LEHIGH

Universily

Learning of Hierarchical Task [&
Network Domain &
Descriptions: Theory and
Empirical Results.

Héctor Munoz-Avila
Dept. of Computer Science & Engineering
Lehigh University

Chad Hogg | Okthay lighami
Ke Xu Ugur Kuter

Outline

Lehigh University

o The InSyTe Laboratory

Motivation: learning hierarchies

Background

o Hierarchical Task Network (HTN) planning
o Problem description

_earning structure of HTNs
_earning preconditions of HTNs
-inal remarks

FL-_ ' LEHIGH

- T
- LN G s e

< 4

e

& e The University

. Faculty
- . 440 full-

& LEHIGH Computer Science

UMNIVERSITY & Engineering

Ph.D. and Masters programs
Computer Science
Computer Engineering
Faculty
16 tenured / tenure-track faculty
Graduate Students
>35+ PhD students
>35+ MS students

Engineering College

top 20% of US PhD Engr schools
University

top 15% of US National Univs.

2
ey

gl U NI VERSITY

gl

EHIGH (CSE Research Areas

Artificial intelligence

Bioinformatics
Computer architecture
Database systems

Enterprise information
systems

Electronic voting
Game Al
Graphics
Networking

Pattern recognition &
computer vision

Robotics

Semantic web
Software engineering
Web search

InSyTe Lab

iIntersection of case-based reasoning, planning, and
machine learning

Correctness/Expressiveness of learned constructs

Theory Complexity of case reuse /
\ \1/
Learning Continuous
Systems | Framework for HTN methods | | Problem solving
analysis of case _ —
reuse DC plan CBR in cont.
\ adaptation problem solv.
~
N < x O
Gradu_ate Intelligent Decision Al Planning Al Game
Teaching | sypport Systems and Learn. Programming

Motivation

Traveling to Hong Kong University

Traveling to airport

Getting to the car

Walk to door 4/4 Ayng to airport
Open door “//Driving local route

Drive car 3 street

/ Driving highway
Drive route 22 /
General problem: Can we

create algorithms capable Park at Lehigh airport
of extracting such

hierarchies automatically?
Hong Kong University

F‘@ LEHIGH

LAY T .:IJ.LJ-

Lehigh
University

Why learning such hierarchies?

Traveling to Hong Kong University

Lehigh
University

Traveling to airport

/ \
Gettlng to the car

Walk to door // Driving to airport

- Automated recognition
» So we can learn the
purpose/objective of an agent

g local route

7Driving highway
* Learning strategies
» So these strategies can be ehigh airport
reused to achieve these objectives

in different situations
Hong Kong University

| T Pr et

L.L‘.m\aﬂ

Some Terminology

Trw to H({\g Kong University

Traveling to airport

Dnvmg to a Ert

/Driving local route compound tasks

Drive car 3™ street ’/

/ Driving hlghway
» Drive route 22 /

Task decomposition
Lehigh

University

A

Actions or
primitive tasks Park at Lehigh airport
Hong Kong University
LEHIGH

University

Hierarchical Task Network (HTN)

Planning
tasks are decomposed into simpler tasks.

task tl

N

task t2 task t3

- J
Y

Seeks to decompose compound tasks into primitive
tasks, which define actions changing the world

Primitive tasks are accomplished by knowledge artifacts
called operators

The knowledge artifacts indicating how to decompose
task into subtasks are called methods

T Pr et

F ' LEHIGH
‘@g University

4 .:H.LJ-

Basic HTN Knowledge Constructs

Methods: Indicate how to decompose a compound task
Task: drive-to-airport ?p ?c ?a
Preconditions: person ?p, airport ?a, car ?c, in ?p ?c,
location ?I1, location ?12, at ?c ?I1
Subtasks: drive-local-road ?c ?p 7?11 ?12,

drive-highway ?c ?p ?12 ?a

Operators: indicate how to execute a primitive task
Task: drive ?c ?11 ?12
Preconditions: car ?c, at ?c ?I1, ?l1 # ?12
Effects: at ?c 7?12, = (at ?c ?I1)

F‘@ LEHIGI

=

[e —
LAY T .:I'J.LJ-'

‘ Why HTN Planning?

= HTN planning has been shown to be more expressive
than classical plan representations (Erol et al, 1994)

o Using methods and operators versus using operators

only e A

i

= Itis natural in many real-world applications
o e.g., modeling strategies in computer games

= Fast planning through domain-configurable HTN
planners (SHOP system)

o T T Foan s i o
@ LEHIGH
Universily

Annotated Tasks

Tasks in HTN planning are simply atomic symbols
o e.g., travel 7p 7L

For the purposes of our learning algorithm we introduce
annotated tasks:

A task description indicates its preconditions and effects
o Task: travel ?p ?I

o Preconditions: person ?p, location ?|
o Effects: at 7p ?I

Annotated tasks are used in other areas including process
models

= LEHIGH
¥

T Tos T rm meia i
LA L'l..:l'll.. f

Concrete Learning Problem

Given:

o A collection of plans — sequences of actions
e.g., plan getting from Lehigh to HKUST

o A collection of task descriptions
o A collection of operators

Obtain:

o A collection of methods for accomplishing the tasks

] T e T e

= LG
oo

HTN-MAKER

Solves the learning problem stated in the previous slide
It does so in an incrementally

It does so in a sound way

o Methods learned are such that any plan generated by an HTN
planner for a task is consistent with the task description

It is conditionally complete

o There is a finite collection of (problem, solution plan) pairs such
that when fed to HTN-MAKER vyields a complete domain relative
to a fixed set of input task descriptions

It is expressive

o Methods learned can be used to represent problems that are not
representable as STRIPS (e.g., action-based) problems

F@ LHGH

HTN-MAKER: Basic Steps

Input: plan T, state S, task description T
1. S & S; A & firstactionin 1T
2. Selectataskt € T such that:

o effects of t are satisfied in S’, and
o preconditions of t are satisfied in a state S” preceding S’ wrt 1T

3. p € regressConditions(S”,S’,) s
4. ST < collectActions(S
5. Construct method:

task: t, preconditions: p, subtasks: ST
6. S’ < apply(A,S’); A € next-action(A, 1)
/. Go back to 2 until A = null

HTN Maker: Further Considerations (1)

Hierarchies appear naturally when methods are
subsumed by other methods:

Method m’, task: t’

\ . }
|
Method m, task: t

task t will appear as a subtask of t' in method m’
o Special case: ift =t then will learn recursive methods

Multiple tasks can be selected: choice must be made

o How to group tasks: left-recursive, right-recursive, other?
Currently right-recursive

;1; LEHIGH

=, T Tos T rm meia i
LA L'l..:l'll.. f

HTN Maker: Further Considerations (2)

Initial algorithm found not to be sound

o Need to add verifier task as last subtask for every method
achieving a task t. Verifier tasks are achieved by a new method:

Preconditions: the effects of ¢
Subtasks: none

Regressing conditions at higher levels of the hierarchy

o Pushing conditions from lower Ievelg «—=
o Horizontal and vertical goal regressr@n _______________________ task t1
\
task t2 | | task t3

Detecting opportunities to avoid learning unnecessary
methods

g
: é

TT-
= Ui

Example

 Domain:
» Logistics

* [nitial state:
> inP1T1
» atT1 L1
» at A1 L1
> ...

Single task:
(deliver ?p ?1)
» precond.: none
> effect: (at ?p ?1)

(deliver
P1 L2)

(deliver
P1L2)
(deliver (deliver
P1L1) P1 L2)
(deliver
P1 L2)
(unload-truck (load-plane (fly-plane (unload-plane
P1T1L1) P1 A1L1) A1 L1L2) P1 Al L2)

P AT

F Lﬂ.ﬂl'uﬂ
%‘ L.l . .'."llL {

‘ Empirical Evaluation

1

 Domains:
» Logistics
» Blocks World
» Satellite

8.8

* Testing set:
»20% of training
set size
»Independently
generated from
training set

ent Solved

o
[N
1]
-8

-Average over 5runs o2 0.4 0.6 0.8 1

Percen t Training Size

Logistics = Blocks=-Horld s Satellite

o T T Foan s i o
@ LEHIGH
Universily

Learning Preconditions

Problem

o Input:
A collection of plans and the HTNs entailing them
An action model

o Output: the preconditions for the task decompositions
We explored two alternatives:

o Using Inductive Logic Programming methods (ILP)
Might yield incorrect generalizations
Requires additional input: ontology of objects
Does not require convergence

o Using Version Spaces
Always yield correct generalizations
Requires additional input: negative examples
Requires sufficient examples for full convergence
;1; LEHIGH

=, b - . .
AL L'L.'."IJ.L'

First Alternative: Generalization (ILP)

Concrete Decomposition

Head (Task):
Transport Package,,, Bethlehem Pittsburgh
Conditions :
City Bethlehem
City Pittsburgh
City Package,,
Truck Truck,,
SubTasks:
Drive Truck,, Bethlehem
Load Truck,, Package,,
Drive Truck,, Bethlehem Pittsburgh
Unload Truck,,

Method

Head (Task):

Transport ?pkg, ?ct, ?ct,
Preconditions:

City ?ct,

City ?ct,

Package ?pkg;,

Truck ?truck;
SubTasks:

Drive ?truck; ?ct,

Load ?truck, ?pkg;,

Drive ?truck, ?ct, ?ct,

Unload ?truck,

.ll.'| T Pr et

¢ LEAIGH
9 Lol

UITIVersiy

Generalization gives Better Coverage

Coverage(CB) = {p: p is a planning problem that
can be solved by using a knowledge base CB}

(Smyth & Keane, 1995)

O : concrete : methods
decomposition

O ® |
O Instantiated case

Domain Domain

] T e T e

s LOINGI

Problem: Over-generalization

Concrete

decomposition\» Problem

Information lost Incorrect Plan

method

We will annotate methods with the following information:
Original bindings
Type Ontology: A collection of relations between objects
o Examples:
?X type: V (?x type: Tanker)
V'isa V (Tanker isa Vehicle)

F‘@ LEHIGI

=

[e —
LAY T .:I'J.LJ-'

Method Over-generalization (cont.)

Method M, Method M,
Task: Task-
deliver e, 4 PothApplicable . 2d, 7,
Conditions: Conditions:
1 type Tanker Type ?t, type RefrigTanker

?e, type Liquid OO [?e, type PerishableLiquid

Task: deliver Milk from Location_X Location_Y
Problem: [State: Type Tanker A Tanker X |M;
Type Tanker_ B RefrigTanker +" | M,
Type Milk PerishableLiquid

ST T YT LT T

fg LEIIGE

- AL L'l..:IlLJ-'

Solution: Preference-Guided Retrieval

General Idea

o Detect conflicting conditions between methods to elicit
preferences automatically

o Use preferences to guide method retrieval (Case-based
reasoning approach)

Phase 1 — Method Refinement

o Type Preferences: reduce method over-generalization
o Constant Preferences: preserve original variable bindings

Phase 2 — Method Retrieval

o Rank refined cases with a similarity criterion
o Bias: prefer specificity over generality
Input Retrieved

decomposition Preferences method
— | Method Refined |—| Method Ranked |—

F‘@ LEHIGI

- b -
- LAY T

.:IJ.LJ'

Case Refinement: Preference Elicitation

Method M, Method M,

Task: Task:
deliver ?e, ?d, ?d, deliver ?e, ?d; ?dg
Conditions: Conditions:
?t; type Tanker ?t, type RefrigTanker
?e, type Liquid ?e, type PerishableLiquid
Preferences: Preferences:
equal ?e, e; Constant equal ?e, e, Constant
gqua: Zgy 37 Preferences equa: :?)36 36 Preferences

qual <dj ds equal ?dg dg
equal ?ts ts -I£¥g1?erences equal 71, 1,
not ?t; type RefrigTanker
not ?e, type PerishableLiquid

] T e T e

= LG
oo

Method Retrieval: Preference-Based
Similarity

Method

/ Knowledge base

/ New problem

sim(gC, CB, P) = appl * (w, *sc + w, *stp + w; * scp)

/

applicability value (1 or 0)

conditions / MAX # conditions

satisfied type preferences / # preferences

satisfied constant preferences / # preferences

F‘@ LEHIGI

=

[e —
LAY T .:I'J.LJ-'

Reduce Case Over-generalization

Method M, Method M,

Retrieved with

ot Rt Higher Similarity

1 type Tanker ?t, type RefrigTanker
?e, type Liquid ?e, type PerishableLiquid
Preferences Added Preferences Added

Task: deliver Milk from Location_X Location Y
Problem: | State: Type Tanker A Tanker

Type Tanker_B RefrigTanker

Type Milk PerishableLiquid

T Pr et

F LEHIGH
o LEID

JILUVCL .'."IJ.LJ'

Properties

PS: The set of the imnput problem-solution episodes
(the training set)

*CB-C: concrete methods generated from PS

*CB-S: methods obtained from generalization of CB-C
*CB-CP: methods adding constant preferences to CB-S
*CB-CTP: methos adding type preferences to CB-CP

*Properties:

*CB-C, CB-CP, and CB-CTP are sound relative to PS
*CB-S 1s not sound relative to PS

*CB-S, CB-CP, and CB-CTP have the same coverage
*CB-C has less coverage than CB-CTP

fy LEHIGH

‘ Empirical Results

100%
00%:
a0%
0%
60% T
50%
40%:
0% -
0%
10%%
0% -

0 0.5429 0.951 0 0.949 0851

(a) (b)

UMTranslog
Domain

Preasion
Recall

100%
0%
20% e
%
A% F
0% b
0% F
0% b
0%
10% |
0%

0 0.39 0.49 o 0.9 0.4

() (d)

Process
Planning
Domain

Precision
Fecall

X-axis: similarity threshold

o

Second Alternative: Use Version Spaces

Idea: Learn a concept from a group of instances, some
positive and some negative

Example:

target: obj(Size,Color,Shape)
Size = {large, small}
Color = {red, white, blue}
Shape = {ball, brick, cube}

Instances:
+:
obj(large,white,ball)
obj(small,blue,ball)

obj(small,red,brick)
obj(large,blue,cube)

Two extremes (temptative) solutions:

[obj(X,Y,Z) too general
()
o
S obj(X,Y,ball)
w
&9 / ™~
£
3 obj(large,Y,ball) obj(small,Y,ball)

\ obj(large,white,ball) obj(small,blue,ball) .
""""""""""""" foo specific

N e s ol o aFt o b als

o LGl
¥ ==

UITIVersiy

How To Use This for Learning
Preconditions

The range of each variable in a predicate is known

Then we can do generalizations/specializations via the following
operations on variables:

o instantiation: P(?x, c) is more general than P(a,c)
o disjunction: P((a or b), ¢) is more general than P(a, c)
o negation: P((anything other than d), c) is
more general than P((a or b), ¢c) and P(a, c)
less general than P(?x,c)
Normalization:
o Take constants that play the same role (e.qg., truck? and truck?2)
o Replace them with the same variable (e.g., ?f)

Inductive bias: concept is in hypotheses space

] T e T e

= LG
oo

Solution: Version Spaces

 For each method, maintain a version space for its preconditions

task:
get(p)

subtasks:
walk(?x, ?y)
take(p)
walk(?y, ?x)

precond:

Fx-j ' LEHIGH

=

< 4

T Tos T rm meia i
LA L'l..:rll..}-'

Solution: Version Spaces

 For each method, maintain a version space for its preconditions

*Update the version space, using

task: : C e :
zset(p) Candidate Elimination each time
subtasks: that the method 1s used 1n a plan
walk(?x,?y) | [trace
take(p)

walk(2y, 7x) /%ﬁi P
precond: < Kc

=2 «Version spaces from other
methods may need to be updated
~ as well (Ilgami et al., 2003)

T Pr et

F ' LEHIGH
‘@g University

4 .:H.LJ-

Solution: Version Spaces

 For each method, maintain a version space for its preconditions

*Update the version space, using

task: : Ce . :
Zset(0) Candidate Elimination each time
subtasks. that the method 1s used 1n a plan
walk(?x,?y) | [trace
take(p)
walk(?y, ?x)
precond: <
*Version spaces from other
methods may need to be updated
~ as well (Ilghami et al., 2003)
 Terminate when version space converges to a single .
311

hypothesis

Empirical Validation: Transfer Learning

restructuring

Task A: Learning to control a specific location on a map
Task B: Learning to control another location on a map

Transferred knowledge:

» Conditions for applying an operational procedure (represented as an HTN)
Performance Goal:

* Frequency with which a soldier unit learns to control a location on a map
Background Knowledge Used:

» Operational procedure of how to control a location (HTNs without conditions)

| LEHIGH

b o . .
UTIVersicy

‘ Empirical Results

1
0.8 |
0}
©
o
w 06
(/2]
Q
(&)
S i
a 04
0.2 |
Averaged No Transfer —
0 Averaged Transfer
4 6 8 10
Trial Count
' LEHIGH

T ...
UTUVersicy

Final Remarks

We presented HTN-MAKER an algorithm capable of
learning sound and complete domain descriptions
for HTN planning

System demonstrated convergence in 3 domains
used in the IPC

We also presented alternative approaches to task

decomposition

o One based on ILP

o Another one based on version spaces
Future work:

o CPU performance versus STRIPS planning?
o Integration of ILP-based approach in HTN-MAKER

o Currently: using reinforcement learning in HTN-MAKER for domains
with uncertainty

;‘D; LEHIGH

=, T Tos T rm meia i
LA L'L.'."IJ.L'

Bibliography

Hogg, C., Muioz-Avila, H., and Kuter, U.. (2008) HTN-MAKER: Learning HTNs with
Minimal Additional Knowledge Engineering Required. To appear in Proceedings of
the Twenty-Third AAAI Conference on Attificial Intelligence (AAAI-08).

Hogg, C. & Mufoz-Avila, H. (2007) Learning of Tasks Models for HTN

Planning. Proceedings of the ICAPS-07 Workshop on Al Planning and Learning
(AIPL). AAAI Press.

Xu, K. & Munoz-Avila, H. (2007) CaBMA: A Case-Based Reasoning System for
Capturing, Refining and Reusing Project Plans. Knowledge and Information Systems
(KAIS). Springer.

Lee-Urban, S., Parker, A., Kuter, U., Muinoz-Avila, H., & Nau, D. (2007) Transfer
Learning of Hierarchical Task-Network Planning Methods in a Real-Time Strategy
Game. Proceedings of the ICAPS-07 Workshop on ICAPS 2007 Workshop on
Planning and Learning (AIPL). AAAI Press

llghami, O., Nau, D.S., and Munoz-Avila, H. (2006) Learning to Do HTN Planning.
Proceedings of the International Conference on Automated Planning & Scheduling
(ICAPS-06). AAAI Press.

Xu, K and Muioz-Avila, H. (2005) A Domain-Independent System for Case-Based
Task Decomposition without Domain Theories. Proceedings of the Twentieth
National Conference on Atrtificial Intelligence (AAAI-05). AAAI Press.

lighami, O., Muinoz-Avila, H., Nau, D.S., and Aha, D. Learning Approximate
Preconditions for Methods in Hierarchical Plans. Proceedings of the 22nd
International Conference on Machine Learning (ICML-05). AAAI Press.

j LEHIGH
¥

TV o iy e
AL L'L.'."IJ.LJ-'

Questions?

