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This report covers the history of first person shooters, ranged weapons for AI, and position evaluation for AI.
History of First Person Shooters
Origins of FPS Games

· First game to be available to consumers was Battlezone, a tank simulator

· Battlezone was originally released for arcade platforms, then later became available for personal computers in 1983

· Battlezone
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Late 80’s – Early 90’s

· This was a transitional period that would lead to ideas which would be part of FPS games to come

· One of the biggest developments of this period was Ultima Underworld by Looking Glass Technologies

· Ultima Underworld introduced texture mapping to allow for faster gameplay, as well as visible hands and weapons of the player

Mid 90’s

· This is the period when FPS games saw a marked rise in popularity

· Games released include Wolfenstein 3D, Doom, Marathon, and Duke Nukem 3D

· Wolfenstein 3D is often credited with the invention of the true first person shooter

· Wolfenstein
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Late 90’s

· The late 90's mostly saw an increase in the graphics capabilities of FPS games and an increase in multiplayer settings

· One of the most important releases of this time period was Quake, the first FPS to have online multiplayer resembling the games of today

· GoldenEye 007 was the first bestselling console shooter

· Valve released Half-Life, one of the first FPS games praised for its AI capabilities, and later Counter-Strike, a multiplayer game based on the Half-Life engine 

Early 2000’s

· The early 2000's saw a proliferation of FPS games and created a boom in the FPS market, making it one of the best-selling genres

· Games released include the start of many ongoing series such as Halo, Battlefield 1942, Call of Duty, and Resident Evil

Modern Day

· Modern FPS games have incredible graphics, smooth gameplay, and strong AI characters

· Popular games include Halo 3, Battlefield 3, and the ongoing installations of Call of Duty

· Battlefield
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FPS AI Architecture

The Four Major Components

· Animation: responsible for controlling the character's body

· Movement: responsible for figuring out how the character should move, pathfinding

· Combat: responsible for assessing the character's tactical situation, selecting tactics, aiming and firing, picking up weapons, etc. This component is usually most important in the player's perception of the AI

· Behavior: responsible for communicating to the other components what the character's goal is and what those components should do

The Animation Controller

· Responsible for the character's body

· Generally plays pre-generated animation sequences which take control of the character's entire body (i.e. a death animation)

· Must also be aware of which animations move which parts of the body and resolve conflicts when multiple animations are played (if a character is shot while doing an arm-wave animation sequence, the death animation should override it)

· Also controls parametrization of existing animations (change the speed of a walk), controlling specific body parts (point down a hallway), and handling inverse kinematics (reach and grab a gun on a table)

Pathfinding in FPS (Used by Movement Controller)

· FPS game worlds are often mostly static, so databases are pregenerated for fast pathfinding (similar to transition tables)

· A* is commonly used with these databases to find the optimal path from point to point

· Dynamic obstacles are dealt with by local pathfinding, built on top of global pathfinding. Local pathfinding is often done by sampling a grid oriented toward the destination and finding a way around objects

The Movement Controller

· Subsystem which performs tasks given by other components, usually in the form of "move to point (x, y, z)," or "move to object O," or "stop moving"

· Handles only one movement command at any time

· Takes commands and uses pathfinding to make the game engine calls to execute that path

· Handles different types of movement such as walking, swimming, and flying

The Combat Controller

· Handles all combat related tasks such as picking a target, selecting a weapon, maneuvering, and firing weapons

· This component poses very difficult problems such as what tactics to employ, as well as how to use spatial reasoning

· Battlefield
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Spatial Reasoning

· Using the raw geometry of a level is not viable due to the sheer amount of polygons and irrelevant details

· As with global pathfinding, a database is created for the tactics for a level based on cover, choke points, and vulnerable areas

· Just as dynamic obstacles pose a problem for global pathfinding, dynamic environments can make these spatial tactical databases work poorly (what if a player pushes a block into a room to use as cover?)

Combat Tactics

· AI has a library of tactics it can draw from

· These tactics communicate with the movement and animation components to ensure behavior is executed correctly

· Some AI tactics included in many FPS games are:

· Camp

· Joust (run past opponent while shooting, then shoot from behind)

· Circle strafing

· Ambush (hide behind cover, pop out to shoot)

· Flee and ambush (run away, then prepare for an opponent who may be chasing)

Tactic and Opponent Selection

· Tactic Selection 

· Based on three main factors: nature of the tactic, tactical significance of combatants' locations (based upon the spatial tactics database), and tactical situation (health, ammo, location, etc.)

· Opponent Selection

· AI will focus on one enemy at a time

· Generally worry about defending yourself first, then, if it is safe, find a vulnerable target nearby with a ranking system 

· Remember Robocode? Many teams used some form of opponent selection

Behavior Controller

· Overarching controller responsible for determining state and high-level goals

· Usually modeled with a finite-state machine

· Some AI behaviors included in many FPS games are:

· Idle

· Patrolling

· Combat

· Fleeing

· Searching

· Summoning assistance

· These behaviors are used to tell the other components of the system what to do 

Scripts and Triggers

· Designers often like the AI to react in a certain way to scripted events in the game

· The most common way of dealing with this is to send commands to the different components when the event happens

· Call
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Stealth Games and Perception

· Some games have stealth systems where players must avoid the AI guards; these games often use alert levels for the AI based on their perceptions

· These perceptions are modeled with visual, auditory, and tactile subsystems

· Visual deals with distance, field of view, and line of sight

· Auditory deals with ensuring the AI receives sounds from the game engine along with data such as where the sound came from and what other noise is occluding the sound

· Tactile deals with what the AI feels, such as being shot or damaged, or collisions

Combat exists in three dimensions, in a highly dynamic environment

· Projectile weapons complicate computation

· Travel time is a real variable and must be accounted for

Opponents should resemble humans

· Not all bullets are fired on target

· Environment can change how projectiles behave (Wind, etc.)

Artificial Intelligence must seem adept, but must miss realistically

· This adds randomness and a dynamic environment; no fun to die every time

· Balance between both extremes needed

High level die-rolling used to simulate combat

· Every aspect has a percentage chance

· All multiplied together with weights added

· Factors include:

· AI Skill

· Range

· Size of Enemy

· Enemy’s Velocity

· Line of sight to target

· Enemy’s state (Aware, back turned, crouching, etc.)
· Factors do not include

· Armor

· Resistance to bullets

Knowing if bullet will hit/miss isn’t good enough

· Hits and misses need to feel real; creates strong gameplay

· On Hit

· Pick a point in enemy “hit box”

· Draw a line to that point

· If the line connects to the hit box, success

· If something else is in the way, failure

· Try again with different point

· Otherwise, success

· Fire weapon

· On Miss

· Pick a point reasonably close to target

· Draw a line to that point

· If the vector hits something closer than target

· Try again with a different point

· Otherwise, success (for failing)

· Try again with a different point

· Sometimes teammates get in the way

· Conflict resolution required

· You can pick a different location in a hit box

· They could move

· You could move

· You can target a different enemy entirely

Not all weapons are bullets; grenades / rockets

· Weapons have area of effect damage

· Model object as a projectile in flight

· Model object as an oversized sphere once it impacts

· Anything in sphere is considered “hit”

· Teammates can be modeled like grenades

· Estimate positions they can move into

· Intentionally shoot around all potential positions

Predicting projectiles

· Bows and Arrows, Rockets have high travel time

· Example: Arrow at 50 m/s, enemy 200 m away

· Enemy moves 4 seconds; must be able to predict position in that timeframe

· Dead Reckoning: Assume opponent’s pace doesn’t change, shoot there

How can you communicate combat?

· Matrix overlays can explain the situation well

· Different matricies for each view of a situation

· Openness-Proximity of Obstacle
· Cover – Locations to hide

· Searching – Nearby Enemies

· Allies – Location of friends

· Line of fire – where your friends are shooting

· Light level – brightness in room

· All pieces combine to form consistent world view

Openness Layer
· Describes ability to move

· Gradients identify location of nearby walls, obstacles

Area Occupancy

· Density of enemies

· Each enemy adds weight to nearby squares

· Can avoid nearby enemies or engage them

Revealed Area Searching

· “Fog of war” in many games

· Identify nearby areas  which are unexplored

· Explore them

Line of Fire

· Identify Allies gun barrels

· Stay out of their line of fire

· Your own line of fire is represented and must be removed before math is done

Generalizing

· In additional dimensions, all functionality remains

· Computations are more difficult due to greater search space

· Some aspects can be computed in 2D and extrapolated into 3D

Dynamic Tactical Position Evaluation

Why not use static positions?

· Positions and battles are repetitive

· Levels require excessive coding

· Games are becoming more complex, and static positions are difficult to implement in a wide variety of situations

· Impossible to foresee all player actions

· Interactions between AI, player, and game is difficult to manage

Dynamic Position Overview

· Use basic static procedures supplemented with information received while the game is being played

· Takes many types of information to make a decision

· Reduces scripting by giving a general action template

· May not work in every case, but works in a vast majority

· AI are more useful in different situations

· Combines data from environment into single score level to judge positions

· Different evaluations for different tasks (attacking vs retreating)

· Can use several position evaluations for pathfinding

Attack Example

Goal: Select position to fire at attacker

· Consider all positions within reasonable distance

· Eliminate all taken positions and restricted positions

· Check proximity to threat

· Evaluate line of fire to threat

· Factor in cover from secondary threats

· See if position is in preferred engagement range

· Avoid friendly fire/threat’s line of fire

· Factor in nearby cover in case a new position is needed

· Make sure no AOE attacks will be hitting the position

· Verify highest score position is the best and move

Performance

· Evaluation can be computationally expensive

· Limit points looked at by:

· Evaluate a small radius around AI

· Restrict AI to some part of the map

· Use pre-calculated LOS for threats

· Limit evaluation factors

· Estimated that within three seconds of travel time a new position will need to be evaluated

· Area of operations can stop irrelevant AI’s from consuming computer resources with checks

AOE Attacks and Cover Fire

· Specific type of position selections

· AOE Criteria:

· No friendly fire, will not hit walls or obstructions

· Threat in blast range

· Determine arc with ray casts (expensive)

· Cover Fire Criteria:

· Proximity to last known threat location

· Nearby cover threat may flee to

· Line of fire from AI to threat location

Intelligent Scanning

· Used to determine appearance locations of threats

· Possible criteria:

· Positions with non-visible neighboring locations

· Partially visible locations

· Locations with partial cover 

· Doorways, windows, and corners, where enemies are probable

· Costly, must evaluate all positions in visible range, rather than within a certain distance

· Possible to group positions in a general direction to reduce cost

· Trade-off between checking all positions and looking unintelligent

· Can predict possible re-appearance locations of a hiding threat

Problems

· Dynamic position selection and pathfinding are typically calculated as separate steps (good positions may be only accessible through tactically poor paths)

· Poor evaluation algorithms may take lots of processing power or space, or may create poor AI decisions

· Takes into account only the current situation, and does not take into account past or present situations (though some games may implement these features now)

· Must place locations by hand, or create an automatic way of either generating them or making AI recognize them

Finding Cover in Dynamic Environments
Cover in Dynamic Environments

· Games are becoming more complex every year

· Poor AI can make the game too easy or ruin player’s immersion

· Many games have dynamic environments in both single and multiplayer modes (Red Faction: Guerrilla, Bad Company, etc)

· AI taking cover from player attacks is necessary for a successful FPS game

· Scripting for taking cover is inadequate

· Enemies taking cover makes for a more realistic game

Overview

· Taking cover means “full cover”, rather than half cover, or any other position where the AI could attack or be attacked

· Generally:


· Find all full cover locations

· Check which offer full cover at current time

· Move to best position

· Uses ray casting to determine whether AI may be hit by a threat (ray from enemy gun to various AI body parts)

· Multiple rays can reduce errors, such as an elbow or foot visible to a threat

Ray Casting Tests

· Can have several degrees of testing for a blocked shot:

· Ray hits any polygon

· Ray hits something tagged as full cover (allows for some bullet penetration on some walls, and not on others in MW & Battlefield games)

· Ray hits something with less force than would be required to go all the way through

Level Annotation

· Specify logical cover areas upon building level

· Chosen cover is easily accessible to AI

· Table contains all cover information and is available to AI as game runs

· Problems:

· Dynamic environments will ruin the information table, causing AI to behave poorly

· Only “obvious” cover will be registered (a wall will be, where as a low hill terrain hill will not)

· Cover must be designated as such by world builders

Sensor Grid Algorithm 

· Ray casting done at runtime

· Possible cover locations also generated at runtime

· Lots of close cover, fewer farther locations

· 7 main steps:

· Find all threat locations

· Choose sensor locations and densities

· Find the ground level of the AI

· Determine whether AI can stand on sensors

· Check whether remaining sensors are out of sight of threats via LOS to AI body parts at various positions

· Check whether object is useful and accessible

· Move

Using Both Methods

· Pure sensor grid is too computationally demanding, especially for consoles with limited hardware

· Some level annotation is done upon building the level, getting all cases of “obvious” cover

· If an AI needs cover, it will search the table for a close position that was specified by the level creators

· If no cover was found in a close proximity, it will run the sensor grid algorithm to determine cover

· Much smarter than level annotation alone, while much faster than sensor grid alone

· Little slowdown even on slower hardware

Extensions

· Ray tracings can be split between frames, rather than trying to search all at once

· Sensors for the sensor grid algorithm may be done individually, going from closest to farthest, instead of all at once

· Removing positions from the cover table when a piece of cover is destroyed

· Combine close threat viewpoints to avoid doing separate calculations for each of them

