
PROJECT 3

SPACE FLIGHT SIMULATION

FIRST, SOME

APOLOGIES

Only runs on Windows (DirectX)

Bugs

• 201-566-6610

• jas512@lehigh.edu

KNOWN ISSUES

Don’t deploy landing gear (g) on Observer plane.

• Causes a snapping

• You won’t need it anyway

bNormalizationResult Failure

• Assertion thrown by the physics engine when things rotate

really fast. Not actually a problem, only happens because

we’re running in debug mode.

• Don’t hit anything at a high speed and it won’t happen.

SECOND, SOME (STRONG)

RECOMMENDATIONS

Use Visual Studio 2008

• Project files already set up

• I know it works

• Download full version for free from Dreamspark

YOU WILL GET

A RAR Containing

• VS2008 Project File

• Library header (.hpp) files

• Compiled libs (to link against)

• Dependencies

• Client executable and data folder

• Heavily commented ATC AI to use as an example

• Skeleton code for DockingAI

YOU WILL MAKE

An AI DLL

DockingAI

• Thrust control & Maneuvering

• Radio communication

INSTALLATION

Extract the RAR file

• Put it wherever you want

• Contains

• ODE (physics engine)

• CEGUI (user interface)

• Project folder

Installing DirectX

• Download and install DirectX 9.0 SDK February 2010

• Install to “Program Files”, even on x64 systems

• http://www.microsoft.com/download/en/details.aspx?id=10084

GETTING STARTED

Source Code to Look Through

• TrafficController.hpp and TrafficController.cpp

• neb_lib_scene\include\Capital.hpp

• neb_lib_scene\include\IWorldObject.hpp

Math to brush up on/learn

• Matrices and Vectors (particularly transformations)

• Quaternions

• http://www.euclideanspace.com/maths/algebra/realNormedAl

gebra/quaternions/index.htm

File You’ll be Modifying:

• DockingAI.cpp and DockingAI.hpp

http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm

COMMUNICATION

Your ship has a radio, accessed via IWorldObject::GetRadio()

“Coms” allow you to listen and talk on multiple channels (make
sure to turn them on)

You must tune your radio to the proper frequency

• Hailing Frequency: 2231.5MHz (tune com 0 to this)

ATC will contact you when you enter their airspace

• You will need to check for new radio messages every frame

• Tune com 1 to the frequency they request contact on

Signal that you want to dock using the proper message

• Messages are in neb_lib_scene/include/RadioMessage.hpp

• Fill out the proper structure and transmit
• Radio::Transmit(long com, RADIO_MESSAGE *Msg)

ATC will walk you through the docking procedure. Follow their
instructions

YOUR SHIP

Multiple Engine Types

• Maneuvering Thrusters

• Low thrust, low fuel consumption

• Main Engine

• High thrust, high fuel consumption

• Only works in one direction

• IMPORTANT: time spent accelerating must equal time spent
decelerating (on same engine type)

Docking point on the bow

• In order for the Dock function to work:

• Your docking point must be within 3m of any docking point on the
ship/station you want to dock with

• Your docking point’s +look, +right, and +up vectors must be within
3 degrees of the station’s –look, -right, and +up vectors

DOCKING ALIGNMENT

REFERENCES

LIDAR

Your ship’s on-board sensor cluster

• Operates in sweeps, performed at light-speed

• Accessed via Capital::GetLidar()

Sweeps

• Lasers move at light speed. Distance will not be a problem at

the range you’re operating.

• Sweep will not finish until all signals have returned from its

360* scan

• Sweep time is 5 seconds + ((sweep_radius * 2) / C)

• Poll for completion with Lidar::GetSweepDone()

• Get results with Lidar::GetSweepResults()

DOCKING STEPS

Wait for ATC to hail you with AppCon frequency

Tune to that frequency

Request docking permission from ATC

Fly to waypoints ATC gives you

• The last waypoint (GetNextWaypoint() will return NULL) will

be the docking point’s location

RELATIVE POSITIONS

AND VELOCITIES

You can get an object’s velocity with

IWorldObject::GetLinearVelocity()

• This is generally useless to you.

• station_linear_velocity - your_linear_velocity more useful

Positions from IWorldObject::GetPos() are huge numbers.

Relative positions are more useful and intuitive.

• Do the same thing as above

WAYPOINTS

Waypoints are given in a linked list of Waypoint classes

• Calling Waypoint::GetPos() will give you the position of the

waypoint in the solar system (even through they are stored as

relative positions).

• Waypoints have a rotation. You’ll need to line your docking

point’s axes up with the waypoint that represents the station’s

docking point.

• Getting axes:

• D3DXVECTOR3 look;

• D3DXVec3TransformNormal(&look, &UNIT_Z,

D3DXMatrixRotationQuaternion(&D3DXMATRIX(),

&Waypoint->GetRot()));

• Look = Z axis, Right = X axis, Up = Y axis

ENGINES

Burning the Main Engine

• Capital::FireCruiseEngine(float burnTime)

Fine Maneuvering

• Capital::FireManeuverThrusters(unsigned long direction, float delta);

• Capital::FireAttitudeThrusters(unsigned long direction, float delta);

Throttle Control

• Capital::SetManeuveringThrottle(float throttle)

• Capital::SetCruisingThrottle(float throttle)

Direction bitfield

• Maneuvering: D_FORWARD, D_BACKWARD, D_LEFT, D_RIGHT,
D_UP, D_DOWN

• Attitude: D_FORWARD, D_BACKWARD, D_LEFT, D_RIGHT,
D_ROLLLEFT, D_ROLLRIGHT

FLYING THE

OBSERVER

KEYS

W,A,S,D,E,C – Thrusters

LCtrl – Toggle mouse capture

T – Cycle targets

F5 – Radio Controls

F10 – Starmap

 When in starmap: right-click + drag moves. Right-

click + left-click + drag moves in and out

+/- – increase or decrease throttle

To deselect target: Uncapture mouse (using ctrl) and click

anywhere in space.

GIMBAL LOCKING

IWorldObject::GetRot() returns an Euler rotation.

Don’t use it!

Use IWorldObject::GetQuat() instead. Returns a quaternion.

You need to do this because using Euler rotations will result

in Gimbal Locking

THINGS TO NEVER DO

Calling the following functions will break literally everything:

• IWorldObject::SetLinearVelocity()

• IWorldObject::SetAngularVelocity()

• IWorldObject::SetPos()

• IWorldObject::SetRot()

• IWorldObject::Update()

• IWorldObject::Draw()

• Pretty much everything else

