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Computer Science 
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InSyTe Lab

� intersection of case-based reasoning, planning, and 

machine learning

Theory
Complexity of case reuse

Correctness/Expressiveness of learned constructs

Learning Continuous 

Systems

Graduate 

Teaching

Framework for 

analysis of case 

reuse

Learning 

HTN methods

Continuous 

Problem solving

AI Game 

Programming

Intelligent Decision 

Support Systems

DC plan 

adaptation

AI Planning 

and Learn.

CBR in cont. 

problem solv.



Motivation

Lehigh

University

Walk to door

Open door

…

Getting to the car

Driving local route

Driving to airport

Traveling to airport

Traveling to Hong Kong University

…

Hong Kong University

…

Drive car 3rd street

Drive route 22

Park at Lehigh airport

…

Driving highway

…General problem: Can we 

create algorithms capable 

of extracting such 

hierarchies automatically?



Lehigh

University

Walk to door

Open door

…

Getting to the car

Driving local route

Driving to airport

Traveling to airport

Traveling to Hong Kong University

…

• Automated recognition 

� So we can learn the 

Why learning such hierarchies?

Hong Kong University

…

Drive car 3rd street

Drive route 22

Park at Lehigh airport

…

Driving highway

…

� So we can learn the 

purpose/objective of an agent

• Learning strategies

� So these strategies can be 

reused to achieve these objectives 

in different situations



Some Terminology

Task decomposition
Lehigh

University

Walk to door

Open door

…

Getting to the car

Driving local route

Driving to airport

Traveling to airport

Traveling to Hong Kong University

…

compound tasks

Hong Kong University

…

Drive car 3rd street

Drive route 22

Park at Lehigh airport

…

Driving highway

…Actions or 

primitive tasks



Hierarchical Task Network (HTN) 

Planning
� Complex tasks are decomposed into simpler tasks. 

task t1

task t2 task t3

� Seeks to decompose compound tasks into primitive
tasks, which define actions changing the world

� Primitive tasks are accomplished by knowledge artifacts 
called operators

� The knowledge artifacts indicating how to decompose 
task into subtasks are called methods

task t2 task t3



Basic HTN Knowledge Constructs

� Methods: Indicate how to decompose a compound task

� Task: drive-to-airport ?p ?c ?a

� Preconditions:  person ?p, airport ?a, car ?c, in ?p ?c, 

location ?l1, location ?l2, at ?c ?l1

� Subtasks: drive-local-road ?c ?p ?l1 ?l2, � Subtasks: drive-local-road ?c ?p ?l1 ?l2, 

drive-highway ?c ?p ?l2 ?a

� Operators: indicate how to execute a primitive task

� Task: drive ?c ?l1 ?l2

� Preconditions: car ?c, at ?c ?l1, ?l1 ≠ ?l2

� Effects: at ?c ?l2, ¬ (at ?c ?l1)



Why HTN Planning?

� HTN planning has been shown to be more expressive 

than classical plan representations (Erol et al, 1994)

� Using methods and operators versus using operators 

only

� It is natural in many real-world applications

� e.g., modeling strategies in computer games

� Fast planning through domain-configurable HTN 

planners (SHOP system)



Annotated Tasks

� Tasks in HTN planning are simply atomic symbols 

� e.g., travel ?p ?L

� For the purposes of our learning algorithm we introduce 

annotated tasks:annotated tasks:

� A task description indicates its preconditions and effects

� Task: travel ?p ?l

� Preconditions:  person ?p, Iocation ?l

� Effects: at ?p ?l

� Annotated tasks are used in other areas including  process 

models



Concrete Learning Problem

� Given:

� A collection of plans – sequences of actions

� e.g., plan getting from Lehigh to HKUST

� A collection of task descriptions

� A collection of operators

� Obtain:

� A collection of methods for accomplishing the tasks



HTN-MAKER

� Solves the learning problem stated in the previous slide

� It does so in an incrementally

� It does so in a sound way

� Methods learned are such that any plan generated by an HTN 

planner for a task is consistent with the task description

complete� It is conditionally complete

� There is a finite collection of (problem, solution plan) pairs such 

that when fed to HTN-MAKER yields a complete domain relative 

to a fixed set of input task descriptions

� It is expressive

� Methods learned can be used to represent problems that are not 

representable as STRIPS (e.g., action-based) problems



HTN-MAKER: Basic Steps

Input: plan π, state S, task description T 

1.  S’ � S;  A � first action in π

2.  Select a task t ∈ T such that:

� effects of t are satisfied in S’, and 

� preconditions of t are satisfied in a state S’’ preceding S’ wrt π

3.  p � regressConditions(S’’,S’, π) S’’ S’3.  p � regressConditions(S’’,S’, π)

4.  ST � collectActions(S’’,S’, π)

5.  Construct method:

task: t, preconditions: p, subtasks:  ST

6.  S’ � apply(A,S’); A � next-action(A, π)

7.  Go back to 2 until A = null

S’’

…

S’



HTN Maker: Further Considerations (1)

� Hierarchies appear naturally when methods are 

subsumed by other methods:

…

Method m’, task: t’

task t will appear as a subtask of t’ in method m’

� Special case: if t = t’  then will learn recursive methods

� Multiple tasks can be selected: choice must be made

� How to group tasks: left-recursive, right-recursive, other?

� Currently right-recursive

Method m, task: t



HTN Maker: Further Considerations (2)

� Initial algorithm found not to be sound

� Need to add verifier task as last subtask for every method 

achieving a task t. Verifier tasks are achieved by a new method:

� Preconditions: the effects of t

� Subtasks: none

Regressing conditions at higher levels of the hierarchy� Regressing conditions at higher levels of the hierarchy

� Pushing conditions from lower levels

� Horizontal and vertical goal regression 

� Detecting opportunities to avoid learning unnecessary 

methods

task t1

task t2 task t3



Example

• Domain:

� Logistics

• Initial state:

� in P1 T1

� at T1 L1

� at A1 L1� at A1 L1

� …

•Single task:

(deliver ?p ?l)

� precond.: none

� effect: (at ?p ?l)



Empirical Evaluation

• Domains:

� Logistics

�Blocks World

� Satellite

• Testing set: 

�20% of training �20% of training 

set size

�Independently 

generated from 

training set

•Average over 5 runs



Learning Preconditions
� Problem

� Input: 

� A collection of plans and the HTNs entailing them

� An action model

� Output: the preconditions for the task decompositions

� We explored two alternatives:

� Using Inductive Logic Programming methods (ILP)� Using Inductive Logic Programming methods (ILP)

� Might yield incorrect generalizations

� Requires additional input: ontology of objects

� Does not require convergence

� Using Version Spaces

� Always yield correct generalizations

� Requires additional input: negative examples

� Requires sufficient examples for full convergence



First Alternative: Generalization (ILP)

Concrete DecompositionConcrete Decomposition

Head (Task):

Transport Package100 Bethlehem Pittsburgh

Conditions :

City Bethlehem

City Pittsburgh

City Package

MethodMethod

Head (Task):

Transport ?pkg1 ?ct1 ?ct2
Preconditions:

City ?ct1
City ?ct2
Package ?pkgCity Package100

Truck Truck47

SubTasks:

Drive Truck47 Bethlehem

Load Truck47 Package100

Drive Truck47 Bethlehem Pittsburgh

Unload Truck47

Package ?pkg1

Truck ?truck1

SubTasks:

Drive ?truck1 ?ct1
Load ?truck1 ?pkg1

Drive ?truck1 ?ct1 ?ct2
Unload ?truck1



Generalization gives Better Coverage

Coverage(CB) = {p: p is a planning problem that 

can be solved by using a knowledge base CB} 

: concrete 

decomposition
: methods

(Smyth & Keane, 1995)

Domain Domain

Instantiated case



Problem: Over-generalization

Concrete 

decomposition

method

Problem

Information lost Incorrect Plan

We will annotate methods with the following information:

� Original bindings

� Type Ontology: A collection of relations between objects

� Examples:

� ?X type: V (?x type: Tanker)

� V’ isa V (Tanker isa Vehicle)

method



Method Over-generalization (cont.)

Method M1

Task: 

deliver ?e1 ?d7 ?d3

Conditions:

?t5 type Tanker 

Method M2

Task: 

deliver ?e4 ?d6 ?d8

Conditions:

?t2 type RefrigTanker 

?e type PerishableLiquid 

Type 

Ontology

Both Applicable

?e1 type Liquid 

…

?e4 type PerishableLiquid 

…

Task: deliver Milk from Location_X Location_Y

State: Type Tanker_A Tanker

Type Tanker_B RefrigTanker

Type Milk PerishableLiquid

Problem:

Ontology

M2

M1



Solution: Preference-Guided Retrieval 

� General Idea
� Detect conflicting conditions between methods to elicit 

preferences automatically

� Use preferences to guide method retrieval (Case-based 
reasoning approach)

� Phase 1 – Method Refinement
� Type Preferences: reduce method over-generalization� Type Preferences: reduce method over-generalization

� Constant Preferences: preserve original variable bindings

� Phase 2 – Method Retrieval
� Rank refined cases with a similarity criterion 

� Bias: prefer specificity  over generality

Method Refined

Input 

decomposition
Method Ranked

Preferences
Retrieved

method



Case Refinement: Preference Elicitation
Method M1

Task: 

deliver ?e1 ?d7 ?d3

Conditions:

?t5 type Tanker 

?e1 type Liquid 

Method M2

Task: 

deliver ?e4 ?d6 ?d8

Conditions:

?t2 type RefrigTanker 

?e4 type PerishableLiquid 

Preferences: Preferences:

equal ?e1 e1

equal ?d7 d7

equal ?d3 d3

equal ?t5 t5

Constant 

Preferences

not ?t5 type RefrigTanker

not ?e1 type PerishableLiquid

Type 

Preferences

equal ?e4 e4

equal ?d6 d6

equal ?d8 d8

equal ?t2 t2

Constant 

Preferences



Method Retrieval: Preference-Based 

Similarity
Method

Knowledge base

New problem

sim(gC, CB, P) = appl * (w1 * sc + w2 * stp + w3 * scp)

applicability value (1 or 0)

# conditions / MAX # conditions

# satisfied type preferences / # preferences

# satisfied constant preferences / # preferences



Reduce Case Over-generalization

Method M1

Task: 

deliver ?e1 ?d7 ?d3

Condition:

?t5 type Tanker 

Method M2

Task: 

deliver ?e4 ?d6 ?d8

Condition:

?t2 type RefrigTanker 

?e type PerishableLiquid 

Retrieved with 

Higher Similarity
Not Retrieved

?e1 type Liquid ?e4 type PerishableLiquid 

Task: deliver Milk from Location_X Location_Y

State: Type Tanker_A Tanker

Type Tanker_B RefrigTanker

Type Milk PerishableLiquid

Problem:

Preferences Added Preferences Added



Properties

•PS: The set of the input problem-solution episodes 

(the training set)

•CB-C: concrete methods generated from PS

•CB-S: methods obtained from generalization of CB-C

•CB-CP: methods adding constant preferences to CB-S

•CB-CTP: methos adding type preferences to CB-CP

•Properties: 
•CB-C, CB-CP, and CB-CTP are sound relative to PS

•CB-S is not sound relative to PS

•CB-S, CB-CP, and CB-CTP have the same coverage

•CB-C has less coverage than CB-CTP

•CB-CTP: methos adding type preferences to CB-CP



Empirical Results

UMTranslog 

Domain

Process 

Planning 

Domain

X-axis: similarity threshold



Second Alternative: Use Version Spaces

Idea: Learn a concept from a group of instances, some 

positive and some negative

Example: 

•target: obj(Size,Color,Shape)

Size   = {large, small}

Color = {red, white, blue}

Shape = {ball, brick, cube}

Two extremes (temptative) solutions:

obj(X,Y,Z)
too general

…

V
e
rs

io
n
 s

p
a
c
eShape = {ball, brick, cube}

•Instances:

+:

obj(large,white,ball)

obj(small,blue,ball)

−:

obj(small,red,brick)

obj(large,blue,cube)

obj(large,white,ball)  obj(small,blue,ball) …

too specific

obj(large,Y,ball) obj(small,Y,ball)

obj(X,Y,ball)

V
e
rs

io
n
 s

p
a
c
e



How To Use This for Learning 

Preconditions
� The range of each variable in a predicate is known

� Then we can do generalizations/specializations via the following 
operations on variables:

� instantiation: P(?x, c) is more general than P(a,c)

� disjunction: P((a or b), c) is more general than P(a, c)

� negation: P((anything other than d), c) is� negation: P((anything other than d), c) is

� more general than P((a or b), c) and P(a, c)

� less general than P(?x,c)

� Normalization:

� Take constants that play the same role (e.g., truck1 and truck2)

� Replace them with the same  variable (e.g., ?t)

� Inductive bias: concept is in hypotheses space



Solution: Version Spaces

subtasks: 

walk(?x,?y)

task:

get(p)

• For each method, maintain a version space for its preconditions

walk(?x,?y)

take(p)

walk(?y,?x)

precond:

s1 s2

g1 g2 g3

T

c

T

… … …



Solution: Version Spaces

subtasks: 

walk(?x,?y)

task:

get(p)

•Update the version space, using 

Candidate Elimination each time 

that the method is used in a plan 

trace

• For each method, maintain a version space for its preconditions

s1 s2

g1 g2 g3

c… … …

walk(?x,?y)

take(p)

walk(?y,?x)

precond:

trace

•Version spaces from other 

methods may need to be updated 

as well (Ilgami et al., 2003)



Solution: Version Spaces

subtasks: 

walk(?x,?y)

task:

get(p)

• For each method, maintain a version space for its preconditions

•Update the version space, using 

Candidate Elimination each time 

that the method is used in a plan 

trace

c

walk(?x,?y)

take(p)

walk(?y,?x)

precond:

• Terminate when version space converges to a single 

hypothesis

trace

•Version spaces from other 

methods may need to be updated 

as well (Ilghami et al., 2003)



Empirical Validation: Transfer Learning

Task A: Learning to control a specific location on a map

Task B: Learning to control another location on a map

restructuring

Task B: Learning to control another location on a map

Transferred knowledge: 
• Conditions for applying an operational procedure (represented as an HTN)

Performance Goal: 
• Frequency with which a soldier unit learns to control a location on a map

Background Knowledge Used: 
• Operational procedure of how to control a location (HTNs without conditions)



Empirical Results



Final Remarks

� We presented HTN-MAKER an algorithm capable of 
learning sound and complete domain descriptions 
for HTN planning

� System demonstrated convergence in 3 domains 
used in the IPC

� We also presented alternative approaches to task � We also presented alternative approaches to task 
decomposition
� One based on ILP

� Another one based on version spaces

� Future work:
� CPU performance versus STRIPS planning?

� Integration of ILP-based approach in HTN-MAKER

� Currently: using reinforcement learning in HTN-MAKER for domains 
with uncertainty
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Questions?


