

Learning of Hierarchical Task Network Domain Descriptions: Theory and Empirical Results.

Héctor Muñoz-Avila Dept. of Computer Science & Engineering Lehigh University

> Chad Hogg Ke Xu

Okthay Ilghami Ugur Kuter



Outline

- Lehigh University
 - The InSyTe Laboratory
- Motivation: learning hierarchies
- Background
 - Hierarchical Task Network (HTN) planning
 - Problem description
- Learning structure of HTNs
- Learning preconditions of HTNs
- Final remarks

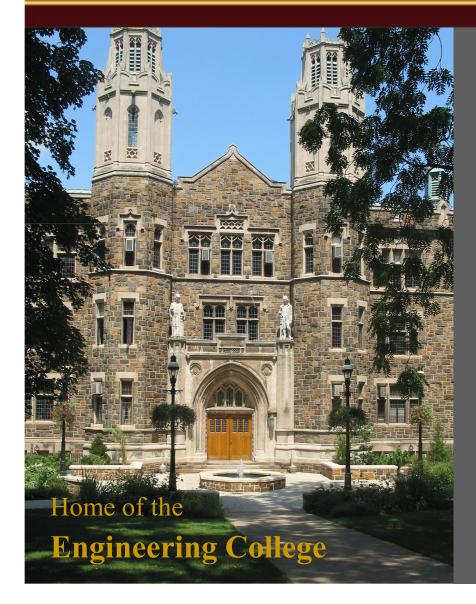
LEHIGH

UNIVERSITY

The University

Engineering Arts & Sciences Business Education Faculty 440 full-time Grad. students 2,000+ Undergraduates 4,500+ 3 Campuses 1,600 acres mountain, woods

Computer Science & Engineering



- Ph.D. and Masters programs
 - Computer Science
 - Computer Engineering
 - Faculty
 - 16 tenured / tenure-track faculty
- Graduate Students
 - >35+ PhD students
 - >35+ MS students

Engineering College

top 20% of US PhD Engr schools University

top 15% of US National Univs.

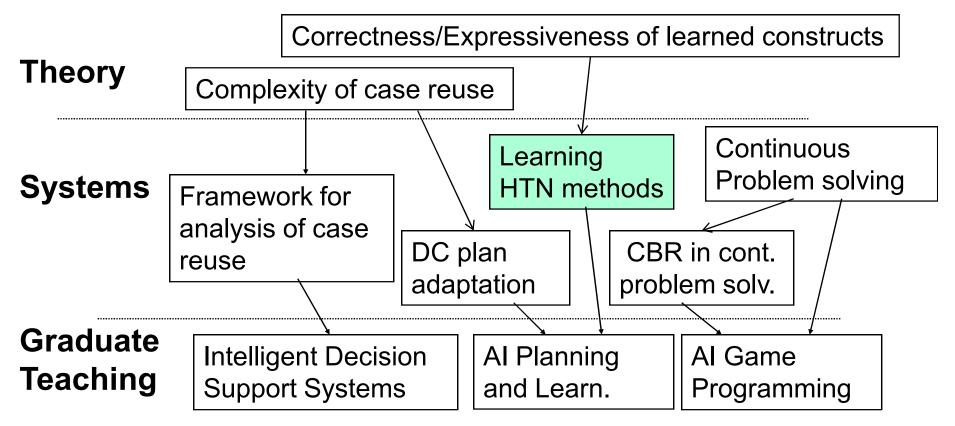
CSE Research Areas

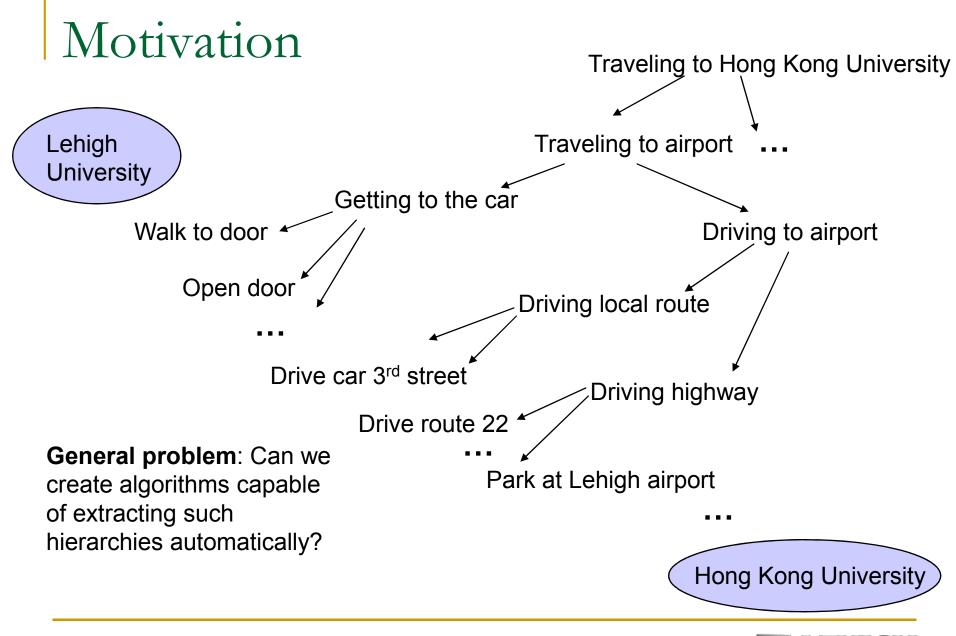
Artificial intelligence Bioinformatics Computer architecture Database systems Enterprise information systems **Electronic voting** Game Al Graphics Networking

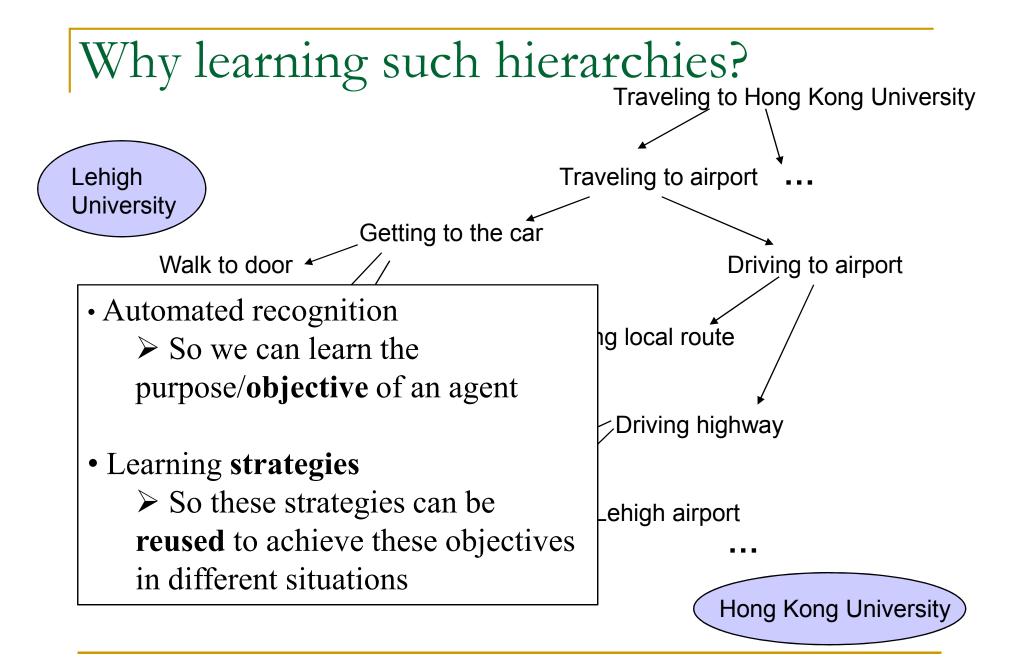
Pattern recognition & computer vision Robotics Semantic web Software engineering Web search

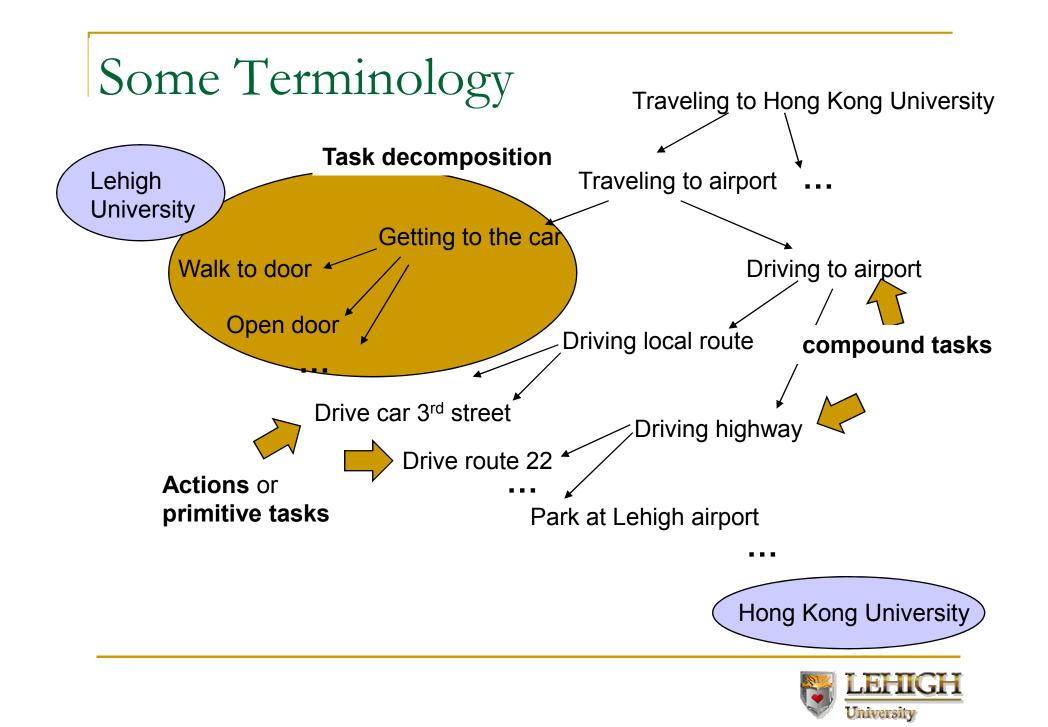
InSyTe Lab

 intersection of case-based reasoning, planning, and machine learning





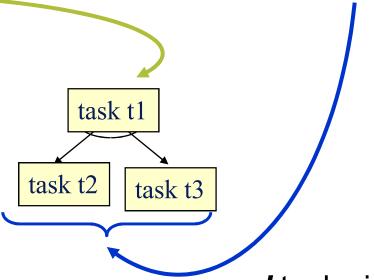




Hierarchical Task Network (HTN)

Planning

Complex tasks are decomposed into simpler tasks.



- Seeks to decompose *compound* tasks into *primitive* tasks, which define actions changing the world
- Primitive tasks are accomplished by knowledge artifacts called **operators**
- The knowledge artifacts indicating how to decompose task into subtasks are called *methods*

Basic HTN Knowledge Constructs

Methods: Indicate how to decompose a compound task

- **Task**: drive-to-airport ?p ?c ?a
- Preconditions: person ?p, airport ?a, car ?c, in ?p ?c, location ?l1, location ?l2, at ?c ?l1
- Subtasks: drive-local-road ?c ?p ?l1 ?l2, drive-highway ?c ?p ?l2 ?a
- Operators: indicate how to execute a primitive task
 - **Task**: drive ?c ?l1 ?l2
 - **Preconditions**: car ?c, at ?c ?l1, ?l1 ≠ ?l2
 - **Effects**: at ?c ?l2, ¬ (at ?c ?l1)

Why HTN Planning?

- HTN planning has been shown to be more expressive than classical plan representations (Erol et al, 1994)
 - Using methods and operators versus using operators only
- It is natural in many real-world applications
 - e.g., modeling strategies in computer games

 Fast planning through domain-configurable HTN planners (SHOP system)

Annotated Tasks

Tasks in HTN planning are simply atomic symbols
e.g., travel ?p ?L

- For the purposes of our learning algorithm we introduce annotated tasks:
 - A **task description** indicates its preconditions and effects
 - **Task**: travel ?p ?l
 - □ **Preconditions**: person ?p, location ?l
 - Effects: at ?p ?l
- Annotated tasks are used in other areas including process models

Concrete Learning Problem

Given:

- □ A collection of plans sequences of actions
 - e.g., plan getting from Lehigh to HKUST
- A collection of task descriptions
- A collection of operators

Obtain:

A collection of methods for accomplishing the tasks

HTN-MAKER

- Solves the learning problem stated in the previous slide
- It does so in an **incrementally**
- It does so in a **sound** way
 - Methods learned are such that any plan generated by an HTN planner for a task is consistent with the task description

It is conditionally complete

 There is a finite collection of (problem, solution plan) pairs such that when fed to HTN-MAKER yields a complete domain relative to a fixed set of input task descriptions

It is expressive

 Methods learned can be used to represent problems that are not representable as STRIPS (e.g., action-based) problems

HTN-MAKER: Basic Steps

Input: plan π , state S, task description T

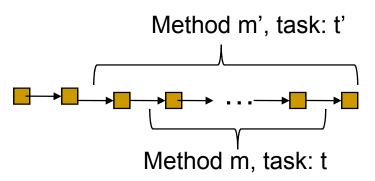
- 1. S' \leftarrow S; A \leftarrow first action in π
- 2. Select a task $t \in T$ such that:
 - effects of t are satisfied in S', and
 - $\hfill \hfill \hfill$
- 3. p \leftarrow regressConditions(S'',S', π)
- 4. ST \leftarrow collectActions(S'',S', π)
- 5. Construct method:

task: t, preconditions: p, subtasks: ST

- 6. S' \leftarrow apply(A,S'); A \leftarrow next-action(A, π)
- 7. Go back to 2 until A = null

HTN Maker: Further Considerations (1)

 Hierarchies appear naturally when methods are subsumed by other methods:



task t will appear as a subtask of t' in method m'

- Special case: if t = t' then will learn recursive methods
- Multiple tasks can be selected: choice must be made
 - How to group tasks: left-recursive, right-recursive, other?
 - Currently right-recursive

HTN Maker: Further Considerations (2)

- Initial algorithm found not to be sound
 - Need to add verifier task as last subtask for every method achieving a task t. Verifier tasks are achieved by a new method:
 - Preconditions: the effects of *t*
 - Subtasks: none
- Regressing conditions at <u>higher levels</u> of the hierarchy
 - Pushing conditions from lower levels
 - Horizontal and vertical goal regression

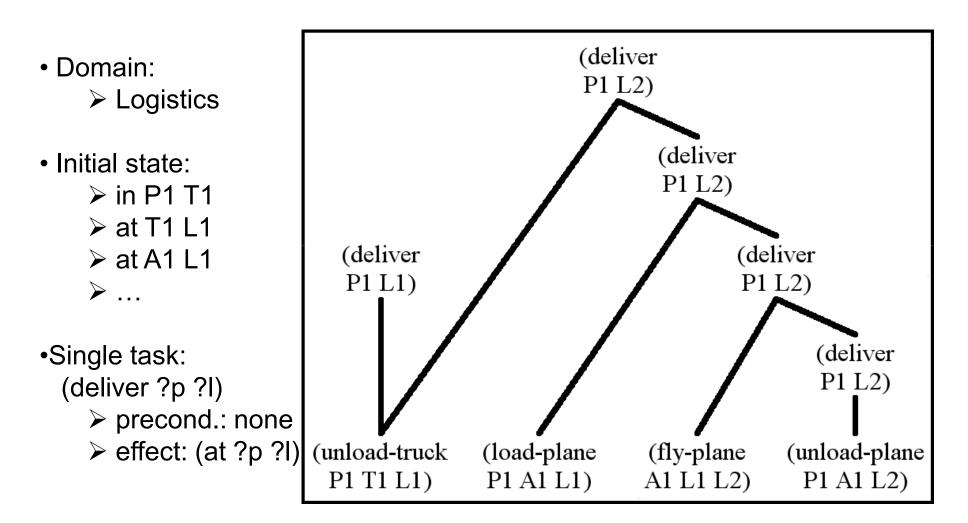
 Detecting opportunities to avoid learning unnecessary methods

task t3

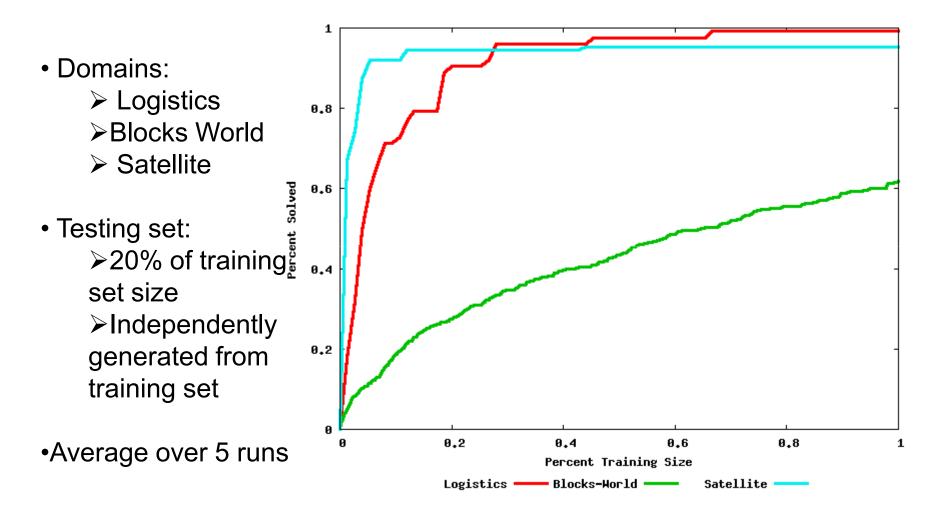
task t1

task t2

Example



Empirical Evaluation



Learning Preconditions

Problem

- Input:
 - A collection of plans and the HTNs entailing them
 - An action model
- **Output**: the preconditions for the task decompositions
- We explored two alternatives:
 - Using Inductive Logic Programming methods (ILP)
 - Might yield incorrect generalizations
 - Requires additional input: ontology of objects
 - Does not require convergence
 - Using Version Spaces
 - Always yield correct generalizations
 - Requires additional input: negative examples
 - Requires sufficient examples for full convergence

First Alternative: Generalization (ILP)

Concrete Decomposition

Head (Task):

Transport Package₁₀₀ Bethlehem Pittsburgh *Conditions :*

City Bethlehem City Pittsburgh City Package₁₀₀ Truck Truck₄₇

SubTasks:

Drive $Truck_{47}$ Bethlehem Load $Truck_{47}$ Package₁₀₀ Drive $Truck_{47}$ Bethlehem Pittsburgh Unload $Truck_{47}$

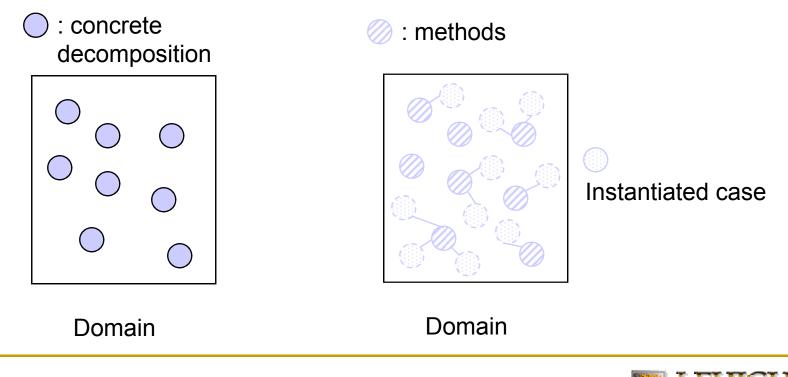
Method

Head (Task):Transport $?pkg_1 ?ct_1 ?ct_2$ Preconditions:City ?ct_1City ?ct_2Package ?pkg_1Truck ?truck_1SubTasks:Drive ?truck_1 ?ct_1Load ?truck_1 ?pkg_1Drive ?truck_1 ?ct_2Unload ?truck_1

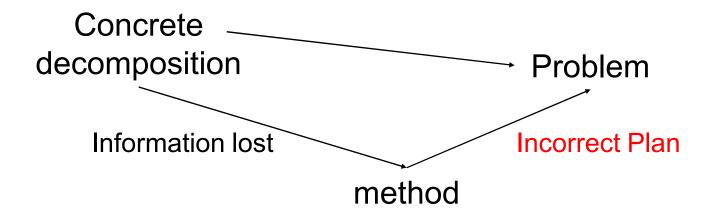
Generalization gives Better Coverage

Coverage(CB) = {*p*: *p* is a planning problem that can be solved by using a knowledge base CB}

(Smyth & Keane, 1995)



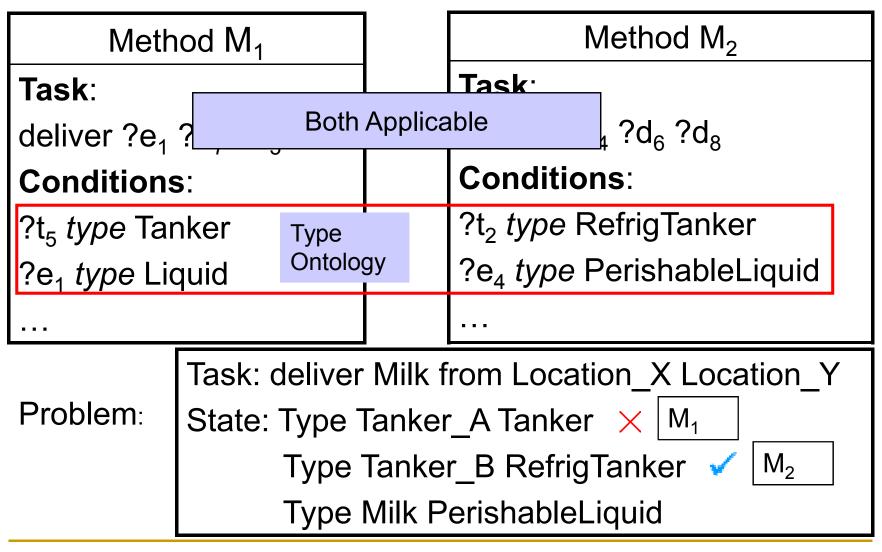
Problem: Over-generalization



We will annotate methods with the following information:

- Original bindings
- Type Ontology: A collection of relations between objects
 - Examples:
 - ?X type: V (?x type: Tanker)
 - V' isa V (Tanker isa Vehicle)

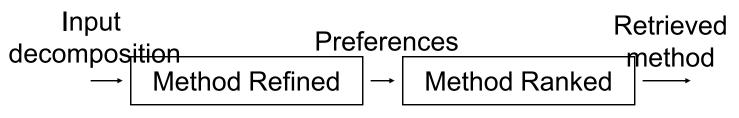
Method Over-generalization (cont.)



Solution: Preference-Guided Retrieval

General Idea

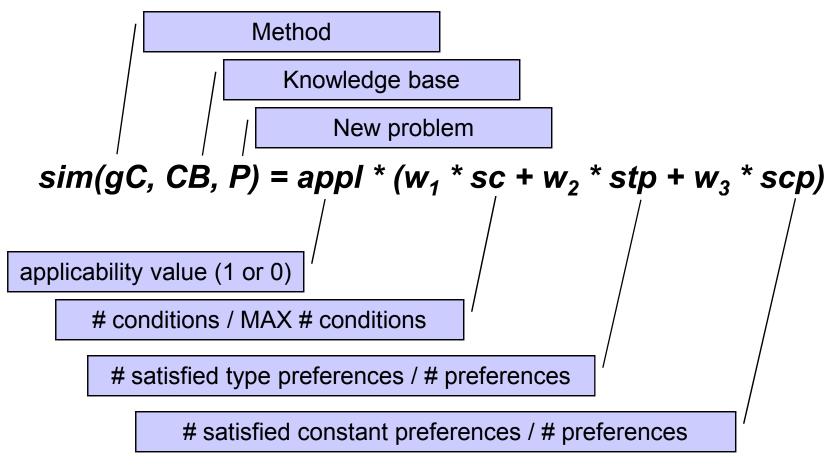
- Detect conflicting conditions between methods to elicit preferences automatically
- Use preferences to guide method retrieval (Case-based reasoning approach)
- Phase 1 Method Refinement
 - Type Preferences: reduce method over-generalization
 - Constant Preferences: preserve original variable bindings
- Phase 2 Method Retrieval
 - Rank refined cases with a similarity criterion
 - Bias: prefer specificity over generality



Case Refinement: Preference Elicitation

Method M ₁			ſ	Method M ₂		
Task:				Task:		
deliver ?e ₁ ?d ₇ ?d ₃				deliver ?e ₄ ?c	l ₆ ?d ₈	
Conditions:				Conditions:		
?t ₅ <i>type</i> Tanker				?t ₂ <i>type</i> RefrigTanker		
?e₁ <i>type</i> Liquid				?e ₄ <i>type</i> PerishableLiquid		
Preferences:				Preferences:		
equal $e_1 e_1 e_1$ equal $e_1 d_7 d_7$ equal $e_3 d_3 d_3$ equal $e_1 e_1 d_3 d_3$				equal $e_4 e_4 e_4$ equal $e_6 d_6$	Constant Preferences	
	Type Preferen	ces		equal ?d ₈ d ₈ equal ?t ₂ t ₂		
not ?t ₅ type RefrigTanker not ?e ₁ type PerishableLiquid						

Method Retrieval: Preference-Based Similarity



Reduce Case Over-generalization

Method M ₁		Method M ₂			
Not Retrieved		Retrieved with Higher Similarity			
?t ₅ <i>type</i> Tanker		?t ₂ type RefrigTanker			
?e ₁ <i>type</i> Liquid		?e ₄ <i>type</i> PerishableLiquid			
Preferences Added		Preferences Added			
	Task: deliver Milk from Location_X Location_Y				
Problem:	State: Type Tanker_A Tanker				
	Type Tanker_B RefrigTanker				
	Type Milk PerishableLiquid				

Properties

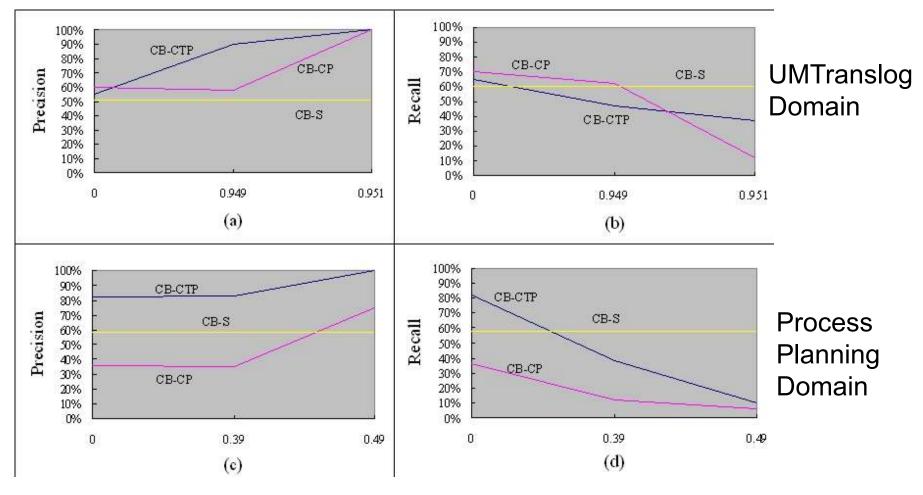
•*PS*: The set of the input problem-solution episodes (the training set)

- •*CB*-*C*: concrete methods generated from *PS*
- •*CB-S*: methods obtained from generalization of *CB-C*
- •*CB*-*CP*: methods adding constant preferences to *CB*-*S*
- •*CB-CTP*: methos adding type preferences to *CB-CP*

•*Properties*:

- •*CB-C*, *CB-CP*, and *CB-CTP* are sound relative to *PS*
- •*CB-S* is not sound relative to *PS*
- •*CB-S*, *CB-CP*, and *CB-CTP* have the same coverage
- •*CB*-*C* has less coverage than *CB*-*CTP*

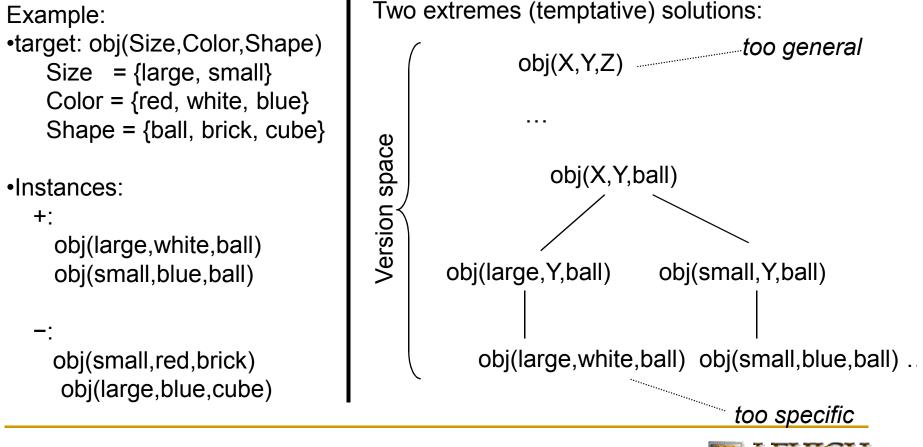
Empirical Results



X-axis: similarity threshold

Second Alternative: Use Version Spaces

Idea: Learn a concept from a group of instances, some positive and some negative



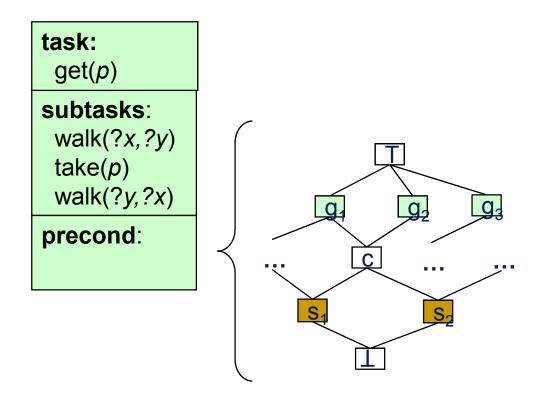
How To Use This for Learning

Preconditions

- The range of each variable in a predicate is known
- Then we can do generalizations/specializations via the following operations on variables:
 - instantiation: P(?x, c) is more general than P(a,c)
 - disjunction: P((a or b), c) is more general than P(a, c)
 - negation: P((anything other than d), c) is
 - more general than P((a or b), c) and P(a, c)
 - less general than P(?x,c)
- Normalization:
 - □ Take constants that play the same role (e.g., *truck1* and *truck2*)
 - □ Replace them with the same variable (e.g., ?t)
- Inductive bias: concept is in hypotheses space

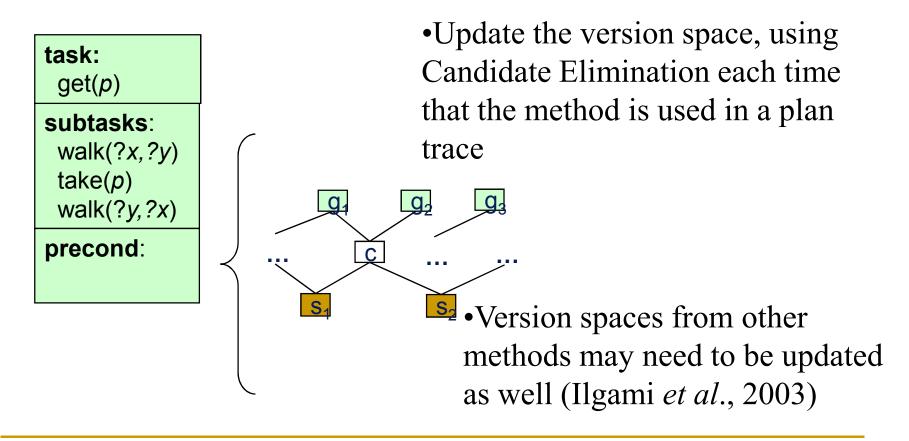
Solution: Version Spaces

• For each method, maintain a version space for its preconditions



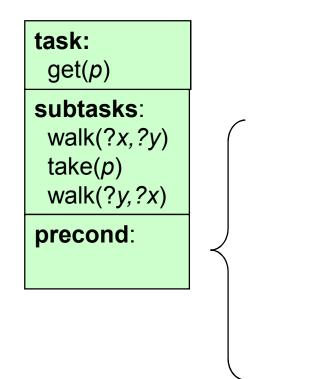
Solution: Version Spaces

• For each method, maintain a version space for its preconditions



Solution: Version Spaces

• For each method, maintain a version space for its preconditions



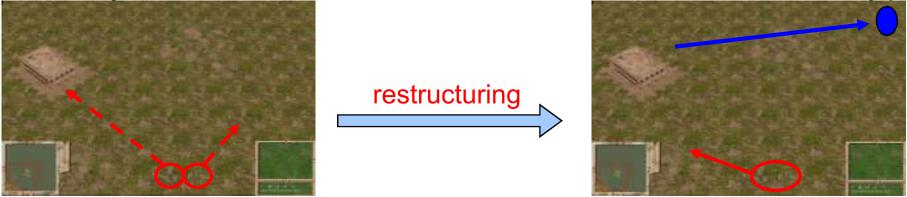
•Update the version space, using Candidate Elimination each time that the method is used in a plan trace

•Version spaces from other methods may need to be updated as well (Ilghami *et al.*, 2003)

• Terminate when version space converges to a single hypothesis

С

Empirical Validation: Transfer Learning



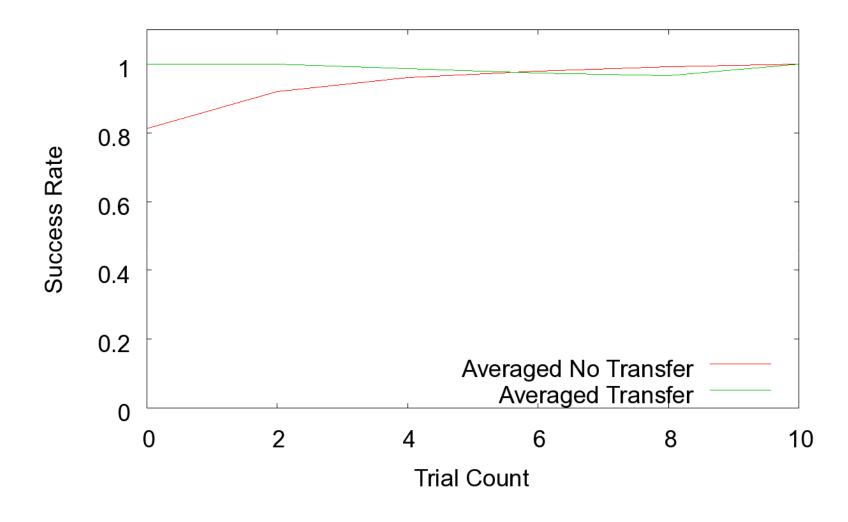
Task A: Learning to control a specific location on a map Task B: Learning to control another location on a map Transferred knowledge:

• Conditions for applying an operational procedure (represented as an HTN) **Performance Goal**:

• Frequency with which a soldier unit learns to control a location on a map **Background Knowledge Used**:

• Operational procedure of how to control a location (HTNs without conditions)

Empirical Results



Final Remarks

- We presented HTN-MAKER an algorithm capable of learning sound and complete domain descriptions for HTN planning
- System demonstrated convergence in 3 domains used in the IPC
- We also presented alternative approaches to task decomposition
 - One based on ILP
 - Another one based on version spaces
- Future work:
 - CPU performance versus STRIPS planning?
 - Integration of ILP-based approach in HTN-MAKER
 - Currently: using reinforcement learning in HTN-MAKER for domains with uncertainty

Bibliography

- Hogg, C., Muñoz-Avila, H., and Kuter, U.. (2008) HTN-MAKER: Learning HTNs with Minimal Additional Knowledge Engineering Required. To appear in Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08).
- Hogg, C. & Muñoz-Avila, H. (2007) Learning of Tasks Models for HTN Planning. Proceedings of the ICAPS-07 Workshop on AI Planning and Learning (AIPL). AAAI Press.
- Xu, K. & Muñoz-Avila, H. (2007) CaBMA: A Case-Based Reasoning System for Capturing, Refining and Reusing Project Plans. *Knowledge and Information Systems* (KAIS). Springer.
- Lee-Urban, S., Parker, A., Kuter, U., Muñoz-Avila, H., & Nau, D. (2007) Transfer Learning of Hierarchical Task-Network Planning Methods in a Real-Time Strategy Game. Proceedings of the ICAPS-07 Workshop on ICAPS 2007 Workshop on Planning and Learning (AIPL). AAAI Press
- Ilghami, O., Nau, D.S., and Muñoz-Avila, H. (2006) Learning to Do HTN Planning. Proceedings of the International Conference on Automated Planning & Scheduling (ICAPS-06). AAAI Press.
- Xu, K and Muñoz-Avila, H. (2005) A Domain-Independent System for Case-Based Task Decomposition without Domain Theories. *Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05)*. AAAI Press.
- Ilghami, O., Muñoz-Avila, H., Nau, D.S., and Aha, D. Learning Approximate Preconditions for Methods in Hierarchical Plans. *Proceedings of the 22nd International Conference on Machine Learning (ICML-05)*. AAAI Press.

Questions?

