ECE 108 Signals and Systems
Spring 2007, Instructors: Prof. Tiffany Jing Li
Midterm (50 minutes, March 14, 9:10-10:00am)

- You are allowed to bring one piece (double-sided ok) of letter-size note. Otherwise, the exam is closed-book and closed-note.

- Disclaimer: By signing below, I testify that the work in the turned pages is my independent work. I did not cheat in any form.

Name:

ID:

Date:

Signature:

Problem 1	30 points
Problem 2	40 points
Problem 3	30 points
Bonus	10 points
Total	110 points
1. (30 points) Given \((D^2 + 4D + 3)y(t) = (D + 5)f(t) \), calculate the impulse response \(h(t) \).

\[
Q(D) = D^2 + 4D + 3, \quad n = 2 \quad ; \quad P(D) = D + 5, \quad m = 1.
\]

\[
\Rightarrow b_n = 0
\]

\[
h(t) = b_0 \delta(t) + \left[P(D) \gamma_1(t) \right] u(t)
\]

\[
Q(\lambda) = \lambda^2 + 4\lambda + 3 = (\lambda + 1)(\lambda + 3) = 0, \quad \lambda_1 = -1, \quad \lambda_2 = -3
\]

characteristic modes \(e^{-t}, e^{-3t} \)

\[
\gamma_1(t) = c_1 e^{-t} + c_2 e^{-3t}, \quad \gamma_2(t) = -c_1 e^{-t} - 3c_2 e^{-3t}
\]

for \(n = 2 \),

\[
\begin{align*}
\gamma_n(t=0) &= 0 \\
\gamma_n'(t=0) &= 1
\end{align*}
\]

\(\leftarrow \) known initial conditions

\[
\begin{align*}
0 &= c_1 + c_2 \\
1 &= -c_1 - 3c_2
\end{align*}
\]

\[
\Rightarrow \begin{cases}
\quad c_1 = \frac{1}{2} \\
\quad c_2 = -\frac{1}{2}
\end{cases}
\]

\[
\gamma_n(t) = \frac{1}{2} \left(e^{-t} - e^{-3t} \right)
\]

\[
h(t) = (D + 5) \left[\frac{1}{2} \left(e^{-t} - e^{-3t} \right) \right] u(t)
\]

\[
= \left[-\frac{1}{2} e^{-t} + \frac{3}{2} e^{-3t} + \frac{5}{2} e^{-t} - \frac{5}{2} e^{-3t} \right] u(t)
\]

\[
= \left[2e^{-t} - e^{-3t} \right] u(t)
\]
2. (40 points)

(a) (26 points) Find the compact Trigonometric Fourier series for an ever-lasting periodic signal \(f(t) \) whose period is \(T_0 = 2\pi \), and whose value is \(f(t) = \frac{1}{2\pi} \) for \(0 \leq t \leq 2\pi \).

Hints:
- \(\int \sin(ax)dx = -\frac{1}{a}\cos(ax) \),
- \(\int \cos(ax)dx = \frac{1}{a}\sin(ax) \),
- \(\int x\sin(ax)dx = \frac{1}{a^2}(\sin(ax) - ax\cos(ax)) \),
- \(\int x\cos(ax)dx = \frac{1}{a^2}(\cos(ax) + ax\sin(ax)) \),
- \(\int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax - 1) \).

\[T_0 = 2\pi, \quad \therefore \omega_0 = 1. \]

\[f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos n\pi t + b_n \sin n\pi t \right). \]

\[a_0 = \frac{1}{2} \quad \text{by inspection,} \]

\[a_n = \frac{1}{\pi} \int_{0}^{2\pi} \frac{f(t)}{\sin n\pi t} dt = 0 \]

\[b_n = \frac{1}{\pi} \int_{0}^{2\pi} \frac{f(t)}{\cos n\pi t} dt = -\frac{1}{\pi n} \]

\[f(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \left(-\frac{1}{\pi n} \right) \sin(n\pi t) \]

Note the relation:

\[
\begin{align*}
C_0 &= a_0 = \frac{1}{2} \\
C_n &= \sqrt{a_n^2 + b_n^2} = \sqrt{0 + b_n^2} = |b_n| \\
\theta_n &= \tan^{-1}\frac{b_n}{a_n} = \tan^{-1}\frac{\frac{1}{\pi n}}{\frac{1}{2\pi}} = \frac{\pi}{2}
\end{align*}
\]
(b) (14 points) Sketch the amplitude and phase spectra.
(c) (30 points) Prove the time-convolution property:

\[f_1(t) * f_2(t) \iff F_1(u)F_2(u) \]

[Textbook p263]
3. (10 Bonus points) True or False:

CAUTION: You earn 2 bonus points for each correct answer, and lose 1 point for each incorrect answer.

(a) Consider \(x(t) = s(t) + g(t) \), where \(x(t) \), \(s(t) \) and \(g(t) \) are all real signals. Let \(X(w) \), \(S(w) \) and \(G(w) \) be their respective Fourier transform.

- \(|X(w)| = |S(w)| + |G(w)| \) (\(\neg \))
- \(\angle X(w) = \angle S(w) + \angle G(w) \) (\(\neg \))

(b) The Fourier transform of the signal \(x(t) \) is \(X(w) = j2\delta(w - 2) - j2\delta(w + 2) \)

- \(x(t) \) must be odd (\(\neg \))
- \(x(t) \) must be periodic (\(\neg \))
- \(x(t) \) must be a sinusoidal function (\(\neg \))

\[
X(w) = S(w) + G(w), \text{ but } |X(w)| \neq |S(w)| + |G(w)|
\]

- Complex values

\[
\angle X(w) \neq \angle S(w) + \angle G(w)
\]

If \(X(t) \) is real, then \(X(w) \) is conjugate symmetric.

If \(X(t) \) is real \& even, then \(X(w) \) is purely real \& even.

If \(X(t) \) is real \& odd, then \(X(w) \) is purely imaginary \& odd.

The reverse is also true.

Further if \(X(t) \) is periodic, then \(X(w) \) consists of only discrete spectral lines; and vice versa.