
 HELP DESK SYSTEMS
 Using “CaseBased Reasoning”

 Topics Covered Today

 What is Help-Desk ?
 Components of HelpDesk Systems
 Types Of HelpDesk Systems Used
 Need for CBR in HelpDesk Systems
 GE Helpdesk using ReMind System (1993)
 CBR-TM
 The HOMER System (Will Not be Discussed Today)
 References

 What is HelpDesk?

 A ‘help-desk’ is an information and assistance
resource that troubleshoots problems

 Many corporations provide helpdesk support to
their customers

 Companies Using CBR:
  AT&T Bell
  UK Department of Social Security
  Honeywell
 British Telecom
 Mercedes-Benz

	
 	
 	
 Components	
 of	
 HelpDesk	

 User	

 Desk-­‐side	
 Team	

 Desk	
 consultants	

 Phone	
 Consultants	

 Network	
 Team	

 Server	
 Team	

 Other	
 Team 	
 	

 Library,	
 WIRED,	
 	
 etc	
 	

 Types of HelpDesk Systems

 Text Based HelpDesk Systems
 Text Search
 Keyword Search
o Maintains a Natural text data

 Rule Based Systems
 Maintains a special Knowledge Rule set

 Case Based Reasoning Systems
 Maintains all experience in the form of cases

 TextBased Helpdesk Systems

 Text or keyword search techniques access information
from past cells by making directed queries

  In keyword Approach, past cells are annotated with
Keywords

 The query for the new case also must be annotated
with relevant keywords
  Cases having more keywords in common are retrieved

  In text search , each case is stored with a free form
text description of the problem

 The comparison is between the text description of the
new case with all the past cases
  Cases having more character or words substrings in common are

retrieved

 Advantages of Text-Based Systems

 The knowledge of both the systems grow
automatically with the # of calls/problems
received

 The Accuracy of both the text search and keyword
search ‘can’ be very good (???)
 GIVEN all the users do use the same “keywords” or the

same kind of “text description” for all cases
 The description must not be too over-complicated or

too vague

 Text Systems need not even maintain a set of
keywords associated with past cases

(As expected) Disadvantages

 Accuracy is more dependent on consistency and
diligence of the users (Which can be never expected)

 The larger the User community the wider the
range of keywords, which effect the retrieval
accuracy (Missing Cases with Similar but not exact keywords)

 Text search will be more messy, as we can
describe the same problem in many different ways

 ex: “Can’t Write/Read data from disk”
 (or)

 “Can’t access data on my Seagate-Go Flex”

 Precision and Recall

 Recall measures how likely a given system
returns the information you are looking for.

 Precision measures the amount of relevant
information returned.

 In general, increasing the precision tends to
reduce its recall efficiency and vice versa.
 If you are too general, then you cant find the

solution in all the data.
 If you are too specific, the system offers no good

solution at all.

 Rule-Based Systems

 Distill the relevant information from
individual call records into a structured set of
‘Questions’ that can be used to systematically
detect and resolve any problem.

 Eliminates the need for user to guess what
information will be required.

 This operates quickly as rules are organized as
a hierarchical decision tree.

 Store only knowledge from previous cases but
not the cases.

 Disadvantages

 Collection (extracting and encoding) of Rules is
Time consuming

 Very Difficult to update and maintain
 Useless in situations not planned for or not

developed i.e. new kinds of problems
 Cant update once encountered (static)

 Unless someone adds information to form new rules
 Overly restrictive
 Just prints out the best solution but cannot cite the

actual or relevant past case (As they don’t store them)

 CBR in HelpDesk Systems
  The main intuition behind this is (we all know)

  “If Symptoms of two problems are similar, their diagnosis is also
similar”

  Significant portion of human cognition and problem solving
involves recalling entire prior experience, rather than just a piece
of knowledge.

  By using CBR we can inherit all the features of the above
methods and also overcome their drawbacks
 We can add new knowledge just by adding a new

case (as they are independent of one another)
 We can overcome the problem of inconsistency from the

above methods by organizing different type of information
into a single coherent structure.

 Using Machine learning we can automatically derive the
relevant case features rather than building and maintaining a
set of Rules

 Building a Case-Based System

  We have data collected in the form of online logs
 Creating the Case-Base

 Collecting the Data
 Extracting features from Data
 Indexing the Data

  Indexing scheme
  Retrieval scheme

 Testing the Case-Base

 Using the above methods we do convert raw tickets into
a Case-Base

 Pre and Post Goals

 What do we have ?
 A fair amount of logs from existing call tracking

Database

 What do we need?
 Transforming them to diagnostic Cases
 And a case retriever

 Platform & System used?
 ReMind
 Macintosh

 Collecting the Data

 GE provided several hundreds of recorded
online work-logs

 For a good CBR we need a “well-distributed”
set of historical cases

  Each record has an identification number, an
“initial description of the problem” and
operators recommendations or analysis

Call Tracking Log :

 Extracting features from data

 Text Features
 Significant part of representation is based on raw text

supplied
 It had to be cleaned*(Ensure it will be trained on representative, clean data)

 Deleted those cases that are irrelevant to the Domain*

 Making minor changes to the names or standardizing
the Product Names*

 Developed a new representation!
 Computationally inexpensive as keyword matching.
 But Captures meanings of keywords.

 Steps In Developing

 Created a Hierarchical tree of general concepts
and individual symbols*

 Steps In Developing (continued)

  Using the Morphology filter & a Symbol lookup Function
converted the data to a list-of-symbol fields

The system identifies the words in the hierarchy and
collect them to a list.

 “I cant save any documents on my floppy disk”
 to
 “can’t save document floppy disk”

Differences between this and Key-word Search
 Depends on hierarchical structure, So words are inter-related and have
synonyms – (This is a boon and a disadvantage)
 Ex: “SyQuest cartridge” and hard drive.

  Multiple Inheritance in memory Hierarchy

 Including New Features

  Some features which are missing in the
original tasks (in the feature)

  The Operating System
  Hardware Platform
  Software Application
  List of problems (Rather than a single precise one)

  This creates a more precise and consistent
description of a Case Base and ultimately
better diagnosis of the problem (In General)

 Demo of Our College
 HelpDesk System

 “Footprints”

 - UniPress(R) Software, Inc.
 May-2005

 Indexing the Data

  Two main kinds
  That doesn’t require cases to be categorized
  KNN is an example

  That require cases to be categorized
  We Index a case based on both the features and also the

diagnostic category associated with it
Ex: If we are unable to access a disk, there may be two

possibilities, either the file system has gone bad or the disk
has gone bad

  Once problems are divided, then an inductive
learning algorithm had been used to create a
classification tree

 Some diagnosis Symbols

 Hybrid Retrieval

  Two Phase Retrieval System
  Inductive retrieval and
  Nearest neighbor ranking

  The cases are scored and compared to the problem
being diagnosed

 Total Score = ∑(similarity(In[i],Ret[i])*Weight[i])/(Totalweight)
  Removes the “Duplicated” cases

 Data Entry Windows

 Result Window

 Time Taken To build the System

  Total Prototype took 4 Man months
  2 Months to build the Library (200 cases)
  2 Months to construct the interface

  Deriving the Data from the, problem resolution
section, is hard as it contains both solution &
recommendations

  Important Part is Everything is done “Manually”
  Constructing the hierarchy of the words
  Cleaning, Deleting unnecessary cases, changing Names

 Conclusion

  One of the First attempt to use CBR in Helpdesk
systems

  Construction is mostly done manually
  So time consuming

  Adding new cases is easy
  Not Scalable

	
 Authors:	

	
 Juan	
 Angel,	
 Stella	
 Heras	
 Barbara	
 ,	
 Vincent	
 Botti	
 	

 Introduction

  An Intelligent module that works with “I2TM”
  A more generic CBR system

  Provides Intelligent multi Domain support

  The system is independent of any change in the
help-desk system

  Has been tested in a specific HelpDesk
Environment that provides support for computer
systems

 I2TM

  Developed by a Spanish company “Tissat”
  Each request received is stored as a ticket
  These requests vary from computer problems

to public services
  Main goal is to, rapidly solve these requests

from a very diverse domains
  CBR-TM acts as an Intelligent module

 ` Architecture Overview

 THE CBR-TM Module
  So each ticket consists of a set of categories that classifies

it belongs to a certain type of problem
  A case is a prototyped representation on a set of tickets

with same features and same successfully applied
solutions

  The main challenge is, be able to work with heterogeneous
tickets and must also be able to compute similarity
between them

  Retrieval is made using Euclidian similarity measures
  Normalized
  Classic

  If there is no case similar enough to the new ticket, the
system stores this ticket and its solution in the case base in
the retention phase

 Results

  Used a database of tickets* that came from the
computer errors

  First they are trained using the tickets (loading
the casebase), and then tested with the new
tickets

 Conclusion

  Although CBR-TM has been tested only in
solving computer error, Tissat plans to use it in
the different domains

  The learning is very effective
  Simultaneous requests are handled quickly

(compared to most other systems)

  Main Future interest is to change the
characterization to automatic

	
 Authors:	

	
 Mehmet	
 	
 Göker	
 ,	
 	
 Thomas	
 Roth,	
 Wolfgang	
 Wilke	

The Three Service Levels of a Help
Desk System
  End User
  Hotline (Level 1)
  System Administrator, Application Specialists

(Level 2)
  Maintenance and OEMs (Level 3)

Structure and Representation of a Help
Desk System
  Attribute Value Pair

  Good for answering trivial question
  Good when users of the help desk system are

inexperienced
  Object Oriented Representation

  Structure of the technical system to be diagnosed can be
represented in the necessary degree of detail

  Symptoms can be clearly related to the object to which they
belong to

  The semantics of the problem description can be captured
and used for selecting appropriate prior experience

  A high retrieval accuracy can be achieved

Case Model (Problem)

  The Topic
  The area in which the problem is located

  hardware, software, network, printing service etc…

  The Subject
  The physical object that the failure is related to

  Specific software, printer, router, etc…

  The Behavior
  The way the subject behaves

  Wrong print size, screeching sound, no dial tone, etc…

Case Model (Situation)

  A set of attribute-value pairs describing
symptoms that are important to diagnose the
fault
  Contain the minimum amount of info required to

diagnose the problem (independence,
completeness, minimalist)

Case Model (Solution)

  Contains the fault and the remedy
  Composed of text or hypertext links
  Can include links to more detail description
  Can be a result of various situations

  Each complete path from problem to solution
becomes its own case

Kinds of Cases

  Approved cases
  Opened cases (everyone can see)
  These case are separated into a case buffer

(opened) and a main case base (approved)

User and Roles

  Help desk operator
  Lowest access rights
  Use application on a regular basis to solve problems
  Case retrieval and case acquisition

  Experience author
  Responsible for case maintenance and case approval
  Checks for redundancy and consistency

  Experience base administrator
  Creates and maintains the domain and case model
  Administer users and access rights

Client/Server Architecture

  Allows all users to get the same up to date
information

  Eases the maintenance of the domain model
and the case base

Retrieving Problem Solutions with
Homer
  Two modes

  Manual
  User can enter as much information about a problem as wanted

and then invokes a retrieval method
  All matching case are retrieved

  Automatic
  The system retrieves matching cases after every item entered

  Solutions are displayed in the bottom view by
decreasing relevance (CCBR)

Feedback

  Can be retained by pressing the retain button
  Opens a case entry interface

  Operator can make final modifications
  Document why the case should be keep

Solutions

Case Browser

  Used by the experience author to manage the
case base
  Case creation
  Case copy
  Delete case
  Approve case

The Development of the Homer System

  Initial knowledge acquisition
  Three goals

  Training the project team in knowledge acquisition
  Initializing the knowledge in the system
  Collecting enough help-desk cases

Overview of the Design and Maintenance of
Help-Desk system

  Project planning and initialization
  Implementation of a rapid prototype
  Evaluation and revision of the prototype
  Implementation of the integrated case-based

help-desk support system
  Evaluation and revision of the case-based

help-desk support system
  Utilization of the case-based help-desk support

systems

Evaluation of Homer

  Performed by INRECA II
  Benefits for help desk operators

  102 problems of which 45 trivial or directed to the
wrong help desk Homer solved 18 (32%)

  Time to solve without = 141 min with = 9 min
  Results better than expected

Summary

  Help desk systems
  help solve problems faster
  give more people more knowledge

  Building
  long and difficult
  need to convince people go give up their

knowledge
  Maintaining

  Requires constant maintenance

 References

1 . Chapter 11. Experience Management for Self-Service and
Help-Desk Support

2 . http://www.it.iitb.ac.in/~palwencha/ES/J_Papers/
CBR_HelpDesk2.pdf

3 . https://www.haiti.cs.uni-potsdam.de/proceedings/
ECAI-06/Proceedings/ecai/posters/ECAI06_199.pdf

4 . HOMER Systems (1999)

Thank	
 You	

