Jon Hardy

Michael Caffrey

Shamus Field

This report covers the history of first person shooters, ranged weapons for AI, and position evaluation for AI.
History of First Person Shooters
Origins of FPS Games

· First game to be available to consumers was Battlezone, a tank simulator

· Battlezone was originally released for arcade platforms, then later became available for personal computers in 1983

· Battlezone

HYPERLINK "http://www.youtube.com/watch?v=Ctr54kopo8I"

HYPERLINK "http://www.youtube.com/watch?v=Ctr54kopo8I"Gameplay

HYPERLINK "http://www.youtube.com/watch?v=Ctr54kopo8I"

HYPERLINK "http://www.youtube.com/watch?v=Ctr54kopo8I"Footage (very simple, wireframes, primitive AI)
Late 80’s – Early 90’s

· This was a transitional period that would lead to ideas which would be part of FPS games to come

· One of the biggest developments of this period was Ultima Underworld by Looking Glass Technologies

· Ultima Underworld introduced texture mapping to allow for faster gameplay, as well as visible hands and weapons of the player

Mid 90’s

· This is the period when FPS games saw a marked rise in popularity

· Games released include Wolfenstein 3D, Doom, Marathon, and Duke Nukem 3D

· Wolfenstein 3D is often credited with the invention of the true first person shooter

· Wolfenstein

HYPERLINK "http://www.youtube.com/watch?v=C00n4rDUMNo" 3

HYPERLINK "http://www.youtube.com/watch?v=C00n4rDUMNo"D

HYPERLINK "http://www.youtube.com/watch?v=C00n4rDUMNo"

HYPERLINK "http://www.youtube.com/watch?v=C00n4rDUMNo"Gameplay

HYPERLINK "http://www.youtube.com/watch?v=C00n4rDUMNo"

HYPERLINK "http://www.youtube.com/watch?v=C00n4rDUMNo"Footage (health, ammo, movement)
Late 90’s

· The late 90's mostly saw an increase in the graphics capabilities of FPS games and an increase in multiplayer settings

· One of the most important releases of this time period was Quake, the first FPS to have online multiplayer resembling the games of today

· GoldenEye 007 was the first bestselling console shooter

· Valve released Half-Life, one of the first FPS games praised for its AI capabilities, and later Counter-Strike, a multiplayer game based on the Half-Life engine

Early 2000’s

· The early 2000's saw a proliferation of FPS games and created a boom in the FPS market, making it one of the best-selling genres

· Games released include the start of many ongoing series such as Halo, Battlefield 1942, Call of Duty, and Resident Evil

Modern Day

· Modern FPS games have incredible graphics, smooth gameplay, and strong AI characters

· Popular games include Halo 3, Battlefield 3, and the ongoing installations of Call of Duty

· Battlefield

HYPERLINK "http://www.youtube.com/watch?v=M-BX_DATeik&feature=plcp&context=C3c4385dUDOEgsToPDskJHQjZO0gU0BWPIreH2TxL9" 3

HYPERLINK "http://www.youtube.com/watch?v=M-BX_DATeik&feature=plcp&context=C3c4385dUDOEgsToPDskJHQjZO0gU0BWPIreH2TxL9"Gameplay

HYPERLINK "http://www.youtube.com/watch?v=M-BX_DATeik&feature=plcp&context=C3c4385dUDOEgsToPDskJHQjZO0gU0BWPIreH2TxL9"

HYPERLINK "http://www.youtube.com/watch?v=M-BX_DATeik&feature=plcp&context=C3c4385dUDOEgsToPDskJHQjZO0gU0BWPIreH2TxL9"Footage (destructible environments, different movement types
FPS AI Architecture

The Four Major Components

· Animation: responsible for controlling the character's body

· Movement: responsible for figuring out how the character should move, pathfinding

· Combat: responsible for assessing the character's tactical situation, selecting tactics, aiming and firing, picking up weapons, etc. This component is usually most important in the player's perception of the AI

· Behavior: responsible for communicating to the other components what the character's goal is and what those components should do

The Animation Controller

· Responsible for the character's body

· Generally plays pre-generated animation sequences which take control of the character's entire body (i.e. a death animation)

· Must also be aware of which animations move which parts of the body and resolve conflicts when multiple animations are played (if a character is shot while doing an arm-wave animation sequence, the death animation should override it)

· Also controls parametrization of existing animations (change the speed of a walk), controlling specific body parts (point down a hallway), and handling inverse kinematics (reach and grab a gun on a table)

Pathfinding in FPS (Used by Movement Controller)

· FPS game worlds are often mostly static, so databases are pregenerated for fast pathfinding (similar to transition tables)

· A* is commonly used with these databases to find the optimal path from point to point

· Dynamic obstacles are dealt with by local pathfinding, built on top of global pathfinding. Local pathfinding is often done by sampling a grid oriented toward the destination and finding a way around objects

The Movement Controller

· Subsystem which performs tasks given by other components, usually in the form of "move to point (x, y, z)," or "move to object O," or "stop moving"

· Handles only one movement command at any time

· Takes commands and uses pathfinding to make the game engine calls to execute that path

· Handles different types of movement such as walking, swimming, and flying

The Combat Controller

· Handles all combat related tasks such as picking a target, selecting a weapon, maneuvering, and firing weapons

· This component poses very difficult problems such as what tactics to employ, as well as how to use spatial reasoning

· Battlefield

HYPERLINK "http://www.youtube.com/watch?v=gX0ZFaXnhWw" 3

HYPERLINK "http://www.youtube.com/watch?v=gX0ZFaXnhWw"AI (notice that it shoots every time the player pops up)
Spatial Reasoning

· Using the raw geometry of a level is not viable due to the sheer amount of polygons and irrelevant details

· As with global pathfinding, a database is created for the tactics for a level based on cover, choke points, and vulnerable areas

· Just as dynamic obstacles pose a problem for global pathfinding, dynamic environments can make these spatial tactical databases work poorly (what if a player pushes a block into a room to use as cover?)

Combat Tactics

· AI has a library of tactics it can draw from

· These tactics communicate with the movement and animation components to ensure behavior is executed correctly

· Some AI tactics included in many FPS games are:

· Camp

· Joust (run past opponent while shooting, then shoot from behind)

· Circle strafing

· Ambush (hide behind cover, pop out to shoot)

· Flee and ambush (run away, then prepare for an opponent who may be chasing)

Tactic and Opponent Selection

· Tactic Selection

· Based on three main factors: nature of the tactic, tactical significance of combatants' locations (based upon the spatial tactics database), and tactical situation (health, ammo, location, etc.)

· Opponent Selection

· AI will focus on one enemy at a time

· Generally worry about defending yourself first, then, if it is safe, find a vulnerable target nearby with a ranking system

· Remember Robocode? Many teams used some form of opponent selection

Behavior Controller

· Overarching controller responsible for determining state and high-level goals

· Usually modeled with a finite-state machine

· Some AI behaviors included in many FPS games are:

· Idle

· Patrolling

· Combat

· Fleeing

· Searching

· Summoning assistance

· These behaviors are used to tell the other components of the system what to do

Scripts and Triggers

· Designers often like the AI to react in a certain way to scripted events in the game

· The most common way of dealing with this is to send commands to the different components when the event happens

· Call

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM"

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM"of

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM"

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM"Duty

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM" 4

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM"Mile

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM"

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM"High

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM"

HYPERLINK "http://www.youtube.com/watch?v=FbYXV0UivpM"Club (notice how the player knows everything that will happen because it is heavily scripted, and there is a triggered event at the end of the AI opening the exit)
Stealth Games and Perception

· Some games have stealth systems where players must avoid the AI guards; these games often use alert levels for the AI based on their perceptions

· These perceptions are modeled with visual, auditory, and tactile subsystems

· Visual deals with distance, field of view, and line of sight

· Auditory deals with ensuring the AI receives sounds from the game engine along with data such as where the sound came from and what other noise is occluding the sound

· Tactile deals with what the AI feels, such as being shot or damaged, or collisions

Combat exists in three dimensions, in a highly dynamic environment

· Projectile weapons complicate computation

· Travel time is a real variable and must be accounted for

Opponents should resemble humans

· Not all bullets are fired on target

· Environment can change how projectiles behave (Wind, etc.)

Artificial Intelligence must seem adept, but must miss realistically

· This adds randomness and a dynamic environment; no fun to die every time

· Balance between both extremes needed

High level die-rolling used to simulate combat

· Every aspect has a percentage chance

· All multiplied together with weights added

· Factors include:

· AI Skill

· Range

· Size of Enemy

· Enemy’s Velocity

· Line of sight to target

· Enemy’s state (Aware, back turned, crouching, etc.)
· Factors do not include

· Armor

· Resistance to bullets

Knowing if bullet will hit/miss isn’t good enough

· Hits and misses need to feel real; creates strong gameplay

· On Hit

· Pick a point in enemy “hit box”

· Draw a line to that point

· If the line connects to the hit box, success

· If something else is in the way, failure

· Try again with different point

· Otherwise, success

· Fire weapon

· On Miss

· Pick a point reasonably close to target

· Draw a line to that point

· If the vector hits something closer than target

· Try again with a different point

· Otherwise, success (for failing)

· Try again with a different point

· Sometimes teammates get in the way

· Conflict resolution required

· You can pick a different location in a hit box

· They could move

· You could move

· You can target a different enemy entirely

Not all weapons are bullets; grenades / rockets

· Weapons have area of effect damage

· Model object as a projectile in flight

· Model object as an oversized sphere once it impacts

· Anything in sphere is considered “hit”

· Teammates can be modeled like grenades

· Estimate positions they can move into

· Intentionally shoot around all potential positions

Predicting projectiles

· Bows and Arrows, Rockets have high travel time

· Example: Arrow at 50 m/s, enemy 200 m away

· Enemy moves 4 seconds; must be able to predict position in that timeframe

· Dead Reckoning: Assume opponent’s pace doesn’t change, shoot there

How can you communicate combat?

· Matrix overlays can explain the situation well

· Different matricies for each view of a situation

· Openness-Proximity of Obstacle
· Cover – Locations to hide

· Searching – Nearby Enemies

· Allies – Location of friends

· Line of fire – where your friends are shooting

· Light level – brightness in room

· All pieces combine to form consistent world view

Openness Layer
· Describes ability to move

· Gradients identify location of nearby walls, obstacles

Area Occupancy

· Density of enemies

· Each enemy adds weight to nearby squares

· Can avoid nearby enemies or engage them

Revealed Area Searching

· “Fog of war” in many games

· Identify nearby areas which are unexplored

· Explore them

Line of Fire

· Identify Allies gun barrels

· Stay out of their line of fire

· Your own line of fire is represented and must be removed before math is done

Generalizing

· In additional dimensions, all functionality remains

· Computations are more difficult due to greater search space

· Some aspects can be computed in 2D and extrapolated into 3D

Dynamic Tactical Position Evaluation

Why not use static positions?

· Positions and battles are repetitive

· Levels require excessive coding

· Games are becoming more complex, and static positions are difficult to implement in a wide variety of situations

· Impossible to foresee all player actions

· Interactions between AI, player, and game is difficult to manage

Dynamic Position Overview

· Use basic static procedures supplemented with information received while the game is being played

· Takes many types of information to make a decision

· Reduces scripting by giving a general action template

· May not work in every case, but works in a vast majority

· AI are more useful in different situations

· Combines data from environment into single score level to judge positions

· Different evaluations for different tasks (attacking vs retreating)

· Can use several position evaluations for pathfinding

Attack Example

Goal: Select position to fire at attacker

· Consider all positions within reasonable distance

· Eliminate all taken positions and restricted positions

· Check proximity to threat

· Evaluate line of fire to threat

· Factor in cover from secondary threats

· See if position is in preferred engagement range

· Avoid friendly fire/threat’s line of fire

· Factor in nearby cover in case a new position is needed

· Make sure no AOE attacks will be hitting the position

· Verify highest score position is the best and move

Performance

· Evaluation can be computationally expensive

· Limit points looked at by:

· Evaluate a small radius around AI

· Restrict AI to some part of the map

· Use pre-calculated LOS for threats

· Limit evaluation factors

· Estimated that within three seconds of travel time a new position will need to be evaluated

· Area of operations can stop irrelevant AI’s from consuming computer resources with checks

AOE Attacks and Cover Fire

· Specific type of position selections

· AOE Criteria:

· No friendly fire, will not hit walls or obstructions

· Threat in blast range

· Determine arc with ray casts (expensive)

· Cover Fire Criteria:

· Proximity to last known threat location

· Nearby cover threat may flee to

· Line of fire from AI to threat location

Intelligent Scanning

· Used to determine appearance locations of threats

· Possible criteria:

· Positions with non-visible neighboring locations

· Partially visible locations

· Locations with partial cover

· Doorways, windows, and corners, where enemies are probable

· Costly, must evaluate all positions in visible range, rather than within a certain distance

· Possible to group positions in a general direction to reduce cost

· Trade-off between checking all positions and looking unintelligent

· Can predict possible re-appearance locations of a hiding threat

Problems

· Dynamic position selection and pathfinding are typically calculated as separate steps (good positions may be only accessible through tactically poor paths)

· Poor evaluation algorithms may take lots of processing power or space, or may create poor AI decisions

· Takes into account only the current situation, and does not take into account past or present situations (though some games may implement these features now)

· Must place locations by hand, or create an automatic way of either generating them or making AI recognize them

Finding Cover in Dynamic Environments
Cover in Dynamic Environments

· Games are becoming more complex every year

· Poor AI can make the game too easy or ruin player’s immersion

· Many games have dynamic environments in both single and multiplayer modes (Red Faction: Guerrilla, Bad Company, etc)

· AI taking cover from player attacks is necessary for a successful FPS game

· Scripting for taking cover is inadequate

· Enemies taking cover makes for a more realistic game

Overview

· Taking cover means “full cover”, rather than half cover, or any other position where the AI could attack or be attacked

· Generally:

· Find all full cover locations

· Check which offer full cover at current time

· Move to best position

· Uses ray casting to determine whether AI may be hit by a threat (ray from enemy gun to various AI body parts)

· Multiple rays can reduce errors, such as an elbow or foot visible to a threat

Ray Casting Tests

· Can have several degrees of testing for a blocked shot:

· Ray hits any polygon

· Ray hits something tagged as full cover (allows for some bullet penetration on some walls, and not on others in MW & Battlefield games)

· Ray hits something with less force than would be required to go all the way through

Level Annotation

· Specify logical cover areas upon building level

· Chosen cover is easily accessible to AI

· Table contains all cover information and is available to AI as game runs

· Problems:

· Dynamic environments will ruin the information table, causing AI to behave poorly

· Only “obvious” cover will be registered (a wall will be, where as a low hill terrain hill will not)

· Cover must be designated as such by world builders

Sensor Grid Algorithm

· Ray casting done at runtime

· Possible cover locations also generated at runtime

· Lots of close cover, fewer farther locations

· 7 main steps:

· Find all threat locations

· Choose sensor locations and densities

· Find the ground level of the AI

· Determine whether AI can stand on sensors

· Check whether remaining sensors are out of sight of threats via LOS to AI body parts at various positions

· Check whether object is useful and accessible

· Move

Using Both Methods

· Pure sensor grid is too computationally demanding, especially for consoles with limited hardware

· Some level annotation is done upon building the level, getting all cases of “obvious” cover

· If an AI needs cover, it will search the table for a close position that was specified by the level creators

· If no cover was found in a close proximity, it will run the sensor grid algorithm to determine cover

· Much smarter than level annotation alone, while much faster than sensor grid alone

· Little slowdown even on slower hardware

Extensions

· Ray tracings can be split between frames, rather than trying to search all at once

· Sensors for the sensor grid algorithm may be done individually, going from closest to farthest, instead of all at once

· Removing positions from the cover table when a piece of cover is destroyed

· Combine close threat viewpoints to avoid doing separate calculations for each of them

