Computer Science & Engineering
@ Lehigh

February 2007

Dan Lopresti
Associate Professor
Office PL 404B
dal9@lehigh.edu
Pervades business and modern society:

- Communication, entertainment, manufacturing, information processing, finance, biotech, cybersecurity, national defense, etc.
- Advances in Computer Science & Engineering have enormous impact on fundamental problems in engineering, the sciences, business, public policy, the arts, etc.

Computer Science & Engineering is at the core of the Information Age!
Fields CSE Grads Work In

- Design
 - testing
 - manufacturing
- Laser-guided
 - surgery
 - weapons
- Medicine
 - genomics
 - laparoscopic
 - MRI
- Transportation
 - airplanes (fly by wire)
 - automobiles
- Computer controls
 - devices & processes
 - nanotechnology
- Simulation & training
 - astronauts
 - soldiers
- Entertainment
 - media, devices
 - synthesis
 - delivery network
 - interactive creation
- Communication
 - telecom, Internet, etc.
 - devices, methodology
 - distribution
- Publishing
 - tools
 - media, distribution
- Knowledge industry
- Social networking and services
- Financial
- Business strategy
- All forms of engineering …
They're Hiring in Techland

By Spencer Ante

The tech job market has sprung back to life, and this year could be the best one since 2000

In the summer of 2002, amid the depths of the dot-com bust and the rise of global outsourcing, William Davis did something that seemed kind of crazy: He became a graduate student in computer science … Last summer, Davis' investment paid off

"As the memory of the tech bust fades, we seem to be getting better and better job growth," says Zandi.

MORE TECHIES. Corporate America is spending money on technology again, so the hiring is relatively broad-based.

Google (GOOG), Microsoft (MSFT), Accenture (ACN), Amazon (AMZN), Advanced Micro Devices (AMD), Altera (ALTR), Infosys (INFY), and Citrix Systems (CTXS) all say they plan to hire more techies in the U.S. in 2006. Many successful startups, such as OfficeTiger and NetSuite, continue to expand their workforces as well.
Starting Salaries

1. Computer systems software engineer -- $81,140*
 - Computer systems software engineers work to coordinate a company's computer needs and maintain its computer systems. They may also set up a company's intranets to ease communication between the various departments. Most jobs require a bachelor's degree in computer science or computer information systems.

2. Computer applications software engineer -- $76,310
 - Computer applications software engineers use programming languages such as C++ and Java to design, construct and maintain general computer applications software. Most jobs require at least a bachelor's degree, but some more complex jobs require a graduate degree.

3. Biomedical engineer -- $70,520
4. Physician assistant -- $69,250
5. Environmental engineer -- $67,620
6. Computer systems analyst -- $67,520
 - Computer systems analysts help an organization get the most for their technology investment dollars by solving computer problems and planning and developing new computer systems. Educational requirements vary by the employer and job complexity, ranging from a two-year degree to a graduate degree, and may include continuing education and certification.

7. Database administrator -- $61,950
 - Database administrators ensure system performance by setting up computer databases, testing and coordinating modifications to computer systems, identifying user requirements and adding new users to the system. Employers prefer candidates with technical degrees, but the specific level of education and type of training required depends on the complexity of the job and employers' needs.

8. Physical therapist -- $61,560
9. Network systems and data communication analyst -- $61,250
 - Network systems and data communication analysts are responsible for keeping electronic communications like Internet, voice mail and e-mail up and running. They spend much of their days testing and evaluating systems including local area networks (LANs), wide area networks (WANs) and intranets.
 - Depending on employer and complexity of the job, educational requirements range from an associate's degree to a computers-related bachelor's degree.

10. Hydrologist -- $60,880

5 of top 10 slots are CSE-related.
Computer Science & Engineering is much more than programming:

- How can you make a computer think (e.g., recognize words in speech or images, plan, move…)?
- How do you make believable opponents in video games?
- How do you ensure privacy and security for online transactions?

In Computer Science & Engineering you think creatively and solve problems innovatively!
Computer Scientists & Engineers

innovators engineers thinkers
architects inventors problem solvers
programmers game creators
leaders team members
animators entrepreneurs
designers company builders

Integrators

Collaborators

For some, it's the challenge; for others, it's a sense of fulfillment
Bioinformatics

What is bioinformatics?
Application of techniques from computer science to problems from biology.

Why is it interesting?
- Important problems.
- Massive quantities of data.
- Desperate need for efficient solutions.
- Success is rewarded.
Motivation

- Genetic identity of most organisms is encoded in long molecules made up of four basic units: the nucleic acids adenine, cytosine, guanine, and thymine.
- To first approximation, DNA is language over 4 character alphabet, \{A, C, G, T\}.
- Complete set of chromosomes that determines an organism is known as its genome.

Complete set of chromosomes that determines an organism is known as its **genome**.

Bioinformatics

<table>
<thead>
<tr>
<th>Species</th>
<th>Haploid genome size</th>
<th>Bases</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>3,400,000,000</td>
<td>6,702,881,570</td>
<td>3,918,724</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>3,454,200,000</td>
<td>1,291,602,139</td>
<td>2,456,194</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>180,000,000</td>
<td>487,561,384</td>
<td>166,554</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>100,000,000</td>
<td>242,674,129</td>
<td>181,388</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>100,000,000</td>
<td>203,544,197</td>
<td>114,553</td>
</tr>
<tr>
<td>Tetraodon nigroviridis</td>
<td>350,000,000</td>
<td>165,539,271</td>
<td>188,993</td>
</tr>
<tr>
<td>Oryza sativa</td>
<td>400,000,000</td>
<td>125,948,974</td>
<td>151,411</td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>2,900,000,000</td>
<td>106,344,366</td>
<td>218,598</td>
</tr>
<tr>
<td>Bos taurus</td>
<td>3,651,500,000</td>
<td>71,215,626</td>
<td>159,473</td>
</tr>
<tr>
<td>Glycine max</td>
<td>1,115,000,000</td>
<td>62,817,102</td>
<td>141,802</td>
</tr>
<tr>
<td>Medicago truncatula</td>
<td>400,000,000</td>
<td>50,991,920</td>
<td>104,535</td>
</tr>
<tr>
<td>Trypanosoma brucei</td>
<td>35,000,000</td>
<td>49,855,996</td>
<td>91,334</td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>655,000,000</td>
<td>49,415,566</td>
<td>97,112</td>
</tr>
<tr>
<td>Giardia intestinalis</td>
<td>12,000,000</td>
<td>47,639,714</td>
<td>54,328</td>
</tr>
<tr>
<td>Strongylocentrotus purpur</td>
<td>900,000,000</td>
<td>47,590,936</td>
<td>77,532</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>—</td>
<td>44,522,016</td>
<td>49,938</td>
</tr>
<tr>
<td>Hordeum vulgare</td>
<td>—</td>
<td>44,489,692</td>
<td>57,779</td>
</tr>
<tr>
<td>Danio rerio</td>
<td>1,900,000,000</td>
<td>49,906,902</td>
<td>83,726</td>
</tr>
<tr>
<td>Zea mays</td>
<td>5,000,000,000</td>
<td>36,885,212</td>
<td>77,506</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>12,067,280</td>
<td>32,779,082</td>
<td>18,361</td>
</tr>
</tbody>
</table>

http://www.cbs.dtu.dk/databases/DOGS/
http://www.nsrl.ttu.edu/tmot1/mus_musc.htm
http://www.oardc.ohio-state.edu/seedid/single.asp?strID=324
Comparative Genomics

Mouse and Human Genetic Similarities

Mouse chromosomes

Human chromosomes

Courtesy Lisa Stubbs
Oak Ridge National Laboratory

Sequencing a Genome

Genomes are determined using a technique known as *shotgun sequencing*.

Computer scientists have played an important role in developing algorithms for assembling such data.

It's kind of like putting together a jigsaw puzzle with millions of pieces (a lot of which are “blue sky”).

http://occawlonline.pearsoned.com/bookbind/pubbooks/bc_mcampbell_genomics_1/medialib/method/shotgun.html
DNA Microarrays

- Allows simultaneous measurement of the level of transcription for every gene in a genome (gene expression).
- Differential expression, changes over time.
- Single microarray can test ~10k genes.
- Data obtained faster than can be processed.
- Want to find genes that behave similarly.
- Must find ways to uncover patterns.

\[\begin{align*}
\text{green} & = \text{repressed} \\
\text{red} & = \text{induced}
\end{align*} \]

Analysis of this data is a CSE problem.
Scientists build phylogenetic trees in an attempt to understand evolutionary relationships.

Note: these trees are “best guesses” and certainly contain some errors!
The Civil War letter ...

The players ...

Major General Fitz-John Porter
author of letter, blamed for Union loss at Second Bull Run, court-martialed in 1863

Major General George McClellan
recipient of letter

Anson Stager
inventor of cypher system and later an early leader in U.S. telecommunications

... encrypted – not yet broken.
Breaking a Civil War Secret Code

The news story ...

“A Lehigh team works to crack Civil War code”

... ending yet to be written.

The current software tool ...

... promising, but needs work.

Hint: I'm looking for help ...
Better Electronic Voting

E-voting has generated enormous controversy recently ...

Maryland votes “yes” for paper trail ... while Pennsylvania votes “no.”
Better Electronic Voting

E-voting: what's the right answer?

- Take a critical look at all aspects of the problem.
- Examine both security and usability issues.
- Build a prototype of an e-voting system that includes a reliable Voter Verified Paper Audit Trail (VVPAT).
- Some say it's impossible: we disagree.
- Of fundamental importance because our democracy depends on fair and transparent elections.
Evaluating Biometric Security

- Cryptographic key broken into shares and mixed with random data.
- Features extracted from user's speech or handwriting.
- Only input from true user will select correct shares to yield proper key.
Evaluating Biometric Security

Biometrics may be vulnerable to attacks using generative models.

- Some current systems at risk.
- Results for handwriting show machine can equal performance of skilled human forger.

Use our experience to improve biometrics, increase security.

Same idea used in Mission Impossible 3.
New Field = Golden Opportunities

Robin (Yanhong) Li was a student intern working with me in the mid-1990's at a research lab in Princeton. He's now the billionaire founder of Baidu (the Chinese version of Google).

No guarantee you'll become a billionaire if you major in CSE. But in what other fields is this even possible?
Alternatives Abound

Computer Science & Engineering at Lehigh includes:

- B.A. in Computer Science in CAS.
- B.S. in Computer Science in CAS.
- B.S. in Computer Engineering in RCEAS (along with ECE Dept).
- B.S. in Computer Science in RCEAS.
- B.S. in Computer Science & Business (dual degrees, with CBE).
- Minor in Computer Science (available to all).
Suggested “Tracks” #1

- **Artificial Intelligence**
 - CSE 327 Artificial Intelligence Theory and Practice
 - CSE 326 Pattern Recognition
 - CSE 335 Topics in Intelligent Decision Support Systems
 - CSE 347 Data Mining
 - CSE 348 AI Game Programming
 - CSE 360 Introduction to Mobile Robotics
 - CSE 368 AI Programming

- **Bioinformatics**
 - CSE 308 Bioinformatics
 - CSE 241 Database Systems
 - CSE 326 Pattern Recognition
 - CSE 347 Data Mining
 - BIOS 41 Biology Core I: Cellular and Molecular
 - BIOS 115 Biology Core II: Genetics

- **Computing Principles**
 - CSE 241 Database Systems
 - CSE 302 Compiler Design
 - CSE 327 Artificial Intelligence Theory and Practice
 - CSE 375 Topics in Parallel Computing
 - CSE 376 Parallel Algorithms

- **Hardware-Software**
 - ECE 81 Principles of Electrical Engineering
 - CSE 209 Assembly Language Programming
 - CSE 271 Programming in C and Unix
 - ECE 319 Digital System Design
 - CSE 336 Embedded Systems
 - CSE 363 Network Systems
 - CSE 375 Topics in Parallel Computing

http://www3.lehigh.edu/engineering/cse/academics/undergrad/TRACKS.asp
Suggested “Tracks” #2

- Information Management
 - CSE 241 Database Systems
 - CSE 335 Topics in Intelligent Decision Support Systems
 - CSE 345 WWW Search Engines
 - CSE 347 Data Mining
 - CSE 352 Information Technology for Commerce

- Interactive Multimedia Systems
 - CSE 313 Computer Graphics
 - CSE 197 Computer Game Design
 - CSE 331 User Interface Systems and Techniques
 - CSE 332 Multimedia Design and Development
 - CSE 348 AI Game Programming

- Systems and Networks
 - CSE 271 Programming in C and Unix
 - CSE 265 System and Network Administration
 - CSE 336 Embedded Systems
 - CSE 342 Fundamentals of Internetworking
 - CSE 343 Network Security
 - CSE 345 WWW Search Engines
 - CSE 363 Network Systems

- Software Systems
 - CSE 271 Programming in C and Unix
 - CSE 366 Object-Oriented Programming
 - CSE 209 Assembly Language Programming
 - CSE 302 Compiler Design
 - CSE 332 Multimedia Design and Development
 - CSE 376 Parallel Algorithms

http://www3.lehigh.edu/engineering/cse/academics/undergrad/TRACKS.asp
Last but not least ...

Why attend Lehigh?

Because this is a great place to be a student!

Thank you!