Fourier Transform

- A time-domain function $x(t)$ (not necessarily periodic) has a frequency-domain specification $X(w)$:

 $$X(w) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt,$$
 \hspace{1cm} (1)

 $$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(w)e^{jwt}dw$$
 \hspace{1cm} (2)

- The right hand side of 2, known as Fourier Integral, is of the nature a Fourier Series with fundamental frequency Δw approaching zero.

- We call $X(w)$ the direct Fourier Transform of $x(t)$, $x(t)$ the inverse Fourier Transform of $X(w)$, and $x(t)$ and $X(w)$ a Fourier Transform pair. Symbolically this is expressed as:

 $$X(w) = \mathcal{F}[x(t)], \hspace{0.5cm} x(t) = \mathcal{F}^{-1}[X(w)]$$

 or

 $$x(t) \leftrightarrow X(w)$$

- Instead of using angular frequency Δw, one can also use frequency Δf (where $w = 2\pi f$) the corresponding Fourier Transform pair is:

 $$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt,$$
 \hspace{1cm} (3)

 $$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$
 \hspace{1cm} (4)

Spectrum

- $G(w)$ is complex \Rightarrow to plot the spectrum $G(w)$ as a function of w, we need to plot both

 the amplitude spectrum, $|X(w)|$ vs w,

 and **the phase spectrum**, $\theta_x(w)$ vs w,

 where

 $$G(w) = |G(w)|e^{j\theta_x(w)}.$$
Conjugate Symmetry Property

- If \(x(t) \) is a real function of \(t \), then \(G(w) \) and \(G(-w) \) are complex conjugates, i.e.

\[
G(-w) = G^*(w)
\]

\(\implies \) the amplitude spectrum \(|G(w)| \) is an even function, and the phase spectrum \(\theta_x(w) \) is an odd function

\[
|G(-w)| = |G(w)|, \quad \theta_x(-w) = -\theta_x(w)
\]

- This **conjugate symmetry property** holds only for **real** signals.

- A similar property also holds for the Fourier series of **periodic real** signals.

Existence of Fourier Transform

- Same as the existence of Fourier series: strong Dirichlet conditions and weak Dirichlet conditions.

- Again, any signal that can be generated in practice satisfies the Dirichlet conditions, \(\implies \) the physical existence of a signal is therefore a sufficient condition for the existence of its Fourier Transform.

Relation between Fourier Transform and Fourier Series

- We can use Fourier Transform to compute the Fourier-Series coefficients, \(x_n \), for a periodic signal \(x(t) \).

 - Assume that the \(x(t) \) has period \(T_0 \). Truncate \(x(t) \) to \(x_{\text{trunc}}(t) \) such that \(x_{\text{trunc}}(t) = x(t) \) for \(-T_0/2 \leq t \leq T_0/2 \) and \(x_{\text{trunc}}(t) = 0 \) elsewhere. (You have to use the segment that is centered around the origin, that is, \([-T_0/2, T_0/2]\); other segments of duration \(T_0 \) would not work correctly.)

 - Find the Fourier Transform, \(X_{\text{trunc}}(f) \) or \(X_{\text{trunc}}(w) \), for the truncated signal \(x_{\text{trunc}}(t) \). (Make use of the Fourier Transform table and Fourier Transform theorems/properties).

 - Evaluate the Fourier transform of the truncated signal at \(f = n/T_0 \) or \(w = 2\pi/T_0 \) to obtain the \(n \)th harmonic and multiply by \(1/T_0 \).

 - To sum up:

\[
\begin{align*}
 x(t) \implies x_{\text{trunc}}(t) \implies X_{\text{trunc}}(f) &\implies x_n = \frac{1}{T_0} X_{\text{trunc}}(n\frac{1}{T_0}), \\
 x(t) \implies x_{\text{trunc}}(t) \implies X_{\text{trunc}}(w) &\implies x_n = \frac{1}{T_0} X_{\text{trunc}}(n\frac{2\pi}{T_0})
\end{align*}
\]
Signal Bandwidth

- The **bandwidth** of a signal represents the range of frequencies present in the signal.
 ➔ the wider the bandwidth, the larger the variations in the frequencies present.

- In general, we define the bandwidth of a real signal $g(t)$ as the range of *positive* frequencies present in the signal.
 ➔ $g(t) \rightarrow$ compute $G(f) \rightarrow$ find range of positive frequencies: $\text{BW} = W_{\text{max}} - W_{\text{min}}$, where W_{max} is the highest positive frequency present in $G(f)$ and W_{min} is the lowest positive frequency present in $X(f)$.

Useful Properties of Fourier

- **Linearity:** If $g_1(t) \Leftrightarrow G_1(w)$ and $g_2(t) \Leftrightarrow G_2(w)$, then
 $$a_1g_1(t) + a_2g_2(t) \Leftrightarrow a_1G_1(w) + a_2G_2(w)$$

- **Duality:** if $g(t) \Leftrightarrow G(f)$, then
 $$G(t) \Leftrightarrow g(-f) \quad \text{and} \quad G(-t) \Leftrightarrow g(f).$$

- **Scaling:** if $g(t) \Leftrightarrow G(f)$, then
 $$g(at) \Leftrightarrow \frac{1}{|a|}G\left(\frac{f}{a}\right), \quad a \neq 0$$
 Comments: If $a > 1$, then $g(at)$ is a contracted form of $g(t)$; if $a < 1$, then $g(at)$ is an expanded form of $g(t)$. When we expand a signal in the time domain, its frequency-domain representation (Fourier transform) contracts; if we contract a signal in the time domain, its frequency domain representation expands. (Intuitively, contracting a signal in the time domain makes the changes in the signal more abrupt, thus increasing its frequency content.)

- **Convolution:** if $g(t) \Leftrightarrow G(f)$ and $h(t) \Leftrightarrow H(f)$, then
 $$g(t) * h(t) \Leftrightarrow G(f)H(f)$$
 Comments: Finding the response of a linear time invariant (LTI) system to a given input is much easier in the frequency domain than in the time domain. This property is the basis for frequency domain analysis of LTI systems.

- **Shift in time domain:** if $g(t) \Leftrightarrow G(f)$, then
 $$g(t - t_0) \Leftrightarrow e^{-jt_0f}G(f)$$
 Comments: A change in the time origin does not change the magnitude of the transform; it only introduces a phase shift linearly proportional to the time shift (or delay).
- **Shift in frequency domain (Modulation Theorem):** if \(g(t) \leftrightarrow G(f) \), then

\[
g(t)e^{j2\pi f_0 t} \leftrightarrow G(f - f_0)
\]

or equivalently

\[
g(t)\cos(2\pi f_0 t) = \frac{1}{2}g(t)e^{j2\pi f_0 t} + \frac{1}{2}g(t)e^{-j2\pi f_0 t} \leftrightarrow \frac{1}{2}G(f - f_0) + \frac{1}{2}G(f + f_0)
\]

Comments: This relation is the basis of the operation of amplitude modulation systems.

- **Parseval’s Relation:** if \(g(t) \leftrightarrow G(f) \) and \(h(t) \leftrightarrow H(f) \), then

\[
\int_{-\infty}^{\infty} g(t)h^\ast(t)dt = \int_{-\infty}^{\infty} G(f)H^\ast(f)df
\]

Specifically, if we let \(g(t) = h(t) \), then we have the **Rayleigh Theorem**:

\[
\int_{-\infty}^{\infty} |g(t)|^2dt = \int_{-\infty}^{\infty} |G(f)|^2df
\]

Comments: Two ways of evaluating the energy of a signal.

- **Autocorrelation:** The (time) correlation function of the signal \(g(t) \) is denoted by \(R_g(\tau) \) and is defined by

\[
R_g(\tau) = \int_{-\infty}^{\infty} g(t)g^\ast(t - \tau)dt.
\]

If \(\mathcal{F}(g(t)) = G(f) \), then

\[
\mathcal{F}[R_g(\tau)] = |G(f)|^2
\]

Comments: we can conclude that the Fourier transform of the auto correlation of a signal is always a real-valued, positive function.

- **Differentiation in time domain:**

\[
\frac{d}{dt}g(t) \leftrightarrow j2\pi fG(f)
\]

Comments: With repeated application of the differentiation theorem, we obtain the relation

\[
\frac{d^n}{dt^n}g(t) \leftrightarrow (j2\pi f)^nG(f)
\]

- **Differentiation in frequency domain:**

\[
tg(t) \leftrightarrow \frac{j}{2\pi} \frac{d}{df}G(f)
\]

Comments: With repeated application, we have

\[
t^n g(t) \leftrightarrow \left(\frac{j}{2\pi}\right)^n \frac{d^n}{df^n}G(f)
\]
Integration: if \(g(t) \leftrightarrow G(f) \), then

\[
\mathcal{F} \left[\int_{-\infty}^{t} g(\tau)d\tau \right] = \frac{G(f)}{j2\pi f} + \frac{1}{2}G(0)\delta(f)
\]

Proof: first show \(\int_{-\infty}^{t} g(\tau)d\tau = g(t) * u_{-1}(t) \); then use the convolution theorem and the fact that the Fourier transform of \(u_{-1}(t) \) is \(\frac{1}{j2\pi f} + \frac{1}{2}\delta(f) \). \(u_{-1}(t) \) is the unit step function. \(u_{-1}(t) = 1 \) when \(t > 0 \), \(u_{-1}(t) = 0 \) when \(t < 0 \), and \(u_{-1}(t) = 1/2 \) when \(t = 0 \).

Moments: If \(g(t) \leftrightarrow G(f) \), then \(\int_{-\infty}^{\infty} t^n g(t)dt \), the \(n \)th moment of \(g(t) \), can be obtained from the relation

\[
\int_{-\infty}^{\infty} t^n g(t)dt = \left. \left(\frac{j}{2\pi} \right)^n \frac{d^n}{df^n} G(f) \right|_{f=0}
\]

Proof: First, using the differentiation in the frequency domain result, we have

\[
\mathcal{F}[t^n g(t)] = \left(\frac{j}{2\pi} \right)^n \frac{d^n}{df^n} G(f)
\]

This means that

\[
\int_{-\infty}^{\infty} t^n g(t)e^{j2\pi ft}dt = \left(\frac{j}{2\pi} \right)^n \frac{d^n}{df^n} G(f).
\]

Letting \(f = 0 \) on both sides, we obtain the desired result.

Comments: For the special case of \(n = 0 \), we obtain this simple relation for finding the area under a signal, i.e.

\[
\int_{-\infty}^{\infty} g(t)dt = G(0)
\]

Summary Comments on Fourier Series and Fourier Transforms

- Fourier representation is a way of expressing a signal in terms of everlasting sinusoids and exponentials.

- The Fourier spectrum of a signal indicates the relative amplitude and phases of the sinusoids/exponentials that are required to synthesize that signal.

- If \(x(t) \) is periodic, the spectrum is discrete, and \(x(t) \) can be expressed as a sum of discrete exponentials with finite amplitudes

\[
x(t) = \sum_{n} x_n e^{jnw_0 t}.
\]

That is, the Fourier spectrum of a periodic signal has finite amplitudes and exists at discrete frequencies (\(w_0 \) and its multiples).

- An aperiodic signal has continuous spectrum that exists at every frequency (i.e. every value of \(w \)), but the amplitude of each component in the spectrum is zero (infinitesimal). The meaningful measure here is not the amplitude of a component of some frequency but the spectral density per unit bandwidth.