[bookmark: _GoBack]Dan Ruthrauff
Daniel Phillips
AI in Sports Games
 When the topic of artificial intelligence comes up, most people primarily think of real time strategy and first person shooter genres. Although they typically get the spotlight, one genre that doesn’t get the attention it should is sports games. AI in sports games is very important to the player and offers some unique challenges not seen in RTS and FPS games. A good portion of the people who play sports video games have played sports in real life, and thus have a set of expectations on how the AI should react both with the opponent players and the NPC teammates. These same players have most likely not battled dragons or ruled an empire. Although that’s a far fetched example, it illustrates the fact that there is not as much of an expectation for the AI in other genres, so the developers can get away with cutting corners and not implementing a lifelike AI. Another unique challenge dealing with sports AI is the issue of cheating. While in FPS games one would expect the player to withstand a barrage of bullets while taking down enemies in a few shots, one does not expect the same superhuman abilities in sports games. To create a challenge, players want the AI to “outsmart” them as they would in real sports rather than have superhuman abilities. I will be discussing the issue of cheating in detail and how sports games minimize it later in the paper. Finally, sports games coordinate AI on a larger scale than most other genres. In a game of football, of the 22 players on the field the player is only controlling one at a time. The CPU controls the 11 opponent players, and 10 of your teammates.
	Traditional sports games, meaning two teams facing each other, are entirely object oriented. The world is comprised of objects; the players, the ball, etc. and these objects have defined interactions with each other and operate within a set of predefined rules. The players have a reactions to events with clear starting and ending points, as well as a set of transitions between them. For these reasons, traditional sports games are entirely event driven. There is no need for complex pathfinding as with other genres or non-traditional sports games. Furthermore, every traditional sports game has a starting even. In football, it would be the snap; for baseball it is when the ball is hit and so on. Considering the above factors, traditional games can control the AI exclusively with finite state machines and transition tables. In a well-developed sports game, there should be no surprise event that the computer is unprepared for.
	Baseball is a good sport to study the AI in-depth because it is a game based on percentages, risks, and expected events. The game is divided into three areas: fielding, base running, and batting/pitching. Since the latter of the three is less focused on AI and more deciding animations and random events, I will only be covering the first two aspects of the game. Baserunning only has two basic behaviors which are running or not running. These two behaviours however are broken down into more complex behaviors to cover a large possibility of events. The simple ones are go and go back which are to go to the next base, or its complement. There is watch which is to wait for a certain condition or conditions to be met, and freeze which stops all movement. Usually freeze and watch are called simultaneously before proceeding to the next behavior. Another event-specific behavior is go halfway. This is the default assumption for a fly ball, and will go halfway to the next base and wait to see if the fielder catches the ball or not. A sample transition for baserunning would be as follows:
Fly ball is hit -> go halfway -> freeze -> wait -> ball is caught by fielder -> go back -> wait -> ball is thrown back to pitcher. During the last wait, the baserunner determines the ball is too close to the infield to try to run to the next base after tagging up, and the play is over.
	Fielders have their behaviors controlled by one of two events: ball hit, or ball fielded. Once the ball is hit, fielders assume one of four behaviors based on the ball’s trajectory: field ball, cover base, cutoff, or backup. This seems simple, but in practice it turns out harder to implement than base running. On the ball fielded event, the player with the ball decides what to do with it and the rest of the teammates naturally transition to other behaviors if needed. The initial assignment of the fielders is determined the moment the bat comes in contact with the ball. Given the initial vector of the ball as it leaves the bat, the entire path can be iterated and calculated to know exactly where and when the ball will land. This flight path is broken into two areas, the hit type (fly ball, grounder, line drive, etc) and the zone it will land in. Each pair of (hit type,zone) inputs will result in a unique set of behaviors. The more zones and hit types the developer implements, the smarter the AI will appear and the more challenging it will be to defeat them. For example, if there were only a left and right zone to the field, the computer’s behavior would be limited and far from optimal. If there were thousands of zones dividing the entire field up into very small regions, the computer would be nearly perfect and too good for the player to defeat. This makes it difficult for the developer to maintain a good level of challenge to the player by the AI alone, which brings up the subject of cheating.
	Cheating is defined as giving the agent access to information that the player would not have in the same situation. An example is in old versions of the football franchise Madden, the computer would know what plays the player was running, and base their defensive strategy on that knowledge. With the level of precautions coaches and players go through to avoid this in real life, it seems counter productive to implement cheating as the main strategy in a videogame. Cheating can also apply to when the computer follows a different set of rules than the player. Although racing games aren’t traditional sports games, a good example of this type of cheating is giving the computer unlimited boost or turbo, while the player has a limited amount they must strategically manage throughout the race. One misconception to clear up is that cheating does not apply to the computer’s natural advantages over the player. This includes the computer being able to make computations and react faster than the player is able to. In theory, the player would be able to achieve the same results therefore it is not considered cheating. Rules can also apply to the literal rules of the sport. One popular soccer video game titled Fifa was notorious for bending the rules to beat the player. Fouls were called on the player while the computer’s team was getting away with the same or even worse actions such as tackling the player with the ball (this is allowed in football, but not in soccer). While this appears in real life to a certain degree with so-called “home team advantage,” it is not relied on as a method of winning. While older sports games heavily relied on cheating, it is far less common now because of the players’ reactions and generally not accepting it. Some degree of cheating can be acceptable and possibly even necessary if it is not painfully obvious to the player, but obvious cheating gets bad feedback from reviewers and players, which is crucial in the video game industry.
	Due to the players’ wide base of playing types, skills, and other various factor that affect the outcome of the game, it is hard to come up with a standard AI that will maintain a challenge for the majority of players. This concept is taken into account by developers by implementing a concept called rubber band AI. When you stretch a rubber band, the further apart the two ends are, the more tension is created to pull the ends together. Mapping this idea to video games, the more the player is winning in the game, the harder the computer opponent will become to try and catch up. While a large victory is fun once in awhile, a game becomes boring if you beat the computer effortlessly every time. While this is a good concept to dynamically maintain a challenge to the player, unfortunately it is most often accomplished by using cheating to catch up. Going back to my previous example of the referee not calling fouls on the opponent, that would be an example of rubber band AI used to keep the scores close. Besides bending the rules of the game, some video game bend the laws of physics and gravity as well to catch up. A notorious game for this is NBA Jam. Although the game is less of a simulation and more arcade style, players can’t help but notice the computer flying down the court and performing slam dunks from the three point line while knocking over every opponent in their way. These unblockable dunks only occur when the opponent is losing. Expanding from traditional sports games, rubber band AI is most often seen in racing games. There is proof in the source code and developers will admit to making the cars in the back of the pack faster and those in the front slower, to make a dramatic finish and keep things close. While engine upgrades and other car improvements would make one think it gives them an advantage, it really has no effect when a fixed distance is being maintained between the cars. Ironically, by the player upgrading their car they are also upgrading every opponent car as well. One last point to bring up is that rubber band AI can work to the player’s advantage in racing games. It works in both directions, so if the player is losing the computer cars will actually slow down to let the player catch up. There are strategy guides out for the Need for Speed series that intentionally exploit the rubber band AI. They suggest not upgrading your car at all. Doing so will only make it faster and harder to control. By choosing not to upgrade, the player can beat the game at a leisurely pace without worrying about upgrading to keep up with the opponent’s cars thanks to the rubber band AI.
	Madden is considered to be the forefront in traditional sports game AI, and was likely the cause of most of the AI methods mentioned thus far. I will briefly go over a history of the development of the series and how it affected the future of sports game AI.
· Original Madden - Madden '93
· Predictable and limited play calling
· Madden '95
· Play calling overhauled and now mimicked actual decisions made in the NFL
· Madden '96
· Introduction of multiple skill levels
· At this point passing and running were still highly unbalanced
· Poor defensive AI made it easy to pass
· Poor offensive blocking AI made it difficult to run
· Madden '97
· Running issue resolved, but AI still lacking
· Possible to win by only using one or two plays
· Madden '98
· Defense now counters the same play if it is called multiple times in a row
· Madden '99
· Huge improvement in defensive AI
· Fans of the series complained the AI was "too good"
· This eventually turned to a challenge rather than a complaint
· Madden '00
· Customizable AI
· Most significant update out of any Madden release

	The customizable AI in Madden was considered to be the last signifigant improvement to the AI in the series. The developers themselves admitted that only tweaks and minor adjustments would need to be done from there on out to the AI, and the customizable sliders allow the player to create a personal experience that is challenging and fun to them.
	The innovations in sports AI have gone relatively unnoticed, however other genres can learn from their advancements. Since cheating is easier to detect by the player in sports games, they had to put a greater effort into minimizing it. Ultimately if the player is defeated, they would prefer it to be by a more challenging AI rather than an AI that cheats. Other genres can put the same effort into reducing cheating, even though they can let it slide as a “quick and dirty” way to avoid developing strong AI. The customizable AI in Madden could also be applied to other genres. A FPS player could adjust the AI to not detect them as easily, but have very precise aiming if they wanted to focus on stealth and not being caught. On the other hand, they could set the sliders to high detection but have poor aiming for a “run and gun” style of play. A final note is that FPS and RTS implement AI as one of the last stages in game development. Madden and other sports games have always put the AI first, knowing it is what truly matters most to the player. When a game simply isn’t fun or enjoyable to play, all the other factors become irrelevant. AI is a critical component in developing a videogame, and sports games have helped make AI what it is to day as well as set an example for future developments.

 Racing games provide a unique challenge for AI developers. Most traditional sports games are event-driven. This means that the game consists of a set of actions and events. Racing games only have one event (racing) and are therefore unsuitable for an event driven design. Over the last 20 years, AI in racing games has dramatically improved.
 The first racing game was Gran Trak 10 for the Atari. This game featured simple tracks and no opponents. The racer raced against himself to achieve better track times. Since there were no opponents, no AI techniques were needed.
 The next landmark racing game was Super Speed Race. Super Speed Race featured screen scrolling racing and AI racer opponents. The opponents in this game were not very intelligent at all - they mostly served as obstacles to the player.
 The first racing game to include intelligent AI opponents was Pole Position. Pole position attempted to simulate F1 racing. Like a real F1 race, the racer has opponents that try to beat you. In Pole Position there could be up to 8 racers at one time. To control the AI opponents, Pole Position introduced a new technique called splining. A spline is a preset line hardcoded by the developers that the AI would stay as close as possible to. As a means to get the AI racer from the start of the track to the end, splining worked great. The problem with splining is that it created formulaic and predictable behaivor that led to boring game play. The AI always stayed on the spline and never deviated from it even to avoid an accident. This is very unrealistic compared to how a real F1 race would play out.
 The next breakthrough racing game was Super Mario Kart for the SNES. The addition of powerups and obstacles to the racing genre created the need for more dynamic AI behavior. Following a preset path and never deviating from it was just not enough anymore. AI now had to avoid obstacles and pick up powerups when appropriate. To create more dynamic behavior, Super Mario Kart introduced a couple of key techniques that are still being used by many racing games today. One of these techniques is called "path following". Path following replaces the preset line of splining with a set of preset nodes. The AI racer progresses from one node to the next node to follow the track. The benefit of path following over splining is that a racer can now navigate to different nodes depending on what is on each node. For example, if an opponent sees a powerup on a node that deviates from the fastest way around the track, he is free to switch his goal node to the powerup. The other important technique introduced by Super Mario Kart is obstacle avoidance. Obstacle avoidance follows a few basic steps to allow the AI racer to avoid obstacles. The first step is finding which obstacle is closest. The closest obstacle should be avoided first. The next step is finding out the offset (how much the racer wishes to avoid the obstacle by). This value can vary depending on if the AI racer wants to completely avoid the obstacle or make a narrow miss. The final step is to apply corrective steering to guide the vehicle to the desired location. The amount of corrective steering can be calculated with a few basic formulas.
 The techniques set forth by Pole Position and Super Mario Kart were the industry standard for AI in racing games for about 10 years. In 2001, Colin Macrae Rally 2.0 (also known as Dirt) was released. In Colin Macrae Rally, the developers decided to include many different terrains (dirt, mud, gravel, etc) for the tracks. There were also various weather conditions (rain, snow, ice, etc). At first the AI developers attempted to use the standard path following and obstacle avoidance techniques but because of the complex terrain they were unable to tune the AI to correctly follow the track. Instead of these simple rules, they decided to try to implement machine learning to "teach" the AI how to follow the complex terrain of the track. Machine learning is one of the best ways to find patterns in complex sets of data. The final algorithm for the game was a feed forward multilayer perceptron. This is the simplest form of neural network. It consists of a set of inputs, outputs, and hidden layers. The trick to developing a working machine learning model is finding the right set of inputs and outputs and the right number of hidden layers to use. After the inputs and outputs are determined, the network must be "trained". Training consists of running multiple trials and automatically tuning the network to be a little bit more accurate each time. Once the network is trained, either a pattern is found or you must try again using a different set of inputs and outputs. In Colin Macrae Rally, the inputs used were various values that described car direction, car speed, track terrain, and weather conditions. The outputs were values that described how well the car was following the track (how far the car is away from the left side of the track, the right side, etc). Using these inputs and outputs the AI was able to successfully follow any type of terrain track. There are a few of disadvantages to the implementation of machine learning in Colin Macrae Rally. The first disadvantage was that it was hard to scale difficulty. When "training" AI, it is very hard to scale difficulty. The AI opponents ended up racing the tracks "perfectly" which is not always fun for the player. The other disadvantage to using machine learning is that while it works extremely well for getting a car to follow a track, it did not work well when trying to implement racing maneuvers such as overtaking opponents and accident recovery. In Colin Macrae Racing simple rules had to be implemented to get the AI to get back on the road after slipping off it and to pass other players. The final disadvantage was that it was extremely difficult to teach different race styles. For example, in real life some racers are very aggressive and others are defensive. With machine learning, only one style of racing is learned. This can lead to boring gameplay.
 Forza Motorsport for the Xbox set out to develop a way using of using machine learning in a racing game without the problems present in Colin Macrae Rally. They developed a system called Drivatar which allowed human players to control the training of the neural network. This allowed the AI to learn various different racing styles and maneuvers. Unfortunately, the details of Drivatar are a company secret because new versions of Forza are still using this system. We do know a few things about Drivatar though. Each racing technique is split into one of three major training categories: turning control, speed control, and racing strategy. A human player must complete each training scenario to teach the AI a certain skill. The use of Drivatar is widely considered a success and Forza has the best AI in a racing game to date.
 Sports games are simulations of the sport and most players want to feel fully immersed in the game. Besides great game mechanics, one of the best ways to immerse a player is with flowing commentary. The first game to introduce commentary to the sports genre was Madden Football. The goal of commentary in sports games is to accurately describe the events that are taking place in the game in an interesting way. There must be enough dialog to keep the commentary fresh even though the player will repeat the same events multiple times. Creating interesting commentary is a multi-step process. The first step is to record and categorize all of the dialog. Each category of dialog should convey a different piece of information to the player. For example, in Madden Football some of the categories were: down and yardage information, player statistics, team statistics, score, and play-by-play. After the dialog is recorded and categorized, each category should be associated with one or more events in the game. Each event should have multiple segments of dialog attached to it in order to keep the commentary from getting stale. Once Madden implemented working commentary, it became the standard for most modern sports games.
