[bookmark: _GoBack]Ethan Harman
Josh Westbrook
RPG AI
Basic RPG Ideas
	Some of the more common elements of Role Playing Games (RPGs) include: exploration (which can involve huge world maps or multi-leveled dungeons), combat (which usually entails selecting actions from a menu), experience points and leveling (as the player progresses through the game they will become stronger and gain different abilities), story (since the main point of Role Playing Games is the ability to play a role, the story in which that role takes place is central to the gamer’s experience), single character/party (sometimes the player controls one character as if he himself were in that role, while other times the player controls a group of three or four people), and setting (generally the settings of RPGs are in exotic places or during different time periods).
	Other common ideas that are generally found in RPGs are Non-Player Characters (NPCs), enemies, bosses, statistical data (or stats), and behavior patterns. Games can have numbers of NPCs that range from zero to millions. Most all of the player’s actions involve interacting with an NPC, whether it be having a conversation, buying or selling items, or even doing battle. In more recent games, game designers have implemented reputation systems (discussed later) to affect the way in which certain groups of NPCs react to the player or even other groups of NPCs. The player may gather NPCs as group members or even start out with some. These group members generally have a pretty good AI, though some can even be programmed by the player to allow for extra customizability in gameplay. The intelligence of NPCs can range from very low (weak enemies) to very high (group members). Enemies are NPCs that the player must fight to gain gold, xp, or items. They can be scripted to always behave a certain way or can dynamically choose their actions. Oftentimes there is an endless supply of enemies. Bosses are special enemies that are often more difficult to beat. They are often heavily scripted to allow for the game designers to tell a certain story during the boss fight. This also means that the player can have a dialogue with the boss, whereas most other enemies are just there to fight. Statistical data for most RPGs includes at least health points and experience points, though many games are very complex and have a plethora of stats which can be upgraded however the player wants. This allows the player to better decide how he wants to play the game. Behaviour patterns are the ways in which the NPCs play the game. These patterns include attacking, healing, running away, etc. Which patterns the NPCs implement depend on whether they are alone or in a group.
	While these elements are most commonly seen in RPGs, there are still other RPGs which don’t seem to fit the mold from first glance. These games have very different elements. For example, Harvest Moon is an RPG farming game where you role play a farmer’s life. This includes taking care of crops, animals, marriages, festivals, etc. There’s also the sims, where you control a person or family and can learn skills and get jobs. These are generally not seen as RPGs because they do not resemble tabletop games.

History of RPGs
	The earliest computer RPGs based themselves off of tabletop games such as Dungeons and Dragons. These were all text based, meaning that the player selected his choice of action from a list and typed it in to perform it. Even the graphics were ASCII characters. Some examples of this type of game are Zork and Nethack. A lot of these text-based RPGs were also turn-based to make the programming easier. In general these games were also all dungeon crawlers (Rogue, Ultima, The Bard’s Tale).
	Soon RPGs came to consoles. Dragon Quest became the standard for Japanese RPGs. Then Final Fantasy I and II came out and introduced some new elements. They started implementing more story as well as giving more character development. When the Legend of Zelda came out, it was completely different than most RPGs of the time. The player had the ability to improve as the game progressed, an RPG characteristic; however the gameplay seemed more like an action game.
	About halfway from the first RPGs to modern times, there was a split in the RPG industry. On one side there were the Eastern RPGs which were generally all on consoles, and on the other were the Western RPGs which were more generally written for PC. Eastern RPGs developed linear stories and filled them with cinematics. This allowed them to create and develop characters with which the player would feel a connection. Examples of these games include the Final Fantasy series and even the Pokémon series, which most might not even realize is an RPG. In contrast, the Western RPGs concentrated on giving the player an open world to explore as he would. Customization was the most important element in these games, so the player could modify his character how he wanted. The player even had choices in dialogue, so the stories wouldn’t be as linear as Eastern RPGs. Some examples of these games include Baldur’s Gate and Diablo.
	Today’s RPGs are very different from what started out the genre. Now there are Massive Multiplayer Online RPGs (MMOs) which can have thousands upon thousands of players who share the same world. Games like this are becoming more popular with successful examples being World of Warcraft and The Old Republic. There are also a lot of games that have RPG elements in them that do not resemble table top games. Action games such as Mass Effect and Call of Duty multiplayer both involve leveling up, but involve first person shooting. Even sports games are adding RPG elements in their single player game style, where the player takes a character through a career over which the character’s skills increase.

Scripting
	The earliest games had very little AI. Instead, most of the actions performed by the NPCs were scripted. Because games at that point were so linear, it was easy to heavily script all the action that would take place. The designer could set attack patterns for enemies in combat, create the entire dialogue without allowing for player input, set exactly what items would fall from certain enemies, and create whatever story he desired. The story in a game could basically be like reading a book, since it would never vary. This could create a fun and interesting game, but it decreases the replay value of it. Even today scripting is used for certain things. Though it does not do as well in an open-world environment, such as Skyrim, games will still use scripts to control basic, unique NPCs. They are also useful for controlling cinematic occurrences and some dialogue. A lot of NPCs that are required to assist the player will use scripts. These NPCs can include party members. Some games, such as dragon age, allow the player to edit the scripts of their party members themselves.

Combat
	Combat systems in RPGs contain multiple uses of AI. There must be intelligence set in place to determine the amount of damage taken by a character in combat. This may seem straight-forward but can have very complex factors attributed to it. There are the stats of the player (level, strength, magic, luck, etc.), the enemy stats (defense, speed, etc.), status effects of the target (poison, slow, etc.), and some elements of chance (these are based off of table-top games and include coin flips, dice tosses, etc.). AI is also used to control NPC behavior. Sometimes NPCs can choose to focus on a certain target (the healer for example). They may also have multiple patterns of attack from which to choose. A more complex version of AI involves giving each NPC a certain attitude and having that affect their decisions in combat. So a more cowardly NPC might fight more defensively, while an aggressive NPC might be strong on attack and almost completely disregard defense.
Games can implement a mixture of ways to control NPCs in combat, including scripts, planning algorithms, and state machines. Planning algorithms might be the most interesting, since it gives more freedom to the NPC. Using planning algorithms, the NPC is given a goal and must figure out the best way to accomplish that goal. An example of this can be seen in Fallout 3, where enemies will take better weapons off of their dead comrades in order to try to kill you more efficiently. Planning allows the NPCs to adjust their actions depending on the conditions of the battle much better than scripting would. One example of this could be that if the goal is to kill a target with low health, let’s say 10 hp, planning will try to use a low damage spell whereas scripting might use a high-cost spell that would be better off being saved for a harder enemy. Another example might be an NPC that gets muted would choose instead to fight with a weapon instead of spells, whereas scripting would cause the NPC to continue trying to use spells even though they wouldn’t work.

AI Level Of Detail
	In the field of graphics, there is a difficulty for the graphics engine to render a large amount of objects. This wasn’t always a huge problem, but now that objects are becoming much more detailed (which entails drawing more polygons per object) and the game worlds are so big that they must house tons of objects, it became a growing concern. If the graphics engine takes too long to render all of those objects, it’ll slow down gameplay, which makes the game itself less desirable. The solution they found to this problem was to only render the objects within a certain radius of the player in their full detail. The rest can be much less detailed, but the player won’t know since he is so far away. As it turns out, this level of detail problem and its solution also occur in AI.
	In a game, trying to run the AI for all the NPCs in a world or dungeon may prove too taxing on the system, much the same way drawing too many objects taxed the graphics engine. This would cause the game to slow down. In old multiplayer games such as Baldur’s Gate, they tried to avoid this problem by making sure that your party was together before changing zones, so that the game wouldn’t have to run two zones worth of AI at the same time. As with drawing objects, does it really matter how clever the AI is if the player is not around to see it? The farther away from the player an NPC is, the less intelligent it needs to be. One solution takes this idea and breaks down the levels of detail into five categories. The first level of AI is the AI that is constantly around the player. This would include any party members and the AI which affects the actions of the player. These AIs need to be the best since they will be constantly seen by the player. Next comes the NPCs that are fighting or interacting with the player. They need to have enough AI to make them worthy opponents, though the actual difficulty can vary depending on the enemy. After that the next echelon of AI belongs to the NPCs who are within a certain set radius of the player. For example, most of the NPCs within 30 meters of the player would be visible, so they should have enough intelligence to be ready to fight quickly, though it doesn’t have to be as good since they are not yet fighting. Then comes the NPCs that are within the same large-scale area as the player. The NPCs within the same town or dungeon need only have enough intelligence to know where they are in relation to the player so that they can know when to bump up to the next tier. And lastly, there are the NPCs which are outside of the town or dungeon which only need to know that they exist, since there’s no chance of them needing to become active until the player changes zones. By separating the level of detail of AI based on location this way, multiplayer RPGs can allow for free movement without worrying about the AI slowing down the game.

Reputation Systems
	Reputation systems are becoming increasingly important in video games. The main idea behind reputation systems is providing the player with a more immersive and realistic gaming experience. This is done by implementing a cause and effect relationship between people or groups of people, much like how real life relationships work. A player’s action towards another person (NPC or otherwise) will affect how that person reacts to the player in the future. So a negative action towards someone will cause that person to react negatively, either immediately or during future encounters. Likewise, a positive action will elicit a positive response.
	This idea of a reputation system proved to be a more complex problem than one might have originally anticipated. Earlier implementations of a reputation system universally changed the way all NPCs thought about a player after he performed some action. This could appear to be the ideal outcome, but it isn’t very realistic as it doesn’t take into account the fact that not all the NPCs would have known about this performed action. So ultimately, the end result is an environment in which all NPCs seem to have ESP and know every move you make, regardless of if they witnessed it or not. This lack of realism detracts from the enjoyment the player gets from the game.
	A better idea for a reputation system might be to let each individual NPC AI manage its own set of memories. This would allow the NPCs to only react to what they had witnessed firsthand. This might seem realistic, except that in reality people have the ability to share their experiences and memories with other people. Also, an even bigger flaw with this plan is the fact that letting each individual NPC store all the events it witnesses would require a huge amount of memory. So a better solution has to be found, one that achieves the desired level of realism while minimizing the demands on the system.
	The proposed solution makes use of a reputation event template. The reputation event template answers the main question concerning an event transpiring between two people: who did what to whom? In an actual gameplay scenario this might take the form of an event “PlayerStoleFromBandit”. Then the part that actually makes it relate to reputation is the question: who cares about this event? To figure this out, the NPCs must all be placed in groups. Allowing NPCs to belong to multiple groups may be difficult, but also increases realism. With these groups in place, the reputation event template can list the groups affected and how it affects them. For our example, the bandit group would probably dislike the player while the city guard group would like the player. The next field is magnitude. This allows for various responses to events (i.e. PlayerStoleFromBandit would have a lesser magnitude than PlayerKilledBandit). And finally it has a KnownBy field which stores the number of NPCs who actually know about the event.
	The reputation event template is used in conjunction with a master event list. This master event list houses all the events done by the player that were witnessed by NPCs. Every event is saved in this list unless it is a duplicate of a previously entered event. Also, events with a higher magnitude will replace lower magnitude events (i.e. PlayerKilledBandit will replace PlayerStoleFromBandit). Once the KnownBy counter for an event reaches zero, it is also deleted from the list. A concern, though one that would still be a concern in the previous system, is that the memory space for a multiplayer game would be multiplied by the number of players in the game, potentially creating a lot of memory usage.
The master event list decreases the amount of memory used since each NPC doesn’t have to keep track of all of its own memories. Instead, every NPC has a long-term memory that it keeps. This list stores an ID which refers to the events instead of an event itself. An ID can be stored in a much smaller variable than an entire event can, so the space saved is immense. It also stores a magnitude field and a time learned field along with each ID. This will prevent under-reacting because once an event is updated with a higher magnitude in the player memory, they will react according to the higher magnitude instead of the lesser. Another key feature of the long-term memory is that it gives the NPCs the option of forgetting events. If a game occurs over a long period of time, NPCs can be allowed to forget what happened in the year or season before. This adds to the realism of games since people can forgive and forget.
A reputation table is a global variable which lists how each group thinks about the other groups and the player. One might think that it would just have one variable associated with the relationship between two groups, one that would go negative or positive depending on whether or not the groups hated or liked each other. But in fact there are two variables stored to model one group’s attitude towards another: a like and a hate variable. These are both only increased (unless an NPC forgets an event, in which case they can be decreased). It’s pretty obvious how the groups will feel towards each other if one variable is high and the other low, but how would they react if both are equal? The answer is fairly intuitive. If both variables are low, the group is ambivalent to the other group since they haven’t done anything to really draw their attention one way or the other. And if both variables are high, the group may distrust or fear the other group since they have no way of guessing whether they’ll treat them well or poorly since they’ve done both in the past.
The last, and maybe most crucial, aspect for the realism of a game is how the NPCs actually learn about the events which shape their responses. The main way they learn about an event is by witnessing it firsthand. This is done with an event announcer. An event announcer spawns at the source of an event and distributes full or partial knowledge of the event to NPCs in the surrounding area. For example, if the player kills a bandit, an event announcer will spawn at the corpse of the bandit saying that the player killed the bandit. The master event list will be updated with the event and the NPCs in the area will update their own long-term memories. However, after a certain amount of time has passed, the event announcer will change the event to say that “someone” killed the bandit. This makes sense since the NPCs wouldn’t have actually seen the player killing the bandit, just the dead body that remained. NPCs can also share information (depending on whether or not their groups like each other well enough to talk). This allows for the missing gaps to be filled in on partial events. So if someone saw the player beating a bandit and another player saw that bandit dead, they would both jump to the conclusion that the player killed the bandit once they had shared their information with each other. This assumption may not be correct, but it’s a realistic conclusion to come to. Every time an event is shared, the KnownBy field gets incremented in the master event list. When a player who knows about it dies or forgets, the KnownBy field decrements until zero, in which case it is deleted.

Side Quests
	Side quests are an important and often under-appreciated part of RPGs. They serve to give the game a more open-world feeling. Instead of just following the main quest line, the player can branch off. This is a great way to vary the gameplay. If the main quest only entails finding NPCs and killing them, the story could get boring and make the player stop playing or not want to replay. However, if there are side quests to gather items, talk to NPCs, etc. as well as the main quest, the player will be able to vary his gameplay according to their desires. This customizability is one of the most important features of side quests. Because they don’t impact the main story line, they can be accepted or dropped as wanted, allowing the player to only do things they like. Also, it allows the player to level up at a different pace. Some players like to do every side quest so that they are very powerful and can easily defeat bosses. Others like to only do the main quest and be at a lower level so that the boss battles are more challenging. Without these side quests, they wouldn’t have these options. Another important aspect of side quests is exploration. Many game designers create large worlds that can be explored, but if there is no incentive to go into the areas of the map not covered by the main quests, few people will actually make use of all the designers’ hard work. Side quests are a way of providing that incentive, by offering xp or better items to players willing to go out of their way. After mentioning the game designers’ hard work, one must talk about the downside of side quests. They are a lot of work to produce, especially for the fact that they are not the main focus of the game. This has led to designers coming up with ways to automate their side quest creation process.
	Side quests, and quests in general, follow certain set patterns which help make the process of automatically creating them much simpler. Some of these patterns include: talking chains (where the player must talk to a series of NPCs in order to learn something), acquiring items, delivering items, killing antagonist, assassinating antagonist (which is different from killing antagonist because it entails returning to an NPC for a reward), etc. These patterns can be combined to create more complex quests. For instance, acquiring item and delivering item might often go together. They also can be linked together to form quest chains. An actual scenario might be getting a quest to acquire a sword and then return it to an NPC. After that the NPC might ask you to take the sword and use it to assassinate a dark knight. As can be seen from this example, quests can be made up of quest points. Quest points can be enabled, disabled, and reached. This helps control the order in which a quest is completed. If a game designer doesn’t want to let the player skip to the last point of a quest before completing the actions leading up to it, he will cause that point to be disabled until the proper progress has been made. However, quest points can also be made optional. So in our example, the player might not need to get the sword before going to assassinate the knight. Also, the player might not even need to speak to the original quest giver before slaying the knight. This again allows for more customizability on the part of the player.
	The AI part of this comes in during the design of the auto-generating tool. Ideally, the tool will minimize the amount of work the developers and game designers have to do to create a quest. The designer gives the tool a list of items, NPCs, and locations, and from that list the tool can generate a multitude of quests based around the previously mentioned quest patterns. The tool can be calibrated to create complex quests, simple quests or both. Then the only work the designers would have to do is verify that the quests do not interfere with the main story line and that the quests are not all of the same pattern (so the player does not become bored). However, AI could be implemented to watch for these exceptions as well.

Intelligent Story Design
	Most people in the game industry, whether they are designers or players, would agree that story is a huge part of what makes a game enjoyable. However, whenever there is a conflict between storytelling and gameplay, game designers will generally choose to sacrifice story in favor of gameplay. This makes sense, because if the game isn’t enjoyable, players will most likely not stick around just to learn the rest of the story. As the game industry progresses, players are expecting more out of their games. There have been huge advancements in graphics, so much so that one could confuse some video games for real life. Yet there’s still a long way to go to make a completely realistic game. Current games don’t give the player much of a chance to affect what happens in his future. At most, the player can choose different dialogs or actions to take from a list of possibilities, but this will always end up in one of only a few outcomes. Ideally, an RPG would be immersive, responsive, and engaging. An example of this ideal would be the holodeck from Star Trek: The Next Generation. Inside the holodeck, one can tell the computer what kind of story you want and it will generate the environment and characters needed for your chosen scenario. It also reacts perfectly to any action you take (meaning that the AI is obviously much more advanced than anything we currently have). Thus, it is the perfect way to create an ideal RPG.
	In order to create a great story in a game, there needs to be a set language in place which will be used to describe desired gameplay. For the holodeck this could be as high level as “create a Sherlock Holmes style mystery”, whereas for our given technology it might be easier to say something like “create a scenario set in London, England, where the main character is Sherlock Holmes, a group member is Watson, and only 10% of the story is known to the main character at the beginning.” Another important aspect of creating a realistic story is NPC behavior. If the story is magnificently set up along with the dialogue, but the NPCs run into walls, the realism and immersion into the story will be lost for the player. Also important to creating an enjoyable game for the player is giving them an important role in the story. In our holodeck example most people would rather play as Sherlock Holmes or Watson than some maid who discovers a dead body. The players want to feel as if their actions are important enough to affect the future of the story.
	Creating an immersive and entertaining game requires a good story, so story direction is crucial. Story direction is the shape a story takes once a character starts performing actions. The story space originally looks something like a tree, which is fairly intuitive since at each moment in life we have the ability to choose different actions which will result in different “states” which will have their own set of possibilities and so on and so forth until the possible states approach infinity. Obviously the possible actions in a video game are much less than in real life, but still the story space for it could be huge. That’s why in a game the designer will try to limit the story space. However if a story space is too small, the player will run into more boundary conditions. Boundary conditions are when the player wants to perform an action which will lead them outside of the story space. There are two ways to deal with boundary problems: accommodation, where one plans around the action and intervention, where one changes the effect of a player’s action (both of these will be covered in more detail later). To avoid boundary conditions, story direction will be put in place to try to guide the player to make certain choices. Then, given a player’s choice, it will use a heuristic to determine where the next state in the story space the player should be pushed towards.
	In order to achieve good story direction, a game must have good story coordination. This means every aspect of the game should be on the same page about where the story is going. All of the NPCs and even the environment may have a part to play in filling out the states of the story space. They must be able to adjust to the player’s actions in a realistic manner, while still trying to push the player towards a certain path. Obviously this balance is one which is hard to attain. The designer can either give the player a large amount of possible actions but have a more difficult time coordinating all of the NPCs to follow along or reduce the amount of possible actions and coordinate the NPCs to the story more easily.
	As you can see, this is a very complex problem, and one for which there has not been any commercial solution, however one attempt involves using an Interactive Drama Architecture (IDA). This architecture is broken up into five parts: the author is in charge of writing structured story content, the NPCs who will interact with the player to provide a rich experience, the environment which houses the NPCs and any other objects with which the player will interact, the director who takes the story written by the author and coordinates the NPCs to act it out, and finally the player who provides the inputs and interactions to make the story run. The author lays out the who, what, where, why, and how of the story. It does this by representing the story as a series of plot points which have pre-conditions and actions associated with them. Whenever one of these plot points is selected, the director will give the NPCs new goals or in some cases may directly change the environment. For instance, if the story requires that the player be in the kitchen, the director may make a pan fall there so that the player will become curious and move to the kitchen to investigate the source of the noise. Instead of the director directly controlling NPCs, each NPC can have its own AI which determines what it should do based upon goals given to it by the coordinator. This can prevent a scripted feeling to the gameplay.
	The director is really the most important part in creating an immersive experience for the gamer. Of course if the author doesn’t create a good story, it won’t be too much fun, but most of the responsibility rests with the director. The director is in charge of knowledge maintenance, plot monitoring, story direction, reactive direction, and preventative direction. Knowledge maintenance is basically just another way of saying that the director has to keep track of all of the variables and know when to update them or use them. Plot monitoring means being aware of what pre-conditions are met for all story points. This is a little more complex than one might think since the state of these pre-conditions can change. For example, if one of the pre-conditions for an action is that the player is in the kitchen, that pre-condition can change back and forth if the player enters the kitchen and then leaves again. Story direction means that the director tells the NPCs and environment what to do when the action at a certain plot point is being performed.
	The director’s responsibilities of reactive direction and predictive direction are very important issues because they deal with boundary issues. As was said before, boundary problems occur when a player wants to perform an action that would cause the story to go outside of the scope of the story space. In order to fix that problem, the director may use reactive direction to take the story from where it has wound up to where it should have been, though sometimes too forcefully. For instance, if a main plot point requires the player to be in the kitchen to hear two NPCs have a conversation, but he’s wandering around out in the lobby, the game may choose to teleport him to the kitchen to keep the story intact. This effect would ruin any immersion the game had created, so it is not the ideal choice. On the other hand, predictive direction attempts examine patterns in the player’s behavior to see what possible boundary problem inducing actions the player might do. It then attempts to use more subtle means to avoid those actions. In the kitchen example, it may have a pan fall to bring the player into the kitchen. One problem with predictive direction is that it requires the director to have an accurate model of the player, which is difficult to attain. These two options have an inverse relationship between their subtleness in dealing with a problem and the immediacy in which they must act. To go back to the Sherlock mystery example, if the player attempts to shoot Watson (something the author probably didn’t take into account for his story) the immediate solution would be to cause the gun to jam or miss. This choice break loses some of the desired realism of the game though. The predictive way of dealing with the problem would be to notice that the player has homicidal tendencies and to maybe have him drop his gun on accident or to not provide him with any ammo. This way preserves the realism but requires a very good model of the player.
	Another important job of the director is affecting story content. Whenever there are multiple plot points open the director must either wait for the player to perform an action which will decide which path to take or apply a heuristic to determine the best path for the given circumstances. Some possible heuristics could be tension or brevity. For example, in the beginning of the story the director may choose brevity to speed the story along; however towards the end it might choose tension to increase the drama. It wouldn’t make sense to choose tension in the beginning since the player has not been able to connect enough with the NPCs to feel the drama. Along with this idea of creating drama, the director can also instantiate variables in the beginning of the story based off of the player’s choices (therefore not known at compile time). These variables can be used later in the story to provide more cohesion. For example, a variable could be ThePersonYouBefriendedInTheFirstChapter and that person could be the one who comes back to betray you in the final chapter.
