduction is made possible by two means:
1) enumerating all length- error sequences via a simple clas-
sification and 2) computing the distance between an error se-

TABLE I
EFFECT OF ERROR EVENT FOR 2-TAP ISI CHANNELS

quence and the ensemble average of all input sequences by ex-
tending the nonlinear mapping method introduced in [18].

Let be an error se-
quence of length (regardless of memory ), where “1” de-
notes a difference in position with the input sequence. Clearly,
is formed by alternating segments of 1-run’s and 0-run’s. It be-
longs to one of the following four categories: I starts with 1-run
and ends with 0-run, II starts with 1-run and ends with 1-run,
III starts with 0-run and ends with 1-run, IV starts with 0-run
and ends with 0-run.

Error sequences in the same category can be characterized in a
unified way, permitting an efficient enumeration of all possible
error sequences (which will be illustrated through examples).
The complexity here is independent of channel memory .

To examine the effect of an error sequence on the ensemble
average of input sequences, we make use of the -tuple
nonlinear mappings for an ISI channel of memory size [18].
The idea is actually simple (and will be explained through exam-
ples), but now the complexity increases with channel memory

(at the speed of, at the most, ). For 2-tap and 3-tap
channels, the complexity is moderate (at both finite and infinite
lengths). Channels with longer memories incur a higher com-
plexity, but it is still simpler than existing methods.

The best way to discuss the proposed method in detail is
through the examples of 2-tap and 3-tap channels.

B. Example: A General 2-Tap ISI Channel

1) Finite Length : The discrete channel model of a 2-tap
ISI channel is given by , where

, and . The nonlinear mapping of
2-tuples for this channel can be found in Table I [18].

An error sequence belongs to one of the four categories as
mentioned before. For case I, we have

(2)

where is the (input) Hamming weight, and positive integers
and denote the lengths of 1-run’s and 0-run’s such that

and .
Let us first count the number of 2-tuples in that contribute

to nonzero Euclidean distances, which, according to Table I, are
, and . The computation is simple; e.g., since each

0-run followed by a 1-run generates one tuple, there are
altogether tuples. Likewise, there are tuples (the
preamble is a 0-run), and tuples.
Since an tuple yields a squared Euclidean distance of either

or , let us use and to denote
the number of tuples that result in distance and
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, respectively. The squared Euclidean weight of the
whole sequence is, thus, given by

(3)

For a fixed , there are

sequences with length and weight , starting with 1-run
and ending with 0-run. Rewriting (3) as

, we can get the total number of error
sequences with input Hamming weight and average output
square Euclidean distance

(4)

Since all input sequences are taken with equal probability, the
value of may or may not be an integer.

The other three cases can be evaluated in a similar way

(5)

(6)

(7)

where and
. Combining all four cases leads to the following

result.
Proposition 2: The IOEDE of a general 2-tap ISI channel

with channel response , where
and , is given by

(8)

where is the sequence length, or
, and valid output squared Eu-

clidean distances take the form of ,
where .

2) Asymptotic Case: The asymptotic spectrum shape can be
derived from the IOEDE using the Stirling’s formula [22]. First,
the OEDE of a 2-tap channel can be derived from

(9)

which leads to

(10)

(11)

where 0 or 1, and
.

Recall the following fact (see, for example, [22]):

(12)

where and are arbitrary numbers,
and . Defining

and
, we have ,

and
.

Substituting them to the right-hand side of (10), we have

(13)

On the other side, from (11), we get

(14)

Combining (10), (13), and (14), we have the following.
Proposition 3: The Euclidean distance spectrum shape

of a general 2-tap ISI channel is given by

(15)

(16)

We note that the upper bound in (16) is actually quite loose.
Empirical results (Fig. 1) show that the spectrum shape of a
finite-length ISI channel, , monotonously increases with

(for valid values of ) and converges to the asymptotic case
of . This suggests that .

Fig. 2 plots the spectrum shapes of several 2-tap ISI chan-
nels. We see that the dicode channel (or the PR1 channel) has
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Fig. 1. Comparing the spectrum shapes of dicode channels with finite length
and infinite length.

Fig. 2. Spectrum shapes of 2-tap ISI channels with different amounts of ISI.

the worst spectrum shape, due to severe ISI. As ISI decreases
( increases), there is a noticeable improvement in spec-
trum shape in that the portion of the low distance end drops. In
the limiting case where there is no ISI , we ex-
pect the spectrum shape to converge to that of the rate-1 binary
uniform random code (i.e., ).

3) Complexity Comparison: Among the many existing
methods, the ones based on extended state diagrams like

[6]–[8] are applicable to general trellis codes, but the com-
plexity is very high. Others that are of lower complexity,
including [10]–[17], exploit certain properties/constraints and
are useful only to particular code sets. To give a feel of the
relative complexity of the proposed method, we refer to [18],
where closed-form transfer functions for 2-tap and 3-tap ISI
channels are derived using an efficient approach applicable to
general ISI cases.

The main result in [18] on 2-tap ISI channels is the average
transfer function (for single error events) given below [18]

(17)

where
, and , and denote the input Hamming

distance, the output Euclidean distance, and the error-event
length. Multiple error events formed from single error events
(disregarding block size) can be conveniently obtained by
raising to the power of ; but to account for
the fact that these single error events need to occur within
a block of size , the computation immediately becomes
involved. First, long division needs to be performed on (17) to
obtain all coefficients (denoted as ). Second, all valid
concatenations of single error events need to be enumerated
subject to their positions, lengths, and input/output weights.
Finally, multiple error events having the same input–output
weights (but different combined error-event lengths) need to be
combined. This is mathematically expressed as shown in (18)
and (19) at the bottom of the page. Note that the computation
of in (19) involves a search for a set of points in
a three-dimensional space of size , subject to three
constraints. This requires a complexity of . To
obtain , another two levels of summation are needed,
making the overall complexity on the order of , which
is computationally prohibitive for large lengths. Comparatively,
(8) requires only linear complexity in , which is significantly
simpler. This allows the evaluation of any finite-length and
infinite-length case, which is not possible with [18] (and many
other approaches).

C. Example: A General 3-Tap ISI Channel

A general 3-tap ISI channel can be treated in a similar
way. Due to the space limitation, we only present the re-
sults here. To ease exposition, we introduce a new operation

which is defined as “ , if
is an integer, and is not defined otherwise.”

Proposition 4: The average IOEDE of a general 3-tap
channel with the channel response ,

(18)

where (19)



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 12, DECEMBER 2004 2045

where and , is given
by

where

Proposition 5: The Euclidean distance spectrum shape of a
3-tap ISI channel is given by

Fig. 3. Spectrum shapes of uncoded dicode channels. 2-D TPC/SPC code with
rate R = 0:8; N = 100, precoder 1=(1�D).

where ,

, and the max operation is taken over the

region
.

IV. CODED ISI CHANNELS

Coded/precoded ISI channels are of more interest in practical
systems. Below, we discuss a few examples to show how the
results derived above can help understand such systems.

The overall distance spectrum of coded ISI systems can be
computed using the weight/distance enumerators of the channel
code and of the ISI channel (assuming uniform interleaver)

For simple codes like single-parity check (SPC) codes, Ham-
ming codes and SPC turbo product codes (TPC/SPC) [20], [21],

’s can be easily computed (details omitted).
1) Coding vs. Precoding: Fig. 3 demonstrates the spectrum

shapes of TPC/SPC-coded dicode channels, both precoded and
nonprecoded. The figure clearly shows the different roles an
error-correction code (ECC) and a precoder assume on ISI chan-
nels. An ECC, through “code-space expansion” (a space to
a space), uniformly increases the distances among all valid
codewords, whereas a precoder affects primarily the short-dis-
tance codeword pairs by mapping them to high-distance pairs
(a phenomenon known as “spectrum thinning”).

2) Effect of Code Rate and Precoding: Fig. 4 shows the
spectrum shapes of ISI channels coded by SPC codes of dif-
ferent rates. We see that the lower the code rate, the more spaced
apart the codewords and the better the spectrum shape. The
case of (20 blocks of (5, 4) SPC codewords combined
together) is particularly interesting. Since the all-ones sequence
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Fig. 4. Spectrum shapes of SPC-coded dicode channels. Either 20 blocks of
(5, 4) SPC codewords or 10 blocks of (10, 9) codewords are concatenated.

is not a valid codeword in this case, the normalized Hamming
weight of the SPC codeword, and subsequently, the normalized
squared Euclidean distance of the output sequence from the
SPC-coded nonrecursive ISI channel, can only reach
(instead of ). However, when the channel is recursive, the
spectrum-thinning effect makes it possible for some sequences
to reach . This again shows the impact of a precoder on
a coded ISI channel.

V. CONCLUSION

We have proposed an efficient way to compute the Euclidean
distance spectrum of a general ISI channel. Closed-form ex-
pressions are derived for 2-tap and 3-tap channels of any finite
length, as well as infinite length. Examples of coded and/or pre-
coded systems are also discussed to show the usefulness of such
knowledge.
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