Daniel Phang
Sui Ying Teoh
CSE 348: Game AI Programming

[bookmark: _GoBack]Individual NPC Behavior
What are NPCs?
· Non-Player Characters
· Primary application of AI in games
· Any character not controlled by player
· Mobs, Monsters, Enemies
· Allies
· Noncombat or neutral units
· Environment animals
· Function to create an immersive gaming experience for the player
What is NPC Behavior?
NPC Behavior generally refers to their overall behavior in game, but there are two important parts of NPC Behavior:
· NPC Actions (in-game)
· Movement
· Environmental interactions
· Combat
· Responses to game events
· Querying and storing information
· NPC Animations
· Movement: limb and body animation
· Emotions: facial expressions, body language
Some NPC Requirements
NPCs should be functional and yet interesting and immersive. this means NPCs fulfill the following:
· Believable actions
· Realistic behavior
· Fulfill function without impeding gameplay or other NPCs
· Minimize strain on system
· Make the game fun
AI for NPC Behavior
The core of an NPC is in its artificial intelligence. For it to be able to perform actions and look realistic, they need to be programmed. There are different complexities of NPCs:
· Static NPCs – scripted behavior. As such, they are often predictable, repetitive and may be harder to manage
· Dynamic NPCs – autonomous behavior. They make for interesting emergent behavior and increase game replayability.
· But NPC AI must be balanced and practical
· NPC should not make the game too difficult
· NPC AI needs to conserve system resources
· Unrealistic behavior and cheating is acceptable if player does not notice
Scripted Behavior
This means NPC behavior follows a script, which is a predefined set of actions. Scripted behavior is good for linear environments where one can easily predict where the player is and what the player might do. However, in open environment games, scripts are less frequently used because these games are more unpredictable.
Example: Half-Life 2 sometimes feels like an interactive movie, but in fact it is a generally linear game, so scripting is heavily used.
Autonomous Behavior
“Autonomous” refers to the ability of NPCs to act independently. These NPCs generally work towards a certain goal. These NPCs are complex and display emergent behavior, based on sensory inputs as well as NPC desires.
Autonomous NPC behavior is highly flexible: developers can create an open world and do not need to worry about managing many scripts.
Implementation: For simple cases, use a finite-state machine and for more complex situations, use machine learning.

Figure 1: A Simple Finite-State Machine
In this FSM, NPCs usually listen for events in order to transition between states. To conserve system resources, sometimes NPCs will only transition from Idle to Wandering when the player enters the area. In addition, some events are time-based: if an NPC has been Idle too long, it might automatically transition to another state.
Although in FSMs one can control the number of states and transitions, NPC behavior may still be chaotic. To improve this, apply human concepts such as the following:
Ownership
· "Is this object mine to use?"
· A guard cannot use a microscope
· A scientist cannot use a gun
· Assign ownership by grouping objects into sets belonging to specific NPCs
· What to do about public objects?
· Group them into multiple overlapping sets
· Use a world set
· Don't group them at all
Dependency
· "Is there anything I need to do before using this object?"
· NPCs use the sink after going to the toilet
· Use tightly coupled actions
· Atomic, inseparable action of using toilet and sink
· Less reusability in other situations
· Use dependency parameters: objects that reference others by ID
· Simple solution used in NOLF2
· Disable all objects but the sink after toilet is used, and enable all objects after sink is used
Responsibility
· "What is my purpose in life?"
· Guards responsible for specific areas
· Scientists never leave the lab
· Tagging objects with the character classes allowed to use it
· Specific region tied to guards
· Only scientists can use microscopes
Relevance
· "How will my actions affect the player's experience?"
· Modern games fit between a simulation and a drama
· NPCs should recognize their significance
· Rabbits shouldn't be allowed to use dramatic music when being chased
Priority
· "What is most important right now?"
· Aggressive > Investigative > Relaxed
· Investigating a dead body vs. being on guard
· NPC defending himself vs. drinking coffee
· Behavior priorities should persist until behavior is completed
· Highest priority goal controls behavior
State of Consciousness
· "Am I awake?"
· Unconscious NPCs have limited actions
· Can snore or wake up
· Should not be able to talk
· When checking bodies, NPCs should know whether the body is conscious or not
Expected State
· "Has anything changed?"
· Generalization of consciousness
· Ally caught in bear trap, ally is wounded, etc.
· Footprints on floor
· If object is not as expected the NPC
· Investigates
· Returns object to its default state
· Disturbance threshold
· NPC responds when enough disturbances are registered
Examples: Open world games generally have autonomous NPCs, for example, in No One Lives Forever 2 and Assassin’s Creed: Brotherhood
Coordinated Behavior
NPCs can be programmed individually, a truly immersive game has coordination. For example, in FPS games we want enemies to surround the players: If they are all programmed individually to take the same path towards the player, the game would look dull.
NPCs can coordinate through communication in real-time, such as by passing messages when two NPCs come in contact. However, this event-based knowledge is difficult to implement, so most games use a Blackboard where information can be shared between NPCs.
There are four important messages NPCs should communicate to each other:
Split Up!
· NPCs crowd corridors and rooms
· Path reservation
· Works best in combat scenarios
· Reserve a path during planning
· Path becomes more costly to other NPCs
· Illusion of flanking and strategy
· Maximum Occupancy
· Works best in investigative scenarios
· First NPC to reach a room flags it as occupied
· Additional NPCs approach room but do not enter
· Illusion of watching the first NPC investigate
· Blackboard coordinates path information

Figure 2: Path reservation allows NPCs to take different paths
As we see in this figure, two headcrabs Bob and Fred would look unrealistic if they both took the same path to Gordon Freeman. When a path is reserved, it temporarily increases its cost, so other NPCs are forced to find lower cost alternatives.
Get Out of My Way!
NPCs get in each other's line of fire, so this message is useful for combat situations. Here’s a simple algorithm to check whether it is safe to fire/attack:
1. Is line of fire blocked? Yes
2. Is obstruction an ally? Yes
3. Request ally ducks. If ally busy
4. Step aside and commence firing.
With enemy attacks at melee range, the “Kung Fu Attack” may emerge, since an NPC may wait for other enemies to finish attacking, before it attacks.
Get Down!
NPCs tend to act similarly if they are programmed the same. For example, if NPCs are attacked, they might all go prone at the same time. To solve this problem, the Blackboard is used in the following way:
· NPC posts AttackProne action
· Blackboard counts down ProneTime 
· Other NPCs do not go prone as long as another NPC is prone
What's Going On?
NPCs should also be aware of anything going around them. NPCs shouldn’t be idle when allies are attacked, nor should an NPC on patrol simply step over a dead body. Usually, NPCs use the same sensory trigger system used to detect enemies.
The NPC will scan its surroundings for any allies, check its state, and then take appropriate action.
Human-like NPCs
NPCs can have good AI, but perhaps to be more immersive, games should also take into account human qualities. These are the following:
Sensory
· NPC's perception of its surroundings
· Most important: touch, sight, hearing
· Less important: smell, taste
· Touch
· Detecting if NPC collided with something
· Sight
· A vision cone based on distance
· Affected by lighting and obstacles
· Hearing
· Listening for player movements, other game events
· Affected by proximity and environment
· Smell
· Dead corpses should emit a strong stench
· Animals are more sensitive to smells
· Taste
· Humans may like or dislike certain types of food
Examples: Games with stealth mechanics, such as the Thief series, The Elder Scrolls V: Skyrim, and Assassin’s Creed series. Enemies in these games react to visual and audio cues.
In Thief, lighting is very important. Players can evade guards by hiding near walls or shadows. Players can also fire noise arrows to draw guards to certain locations.
Memory, Personality, Emotions
This is important especially for role-playing games, where storyline is often the focus. Conversations and interactions between players and NPCs should be memorable. These types of games take into account the following:
· Memory
· NPC learns from interactions
· Short-term vs. long-term memory
· Personality
· Happy, sarcastic, antagonistic, etc.
· "Big Five": Extraversion, agreeableness, conscientiousness, neuroticism, openness
· Emotions
· The mood of NPCs
· Happy, sad, angry, etc.
Most, if not all games use scripted dialogue, giving players choices of what to say. More interactive dialogue is rare, due to the difficulty of natural language processing.
Façade takes the Chatbot idea and applies it to an interactive drama. It showcases natural language processing, though responses are still very much scripted. Responses are generally based on whether the player sends positive/negative messages.
Examples: The Elder Scrolls V: Skyrim, Dragon Age II, Façade
Physiological Stressors
These indicate significant changes on the body. They include: muscle fatigue, pain, health, anxiety, fear, extreme temperatures, chemicals, hunger
Examples: Generally many FPS and RPG titles implement simple stressors such as fatigue. In S.T.A.L.K.E.R., players can get radiation poisoning and must cure it using med-packs, injections, or by drinking vodka. The Sims is intended to simulate life, so Sims also have stressors such as hunger, energy, fun, social, hygiene levels.
Reputation Systems
Reputation systems determine how an NPC interacts with the player, based on his or her actions in the past. They make the game more believable: NPCs shouldn’t smile and greet you even after you killed their entire village. In addition, reputation systems let games be more replayable:
· Different dialogue options
· Different events
· Different allies / resources
· Different endings
There are three distinct reputation systems:
NPC-Specific Reputation System
In this system, player actions only affect specific NPCs, and no one else, not even town NPCs. A prominent example of this system is in Dragon Age II:
· Supporting blood mages
· + Friendship with Merril 
· - Friendship with Fenris 
· Other blood mages still try to kill you
· Decisions and responses to the Arishok 
· Earning his respect means you can fight him one-on-one
· Qunari still try to kill you
Global Reputation System
In a global reputation system, there are primarily two sides: “Good” and “Evil”. All NPCs are immediately affected by player actions. Here are some examples:
· Fable III
· Good - Angel wings, Positive responses
· Bad - Bat wings, Negative responses
· Neutral - Eagle wings
· Mass Effect 2
· Choose sides - Paragon / Renegade
· Problems
· Not quite believable - NPCs appear to be psychic
· Black and white morality - Not rewarding to be grey
Localized Reputation System
In this system, player reputation only applies within a city or a guild. This is believable, since it is assumed that city guards share the same information. It is simple, since the game doesn’t need an event knowledge driven system. A prominent example of this system is in The Elder Scrolls V: Skyrim:
· Windhelm guards do not arrest you for crimes committed in Whiterun 
· Standing in Thieves Guild does not affect standing in Dark Brotherhood
Event Knowledge Reputation System
This reputation system is the most realistic, but also the most complex since it implements a witness-based reputation system, which is propagated through the following ways:
· NPC is within the area when an event occurs e.g. when an NPC dies or is attacked
· NPC comes in contact with another NPC that knows of the event
Reputation changes in this system aren’t instantaneous, so theoretically a player can always eliminate witnesses in order to maintain a “good” reputation.
Animating NPCs
NPC AI may be programmed well, but it may still appear artificial without a smooth animation system.
In older games, animations were often mutually exclusive. For example, we can’t have lower body and upper body animations playing simultaneously. In current games, body parts move independently. But the issue with this is: how are all of these independent layers managed?
A simple solution involves having separate controllers for each body part, but this is both complex and expensive in terms of system resources. 
A better solution is a layered animation system. In this system, animation layers are categorized and prioritized.
Categories include: full body, lower body, upper body, legs, arms, etc. Emotions, such as facial expressions may also have their own category.
Having priorities means that animations such as deaths are prioritized over idle animations, and so on.
Implementation
· Animation controller class
· Standard Template Library (STL) map which stores animation instances, sorted by category
· Animation instances reference a resource file
· Core function PlayAnim()
· Can animation be played? (based on category and priority)
· Should other animations be stopped?
· Animations played from general to more specific
Conclusion
As was seen, designing complex autonomous NPCs is a difficult process, since many factors need to be considered: from individual behavior, human-like qualities, to reputation systems and more. Although the current gaming industry doesn’t have ideal NPCs, taking these factors into account will help one build great NPCs that are extremely realistic.

image3.png




image4.png




image1.jpeg




image2.jpeg




