
Learning of Hierarchical Task

Network Domain

Descriptions: Theory and

Empirical Results.Empirical Results.

Héctor Muñoz-Avila

Dept. of Computer Science & Engineering

Lehigh University

Chad Hogg

Ke Xu
Okthay Ilghami

Ugur Kuter

Outline

� Lehigh University

� The InSyTe Laboratory

� Motivation: learning hierarchies

� Background

� Hierarchical Task Network (HTN) planning

� Problem description� Problem description

� Learning structure of HTNs

� Learning preconditions of HTNs

� Final remarks

LEHIGHLEHIGH

UNIVERSITY

The University

Engineering

Arts & Sciences

Business

Education

Faculty
440 full-time

Grad. students
2,000+

Undergraduates
4,500+

3 Campuses
1,600 acres

mountain, woods

Computer Science

& Engineering

� Ph.D. and Masters programs

� Computer Science

� Computer Engineering

� Faculty

� 16 tenured / tenure-track faculty

Graduate Students� Graduate Students

� >35+ PhD students

� >35+ MS students

Engineering College

top 20% of US PhD Engr schools

University

top 15% of US National Univs.

Home of the

Engineering College

CSE Research Areas

Artificial intelligence

Bioinformatics

Computer architecture

Database systems

Pattern recognition &

computer vision

Robotics

Semantic web

Software engineeringDatabase systems

Enterprise information

systems

Electronic voting

Game AI

Graphics

Networking

Software engineering

Web search

InSyTe Lab

� intersection of case-based reasoning, planning, and

machine learning

Theory
Complexity of case reuse

Correctness/Expressiveness of learned constructs

Learning Continuous

Systems

Graduate

Teaching

Framework for

analysis of case

reuse

Learning

HTN methods

Continuous

Problem solving

AI Game

Programming

Intelligent Decision

Support Systems

DC plan

adaptation

AI Planning

and Learn.

CBR in cont.

problem solv.

Motivation

Lehigh

University

Walk to door

Open door

…

Getting to the car

Driving local route

Driving to airport

Traveling to airport

Traveling to Hong Kong University

…

Hong Kong University

…

Drive car 3rd street

Drive route 22

Park at Lehigh airport

…

Driving highway

…General problem: Can we

create algorithms capable

of extracting such

hierarchies automatically?

Lehigh

University

Walk to door

Open door

…

Getting to the car

Driving local route

Driving to airport

Traveling to airport

Traveling to Hong Kong University

…

• Automated recognition

� So we can learn the

Why learning such hierarchies?

Hong Kong University

…

Drive car 3rd street

Drive route 22

Park at Lehigh airport

…

Driving highway

…

� So we can learn the

purpose/objective of an agent

• Learning strategies

� So these strategies can be

reused to achieve these objectives

in different situations

Some Terminology

Task decomposition
Lehigh

University

Walk to door

Open door

…

Getting to the car

Driving local route

Driving to airport

Traveling to airport

Traveling to Hong Kong University

…

compound tasks

Hong Kong University

…

Drive car 3rd street

Drive route 22

Park at Lehigh airport

…

Driving highway

…Actions or

primitive tasks

Hierarchical Task Network (HTN)

Planning
� Complex tasks are decomposed into simpler tasks.

task t1

task t2 task t3

� Seeks to decompose compound tasks into primitive
tasks, which define actions changing the world

� Primitive tasks are accomplished by knowledge artifacts
called operators

� The knowledge artifacts indicating how to decompose
task into subtasks are called methods

task t2 task t3

Basic HTN Knowledge Constructs

� Methods: Indicate how to decompose a compound task

� Task: drive-to-airport ?p ?c ?a

� Preconditions: person ?p, airport ?a, car ?c, in ?p ?c,

location ?l1, location ?l2, at ?c ?l1

� Subtasks: drive-local-road ?c ?p ?l1 ?l2, � Subtasks: drive-local-road ?c ?p ?l1 ?l2,

drive-highway ?c ?p ?l2 ?a

� Operators: indicate how to execute a primitive task

� Task: drive ?c ?l1 ?l2

� Preconditions: car ?c, at ?c ?l1, ?l1 ≠ ?l2

� Effects: at ?c ?l2, ¬ (at ?c ?l1)

Why HTN Planning?

� HTN planning has been shown to be more expressive

than classical plan representations (Erol et al, 1994)

� Using methods and operators versus using operators

only

� It is natural in many real-world applications

� e.g., modeling strategies in computer games

� Fast planning through domain-configurable HTN

planners (SHOP system)

Annotated Tasks

� Tasks in HTN planning are simply atomic symbols

� e.g., travel ?p ?L

� For the purposes of our learning algorithm we introduce

annotated tasks:annotated tasks:

� A task description indicates its preconditions and effects

� Task: travel ?p ?l

� Preconditions: person ?p, Iocation ?l

� Effects: at ?p ?l

� Annotated tasks are used in other areas including process

models

Concrete Learning Problem

� Given:

� A collection of plans – sequences of actions

� e.g., plan getting from Lehigh to HKUST

� A collection of task descriptions

� A collection of operators

� Obtain:

� A collection of methods for accomplishing the tasks

HTN-MAKER

� Solves the learning problem stated in the previous slide

� It does so in an incrementally

� It does so in a sound way

� Methods learned are such that any plan generated by an HTN

planner for a task is consistent with the task description

complete� It is conditionally complete

� There is a finite collection of (problem, solution plan) pairs such

that when fed to HTN-MAKER yields a complete domain relative

to a fixed set of input task descriptions

� It is expressive

� Methods learned can be used to represent problems that are not

representable as STRIPS (e.g., action-based) problems

HTN-MAKER: Basic Steps

Input: plan π, state S, task description T

1. S’ � S; A � first action in π

2. Select a task t ∈ T such that:

� effects of t are satisfied in S’, and

� preconditions of t are satisfied in a state S’’ preceding S’ wrt π

3. p � regressConditions(S’’,S’, π) S’’ S’3. p � regressConditions(S’’,S’, π)

4. ST � collectActions(S’’,S’, π)

5. Construct method:

task: t, preconditions: p, subtasks: ST

6. S’ � apply(A,S’); A � next-action(A, π)

7. Go back to 2 until A = null

S’’

…

S’

HTN Maker: Further Considerations (1)

� Hierarchies appear naturally when methods are

subsumed by other methods:

…

Method m’, task: t’

task t will appear as a subtask of t’ in method m’

� Special case: if t = t’ then will learn recursive methods

� Multiple tasks can be selected: choice must be made

� How to group tasks: left-recursive, right-recursive, other?

� Currently right-recursive

Method m, task: t

HTN Maker: Further Considerations (2)

� Initial algorithm found not to be sound

� Need to add verifier task as last subtask for every method

achieving a task t. Verifier tasks are achieved by a new method:

� Preconditions: the effects of t

� Subtasks: none

Regressing conditions at higher levels of the hierarchy� Regressing conditions at higher levels of the hierarchy

� Pushing conditions from lower levels

� Horizontal and vertical goal regression

� Detecting opportunities to avoid learning unnecessary

methods

task t1

task t2 task t3

Example

• Domain:

� Logistics

• Initial state:

� in P1 T1

� at T1 L1

� at A1 L1� at A1 L1

� …

•Single task:

(deliver ?p ?l)

� precond.: none

� effect: (at ?p ?l)

Empirical Evaluation

• Domains:

� Logistics

�Blocks World

� Satellite

• Testing set:

�20% of training �20% of training

set size

�Independently

generated from

training set

•Average over 5 runs

Learning Preconditions
� Problem

� Input:

� A collection of plans and the HTNs entailing them

� An action model

� Output: the preconditions for the task decompositions

� We explored two alternatives:

� Using Inductive Logic Programming methods (ILP)� Using Inductive Logic Programming methods (ILP)

� Might yield incorrect generalizations

� Requires additional input: ontology of objects

� Does not require convergence

� Using Version Spaces

� Always yield correct generalizations

� Requires additional input: negative examples

� Requires sufficient examples for full convergence

First Alternative: Generalization (ILP)

Concrete DecompositionConcrete Decomposition

Head (Task):

Transport Package100 Bethlehem Pittsburgh

Conditions :

City Bethlehem

City Pittsburgh

City Package

MethodMethod

Head (Task):

Transport ?pkg1 ?ct1 ?ct2
Preconditions:

City ?ct1
City ?ct2
Package ?pkgCity Package100

Truck Truck47

SubTasks:

Drive Truck47 Bethlehem

Load Truck47 Package100

Drive Truck47 Bethlehem Pittsburgh

Unload Truck47

Package ?pkg1

Truck ?truck1

SubTasks:

Drive ?truck1 ?ct1
Load ?truck1 ?pkg1

Drive ?truck1 ?ct1 ?ct2
Unload ?truck1

Generalization gives Better Coverage

Coverage(CB) = {p: p is a planning problem that

can be solved by using a knowledge base CB}

: concrete

decomposition
: methods

(Smyth & Keane, 1995)

Domain Domain

Instantiated case

Problem: Over-generalization

Concrete

decomposition

method

Problem

Information lost Incorrect Plan

We will annotate methods with the following information:

� Original bindings

� Type Ontology: A collection of relations between objects

� Examples:

� ?X type: V (?x type: Tanker)

� V’ isa V (Tanker isa Vehicle)

method

Method Over-generalization (cont.)

Method M1

Task:

deliver ?e1 ?d7 ?d3

Conditions:

?t5 type Tanker

Method M2

Task:

deliver ?e4 ?d6 ?d8

Conditions:

?t2 type RefrigTanker

?e type PerishableLiquid

Type

Ontology

Both Applicable

?e1 type Liquid

…

?e4 type PerishableLiquid

…

Task: deliver Milk from Location_X Location_Y

State: Type Tanker_A Tanker

Type Tanker_B RefrigTanker

Type Milk PerishableLiquid

Problem:

Ontology

M2

M1

Solution: Preference-Guided Retrieval

� General Idea
� Detect conflicting conditions between methods to elicit

preferences automatically

� Use preferences to guide method retrieval (Case-based
reasoning approach)

� Phase 1 – Method Refinement
� Type Preferences: reduce method over-generalization� Type Preferences: reduce method over-generalization

� Constant Preferences: preserve original variable bindings

� Phase 2 – Method Retrieval
� Rank refined cases with a similarity criterion

� Bias: prefer specificity over generality

Method Refined

Input

decomposition
Method Ranked

Preferences
Retrieved

method

Case Refinement: Preference Elicitation
Method M1

Task:

deliver ?e1 ?d7 ?d3

Conditions:

?t5 type Tanker

?e1 type Liquid

Method M2

Task:

deliver ?e4 ?d6 ?d8

Conditions:

?t2 type RefrigTanker

?e4 type PerishableLiquid

Preferences: Preferences:

equal ?e1 e1

equal ?d7 d7

equal ?d3 d3

equal ?t5 t5

Constant

Preferences

not ?t5 type RefrigTanker

not ?e1 type PerishableLiquid

Type

Preferences

equal ?e4 e4

equal ?d6 d6

equal ?d8 d8

equal ?t2 t2

Constant

Preferences

Method Retrieval: Preference-Based

Similarity
Method

Knowledge base

New problem

sim(gC, CB, P) = appl * (w1 * sc + w2 * stp + w3 * scp)

applicability value (1 or 0)

conditions / MAX # conditions

satisfied type preferences / # preferences

satisfied constant preferences / # preferences

Reduce Case Over-generalization

Method M1

Task:

deliver ?e1 ?d7 ?d3

Condition:

?t5 type Tanker

Method M2

Task:

deliver ?e4 ?d6 ?d8

Condition:

?t2 type RefrigTanker

?e type PerishableLiquid

Retrieved with

Higher Similarity
Not Retrieved

?e1 type Liquid ?e4 type PerishableLiquid

Task: deliver Milk from Location_X Location_Y

State: Type Tanker_A Tanker

Type Tanker_B RefrigTanker

Type Milk PerishableLiquid

Problem:

Preferences Added Preferences Added

Properties

•PS: The set of the input problem-solution episodes

(the training set)

•CB-C: concrete methods generated from PS

•CB-S: methods obtained from generalization of CB-C

•CB-CP: methods adding constant preferences to CB-S

•CB-CTP: methos adding type preferences to CB-CP

•Properties:
•CB-C, CB-CP, and CB-CTP are sound relative to PS

•CB-S is not sound relative to PS

•CB-S, CB-CP, and CB-CTP have the same coverage

•CB-C has less coverage than CB-CTP

•CB-CTP: methos adding type preferences to CB-CP

Empirical Results

UMTranslog

Domain

Process

Planning

Domain

X-axis: similarity threshold

Second Alternative: Use Version Spaces

Idea: Learn a concept from a group of instances, some

positive and some negative

Example:

•target: obj(Size,Color,Shape)

Size = {large, small}

Color = {red, white, blue}

Shape = {ball, brick, cube}

Two extremes (temptative) solutions:

obj(X,Y,Z)
too general

…

V
e
rs

io
n
 s

p
a
c
eShape = {ball, brick, cube}

•Instances:

+:

obj(large,white,ball)

obj(small,blue,ball)

−:

obj(small,red,brick)

obj(large,blue,cube)

obj(large,white,ball) obj(small,blue,ball) …

too specific

obj(large,Y,ball) obj(small,Y,ball)

obj(X,Y,ball)

V
e
rs

io
n
 s

p
a
c
e

How To Use This for Learning

Preconditions
� The range of each variable in a predicate is known

� Then we can do generalizations/specializations via the following
operations on variables:

� instantiation: P(?x, c) is more general than P(a,c)

� disjunction: P((a or b), c) is more general than P(a, c)

� negation: P((anything other than d), c) is� negation: P((anything other than d), c) is

� more general than P((a or b), c) and P(a, c)

� less general than P(?x,c)

� Normalization:

� Take constants that play the same role (e.g., truck1 and truck2)

� Replace them with the same variable (e.g., ?t)

� Inductive bias: concept is in hypotheses space

Solution: Version Spaces

subtasks:

walk(?x,?y)

task:

get(p)

• For each method, maintain a version space for its preconditions

walk(?x,?y)

take(p)

walk(?y,?x)

precond:

s1 s2

g1 g2 g3

T

c

T

… … …

Solution: Version Spaces

subtasks:

walk(?x,?y)

task:

get(p)

•Update the version space, using

Candidate Elimination each time

that the method is used in a plan

trace

• For each method, maintain a version space for its preconditions

s1 s2

g1 g2 g3

c… … …

walk(?x,?y)

take(p)

walk(?y,?x)

precond:

trace

•Version spaces from other

methods may need to be updated

as well (Ilgami et al., 2003)

Solution: Version Spaces

subtasks:

walk(?x,?y)

task:

get(p)

• For each method, maintain a version space for its preconditions

•Update the version space, using

Candidate Elimination each time

that the method is used in a plan

trace

c

walk(?x,?y)

take(p)

walk(?y,?x)

precond:

• Terminate when version space converges to a single

hypothesis

trace

•Version spaces from other

methods may need to be updated

as well (Ilghami et al., 2003)

Empirical Validation: Transfer Learning

Task A: Learning to control a specific location on a map

Task B: Learning to control another location on a map

restructuring

Task B: Learning to control another location on a map

Transferred knowledge:
• Conditions for applying an operational procedure (represented as an HTN)

Performance Goal:
• Frequency with which a soldier unit learns to control a location on a map

Background Knowledge Used:
• Operational procedure of how to control a location (HTNs without conditions)

Empirical Results

Final Remarks

� We presented HTN-MAKER an algorithm capable of
learning sound and complete domain descriptions
for HTN planning

� System demonstrated convergence in 3 domains
used in the IPC

� We also presented alternative approaches to task � We also presented alternative approaches to task
decomposition
� One based on ILP

� Another one based on version spaces

� Future work:
� CPU performance versus STRIPS planning?

� Integration of ILP-based approach in HTN-MAKER

� Currently: using reinforcement learning in HTN-MAKER for domains
with uncertainty

Bibliography
� Hogg, C., Muñoz-Avila, H., and Kuter, U.. (2008) HTN-MAKER: Learning HTNs with

Minimal Additional Knowledge Engineering Required. To appear in Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08).

� Hogg, C. & Muñoz-Avila, H. (2007) Learning of Tasks Models for HTN
Planning. Proceedings of the ICAPS-07 Workshop on AI Planning and Learning
(AIPL). AAAI Press.

� Xu, K. & Muñoz-Avila, H. (2007) CaBMA: A Case-Based Reasoning System for
Capturing, Refining and Reusing Project Plans. Knowledge and Information Systems
(KAIS). Springer.

� Lee-Urban, S., Parker, A., Kuter, U., Muñoz-Avila, H., & Nau, D. (2007) Transfer � Lee-Urban, S., Parker, A., Kuter, U., Muñoz-Avila, H., & Nau, D. (2007) Transfer
Learning of Hierarchical Task-Network Planning Methods in a Real-Time Strategy
Game. Proceedings of the ICAPS-07 Workshop on ICAPS 2007 Workshop on
Planning and Learning (AIPL). AAAI Press

� Ilghami, O., Nau, D.S., and Muñoz-Avila, H. (2006) Learning to Do HTN Planning.

Proceedings of the International Conference on Automated Planning & Scheduling

(ICAPS-06). AAAI Press.

� Xu, K and Muñoz-Avila, H. (2005) A Domain-Independent System for Case-Based

Task Decomposition without Domain Theories. Proceedings of the Twentieth

National Conference on Artificial Intelligence (AAAI-05). AAAI Press.

� Ilghami, O., Muñoz-Avila, H., Nau, D.S., and Aha, D. Learning Approximate
Preconditions for Methods in Hierarchical Plans. Proceedings of the 22nd
International Conference on Machine Learning (ICML-05). AAAI Press.

Questions?

