
1

Documentation for JSHOP 1.0

Füsun Yaman

Department of Computer Science

University of Maryland

College Park, MD 20742, USA

Last update: June 7, 2001

1 Introduction

The aim of this document is to present the design and implementation details of JSHOP 1.0, the
Java version of SHOP. There is some difference between the syntax of the function calls in
JSHOP and SHOP, since SHOP was implemented in Lisp rather than Java. Thus, this document
not only discusses JSHOP, but also includes information (in section eight) about the differences
between JSHOP and SHOP.

JSHOP does not include all of the optimizations that we have made in the Lisp version of SHOP,
and does not run as quickly as the Lisp version of SHOP. Anyone wanting to run tests of
SHOP's performance should use the Lisp version rather than the Java version.

The rest of the document is organized as follows:
• Section two discusses the development and test environment.
• Section three explains the notation used in this document.
• Section four presents the definitions and notation used in JSHOP.
• Section five explains the class hierarchy in JSHOP.
• Section six discusses the naming conventions used in JSHOP.
• Section seven explains the classes defined in JSHOP.
• Section eight summarizes the differences between SHOP and JSHOP.

1.1 Copyright

JSHOP is Copyright (C) 2001 by Füsun Yaman, Héctor Muñoz-Avila, and Dana S. Nau. This
program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the

2

License, or (at your option) any later version. This program is distributed in the hope that it will
be useful, but without any warranty; without even the implied warranty of merchantability or
fitness for a particular purpose. See the GNU General Public License for more details. You
should have received a copy of the GNU General Public License along with this program; if not,
go to http://www.gnu.org/copyleft/gpl.html or write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

2 Development and Test Environment

JSHOP is implemented in JAVA using JDK 1.3 but it is compatible with JDK 1.2 and
presumably with JDK 1.1 although we haven’t tested it. The development tool that is used is
Visual Cafe 4.0. Visual Cafe is not required to run JSHOP. We did our implementation and tests
for JSHOP on the Windows NT and Windows98 operating systems.

3 Notation Used in this Document
In order to differentiate some words or expressions in the text, we used the following notation:

• Boldface is used to indicate that a term is being defined. For example:
 “An axiom list is a list of axioms intended to represent what we can infer from a state.”

• Italic characters refer to special words or symbols. For example:
 “ Let a be a logical atom.”

• Typewriter characters are used to write computer code. For example:
 “(call <= 7 (call + 5 3))”

• Square brackets indicate that a parameter is optional in an expression. For example, in the
following expression, the namei’s are optional parameters and thus the expression is still
valid if any of the namei’s are missing:
“(:- a [name1] C1 [name2] C2 [name3] C3 ... [namen] Cn)”

4 Definitions and Notations Used in JSHOP

The definitions and notation presented in this section are copied from SHOP documentation and
modified slightly to describe the new syntax that JSHOP expects for domain and problem
definitions. This change in the syntax was required since SHOP was implemented in LISP and
the former syntax was designed to use the advantages of LISP which is no longer available in
JSHOP environment. Java is a strongly typed language so the boundaries between terms, lists
and preconditions should be clearer so that the parser (which SHOP did not require) will produce
unambiguous domain and problem definitions.

4.1 Symbol

3

In the expressions defined below, there are five kinds of symbols: variable symbols, constant
symbols, function symbols, primitive task symbols, and compound task symbols. To
distinguish among these symbols, JSHOP uses the following conventions:

• a variable symbol can be any Lisp symbol whose name begins with a question mark
(such as ?x or ?hello-there);

• a primitive task symbol can be any Lisp symbol whose name begins with an exclamation
point (such as !unstack or !putdown);

• a constant symbol, function symbol, predicate symbol, or compound task symbol can be
any Lisp symbol whose name does not begin with a question mark or exclamation point.

In everything that follows, a ground expression is one that contains no variable symbols.

4.2 Term, Logical Atom, Literal

A term is a variable symbol, a constant symbol, or an expression having of the form
(f t1 t2 ... tn)

where f is a function symbol and each ti is a term.

A list is a term having either of the following forms
(list t1 t2 ... tn)

where list is a reserved word that specifies that t1 t2 ... tn form an ordinary list, and each ti is a
term;

(. t l)
where t is a term and l is either a list or the constant symbol nil.
The term (list t) is semantically equivalent to (. t nil), the term (list t1 t2) is semantically
equivalent to (. t1 (. T2 nil)), and so forth. Internally, JSHOP translates all occurrences of
“list” terms into the equivalent “.” terms.

Here are some examples of terms, showing how they would be written in both SHOP and
JSHOP:

SHOP definition JSHOP definition JSHOP Internal Representation
(1 g ?y 6) (list 1 g ?y 6) (. 1 (. g (. ?y (. 6 nil))))
(goal ?x ?y) (goal ?x ?y) (goal ?x ?y)
((on a b)
 (e 5 (?t u 9)))

(list (on a b)
 (list e 5
 (list ?t u 9)))

(. (on a b) (. (. e (. 5 (. (. ?t
(.u (.9 nil))) nil))) nil))

Table 1 Examples for representing terms

Note that unlike the Lisp version of SHOP, the following syntactic forms are errors in JSHOP:

 (1 2 3 4 . 5) (1 2 . ?rest)

These forms should instead be written as

(list 1 2 3 4 . 5) (list 1 2.?rest) .

4

A call-term is an expression of the form :

(call f t1 t2 ... tn)

where f is a function symbol and each ti is a term or a call-term. A call-term has a special
meaning to JSHOP, because it tells JSHOP that f is an attached procedure, i.e., that whenever
JSHOP needs to evaluate a precondition or task list that contains a call-term, JSHOP should
replace the call term with the result of applying the function f on the arguments t1, t2, …, tn. (We
later will define what preconditions and task lists are). For example, the following call-term
would have the value 8:

 (call + 5 3)

Call can be used for limited function names like +, -, *, / , < , >, <=, >=, ceil, floor, min, max,
equal, not and the common member function which tests whether its first parameter is a
member of the list in second parameter. Furthermore a call- term should be ground before the
evaluation. Thus all of the variables appearing in a call-term should be bounded.
A logical atom is an expression of either of the forms:

(p t1 t2 ... tn) or (call p u1 u2 ... un)

where p is a predicate symbol each ui is a term, and each ti is a term that is not a call-term and
does not contain any call-terms. The second form specifies that p is an attached procedure; i.e.,
whenever JSHOP needs to evaluate a logical atom of the second form, it will use a procedure to
evaluate the predicate p on the arguments u1 u2 ... un, and if the procedure returns any value
other than nil, JSHOP will use a truth value of “true” for the atom. For example, the following
logical atom would evaluate to “true”:

 (call <= 7 (call + 5 3))

 A literal is any of the following:

• a logical atom a;
• an expression of the form (not a) where a is a logical atom (the intended meaning is

that the expression is true if a is false).

4.3 Conjunct

A conjunct is either of the following:
• an ordinary conjunct, which is list of literals (l1 l2 l3 ... ln);
• a tagged conjunct, which is a list of the form (:first l1 l2 l3 ... ln) where l1, l2, l3, ...,

ln are literals.

The intent of a tagged conjunct is to tell the theorem-prover that we only want to see the first
proof of (l1 l2 l3 ... ln), rather than every possible proof. This is discussed in more detail later,
at the end of Section 4.6.

5

4.4 Axiom

An axiom is an expression of the following form, where a is a logical atom and each Ci is a
conjunct:

(:- a [name1] C1 [name2] C2 [name3] C3 ... [namen] Cn)

The axiom's head is the atom a, and its tail is the list ([name1] C1 [name2] C2 [name3] C3 ...
[namen] Cn) where each Ci is a conjunct and namei is a symbol called the name of Ci. The
names of the conjuncts are optional. A unique name will be generated for each conjunct if no
name was given. These names have no semantic meaning to JSHOP, but are provided in order to
help the user debug domain descriptions by looking at traces of JSHOP’s behavior.

The intended meaning of an axiom is that a is true if C1 is true, or if C1 is false but C2 is true, or
if both C1 and C2 are false but C3 is true, ..., or if all of C1, C2, C3, ..., Cn-1 are false but Cn is true.
For example, the following axiom says that a location is in walking distance if the weather is
good and the location is within two miles of home, or if the weather is not good and the location
is within one mile of home:

(:- (walking-distance ?x)
 good ((weather-is good) (distance home ?x ?d) (call <= ?d 2))
 bad ((distance home ?x ?d) (call <= ?d 1)))

4.5 Substitution

A substitution is a list of dotted pairs of the form

((x1 . t1) (x2 . t2) ... (xk . tk))

where every xi is a variable symbol and every ti is a term. If e is an expression and u is the above
substitution, then the substitution instance eu is the expression produced by starting with e and
replacing each occurrence of each variable symbol xi with the corresponding term ti.

4.6 States and Satisfiers

A state is a list of ground atoms intended to represent some "state of the world". An axiom list is
a list of axioms intended to represent what we can infer from a state. A conjunct C is a
consequent of a state S and an axiom list X if every literal l in C is a consequent of S and X. A
literal l is a consequent of S and X if one of the following is true:

• l is an atom in S;
• l is a ground expression of the form (call p t1 t2 .. tn), and the evaluation of p with

arguments t1,t2,, tn returns a non-nil value;
• l is an expression of the form (not a), and the atom a is not a consequent of S and X;

6

• there exists a substitution v and an axiom(:- a n1 C1 n2 C2 ... nn Cn) in X such that l =
av and one of the following holds:

o C1
v is a consequent of S and X;

o C1
v is not a consequent of S and X, but C2

v is a consequent of S and X;
o neither C1

v nor C2
v is a consequent of S and X, but C3

v is a consequent of S and X;
o ...;
o none of C1

v, C2
v, C3

v, ..., Cn-1
v is a consequent of S in X, but Cn

v is a consequent of
S and X.

If C is a consequent of S and X, then it is a most general consequent of S and X if there is no
strict generalization of C that is also a consequent of S and X.

Let S be a state, X be an axiom list, and C be an ordinary conjunct. If there is a substitution u
such that Cu is a consequent of S and X, then we say that S and X satisfy C and that u is the
satisfier. The satisfier u is a most general satisfier (or mgs) if there is no other satisfier that is a
strict generalization of u. Note that C can have several non-equivalent mgs's. For example,
suppose X contains the "walking distance" axiom given earlier, and S is the state

 ((weather-is good)
 (distance home convenience-store 1)

 (distance home supermarket 2))

Then for the conjunct ((walking-distance ?y)), there are two mgs's from S and X: ((?y .
convenience-store)) and ((?y . supermarket)).
Let S be a state, X be an axiom list, and C = (:first C') be a tagged conjunct. If S and X
satisfy C', then the most general satisfier (or mgs) for C from S and X is the first mgs for C' that
would be found by a left-to-right depth-first search. For example, if S and X are as in the
previous example, then for the tagged conjunct (:first (walking-distance ?y)), the mgs
from S and X is ((?y . convenience-store)).

4.7 Task

A task atom is an expression of the form

(s t1 t2 ... tn)

where s is a task symbol and the arguments t1, t2, ..., tn are terms or call-terms. The task atom is
primitive if s is a primitive task symbol, and it is compound if s is a compound task symbol.

4.8 Operator

An operator is a list having either of the following forms:

(:operator h P D A)

7

(:operator h P D A c)
where

• h (the operator's head) is a primitive task atom in which no call terms can appear;
• P (the operator's precondition) is a list of logical atoms;
• D (the operator's delete list) is a list of logical atoms that contain no variable symbols

other than those in h;
• A (the operator's add list) is a list of logical atoms that contain no variable symbols other

than those in h.
• c (the operator's cost) is a number. If c is omitted, its default value is 1.

The intent of an operator is to specify that the task h can be accomplished at a cost of c, by
modifying the current state of the world to remove every logical atom in D and add every logical
atom in A if P is satisfied in the current state. In order to prevent plans from being ambiguous,
there should be at most one operator for each primitive task symbol.

Let S be a state, X be the list of axioms, t be a primitive task atom, and o be a planning operator
whose head, precondition, delete list, add list, and cost are h, P, D, A, and c, respectively.
Suppose that there is an mgu u for t and h, such that hu is ground and Pu is satisfied in S. Then
we say that ou is applicable to t, and that hu is a simple plan for t. If S is a state, then the state
produced by executing ou (or equivalently, hu) in S is the state:

result(S,hu) = result(S,ou) = (S - Du) U Au.

Here is an example:

S = ((has-money john 40) (has-money mary 30))

t = (!set-money john 40 35)

o = (:operator (!set-money ?person ?old ?new)
 ((has-money ?person ?old))
 ((has-money ?person ?old))
 ((has-money ?person ?new)))

u = ((?person . john) (?old . 40) (?new . 35))

ou = (:operator (!set-money john 40 35)
 ((has-money john 40))
 ((has-money john 40))
 ((has-money john 35)))

hu = (!set-money john 40 35)

Result(S,hu) =
result(S,ou) =

((has-money john 35) (has-money mary 30))
((has-money john 35) (has-money mary 30))

4.9 Method

8

A task list is a list of task atoms. The intent of this definition is to specify that the task atoms
should be performed in exactly the order given in the list. A method is a list of the form

(:method h [n1] C1 T1 [n2] C2 T2 ... [nk] Ck Tk)

where

• h (which is called the method's head) is a task atom in which no call-terms can appear;
• each Ci (which is called a precondition for the method) is either a conjunct or a tagged

conjunct;
• each Ti (which is called a tail of the method) is a task list. The task atoms in the list can

contain call-terms.
• each ni is the name for the succeeding Ci Ti pair. These name are optional and if omitted

a unique name will be assigned for each pair. These names have no semantic meaning to
JSHOP, but are provided in order to help the user debug domain descriptions by looking
at traces of JSHOP’s behavior.

The purpose of a method is to specify the following:
• if the current state of the world satisfies C1, then h can be accomplished by performing

the tasks in T1 in the order given;
• otherwise, if the current state of the world satisfies C2, then h can be accomplished by

performing the tasks in T2 in the order given;
• ...;
• otherwise, if the current state of the world satisfies Ck, then h can be accomplished by

performing the tasks in Tk in the order given.

Let S be a state, X be an axiom list, t be a task atom (which may or may not be ground), and m be
the method (:method h C1 T1 C2 T2 ... Ck Tk). Suppose there is an mgu u that unifies t with
h; and suppose that m has a precondition Ci such that S and X satisfy Ci

u (if there is more than
one such precondition, then let Ci be the first such precondition). Then we say that m is
applicable to t in S and X, with the active precondition Ci and the active tail Ti. Then the result
of applying m to t is the following set of task lists:

R = {Call((Ti
u)v): v is an mgs for Ci

u from S and X}

where Call is JSHOP’s evaluation function (the function that evaluates the values of the call-
terms in the form (call f t1 t2 .. tn)). Each task list r in R is called a simple reduction of t by m in
S and X. Here is an example:

S = ((has-money john 40) (has-money mary 30))

X = nil

t = (transfer-money john mary 5)

m = (:method (transfer-money ?p1 ?p2 ?amount)
 ((has-money ?p1 ?m1)
 (has-money ?p2 ?m2)

9

 (call >= ?m1 ?amount))
 ((!set-money ?p1 ?m1 (call - ?m1 ?amount))
 (!set-money ?p2 ?m2 (call + ?m2 ?amount))))

u = ((?p1 . john) (?p2 . mary) (?amount . 5))

hu = (transfer-money john mary 5)

C1
u = ((has-money john ?m1)

 (has-money mary ?m2)
 (call >= ?m1 5))

T1
u = ((!set-money john ?m1 (call- ?m1 5))

 (!set-money mary ?m2 (call + ?m2 5))))

v = ((?m1 . 40) (?m2 . 30))

(C1
u)v = ((has-money john 40)

 (has-money mary 30)
 (call >= 40 30)))

(Tu)v = ((!set-money john 40 (call - 40 5))
 (!set-money mary 30 (call + 30 5)))

call((Tu)v) = ((!set-money john 40 35) (!set-money mary 30 35))

4.10 Plan

A plan is a list of the form

 (h1 c1 h2 c2 ... hn cn)

where each hi and ci, respectively, are the head and the cost of a ground operator instance oi. If p
= (h1 c1 h2 c2 ... hn cn) is a plan and S is a state, then p(S) is the state produced by starting
with S and executing o1, o2, ..., on in the order given. The cost of the plan p is c1 + c2 + ... + cn

(thus, the cost of the empty plan is 0).

4.11 Planning Domain

A planning domain is a list of axioms, operators, and methods. A planning problem is a 3-
tuple (S,T,D), where S is a state, T is a task list, and D is a domain representation. Suppose that
(S,T,D) is a multi-planning problem, where T is the multi-task list (t1 t2 ... tk). If P = (p1 p2

... pn) is a plan, then we say that P solves (S,T,D), or equivalently, that P achieves T from S in
D (we will omit the phrase "in D" if the identity of D is obvious) in any of the following cases:

• Case 1: T and P are empty (i.e., k=0 and n=0).

• Case 2: t1 is a primitive task, p1 is a simple plan for t1, and (p2 ... pn)

10

 achieves (t2… tk) from result(S,p1).

• Case 3: t1 is a compound task, and there is a simple reduction (r1 r2 ... rl)

 of t1 in S such that P achieves (r1 r2 ... rl t2 ... tk) from S.

5 Class Hierarchy in JSHOP

The simplified class hierarchy for JSHOP classes can be seen in Figure 1. This figure omits some
built in classes of Java to make the figure easier to understand.

Figure 1 Class Hierarchy of JSHOP. Vector is a built in class for representing Lists.

Vector

JSAxiom JSPairPlanTState

JSListAxioms JSListOperators JSSubstitiution JSListConjunct

JSListIfThenElse

JSListMethod

JSPredicateForm

JSTaskAtom JSTerm

JSListLogicalAtoms

JSState JSTasks

JSPlan

JSListSubstitiution JSListPairPlan
TStateNode

JSListPlaningP
roblem

JSJshop

JSJshopNode

JSJshopVars

JSMethod

JSOperator

JSPairIfThen

JSPairVarTer

JSPlanningDomain

JSPlanningProble

JSReduction

JSTState

JSUtil

JSEvaluate

JSPairPlanTSListNode

JSAllReduction

JSParserError

11

6 Naming Conventions in JSHOP

As the reader can easily detect there is a kind of systematic naming of the classes defined
in JSHOP. This system most of the time make the code more readable and
understandable. When adding new classes to JSHOP please pay attention to the following
three rules :

• All the class names start with “JS” letters. Remember that Java is a case sensitive
language so capital letters make difference. If the rest of the class name is a
compound word that contain more than one meaningful words each word should
start with a capital letter (example : JSTaskAtom)

• The class name JSListX stands for a class that has a data structure , list of
objects of type X. (example : JSListMethod , JSListOperator)

• Class named as JSPairXY represents a class that has two variables named X and Y
such that the main algorithm of the class depends on those two variables. Usually
it is the case that the name of the class is self-explanatory for the functionality of
the class (example : JSPairIfThen, JSPairVarTerm)

7 Classes defined in JSHOP

This section lists and explains the functionality of each class defined in JSHOP. For each
class its functionality, instance variables, the methods and the corresponding SHOP
definition (if there is any) will be explained.

Any method that has the same name as an instance variable returns the value of that
variable. Almost all of the instance variables defined in JSHOP classes are private
variables so in all classes you may find such methods. Those methods will not be
explained for the sake of simplicity.

7.1 JSJshopVars

The global variables for JSHOP are defined in this class. There is no method defined in
this class. As usual, global variables are defined as class variables.

7.1.1 Class Variables

static char LastCharRead The last character read by the parser. This variable
is not used.

12

static int VarCounter
This variable is used to create unique variable names for methods that we refer to as
standarizers. Whenever a method, an operator or an axiom is applied the value of the
counter is increased. To create unique names VarCounter is appended to the name of the
variable

static String errorMsg
The error message to be displayed on the standard output.

static boolean flagParser
If true flags will appear when parsing the file. This varible is not used

static boolean flagPlanning
 If true flags will appear during planning . This varible is not used.

static int flagLevel
Corresponds to the verbose level in SHOP. The greater it is the more information will be
printed on the standard output.

static boolean flagExit
If a parser error occours and the value of flagExit is true then the program terminates. If
the value of flagExit is false, the program returns from the main procedure.

 static int leftPar = 0x0028
 static int rightPar = 0x0029
 static int apostrophe = 0x0027
 static int colon = 0x003A
 static int semicolon = 0x003B
 static int exclamation = 0x0021;
 static int interrogation = 0x003F;
 static int minus = 0x002D;
 static int equalT = 0x003D;
 static int greaterT = 0x003E;
 static int lessT = 0x003C;
 static int coma = 0x002C;
 static int astherisk = 0x002A;
 static int rightBrac = 0x005D;
 static int leftBrac = 0x005B;
 static int verticalL = 0x007C;
 static int plus = 0x002B;
 static int whiteSpace = 0x0020;
 static int percent = 0x0025;

The Unicode values for the special characters used in the parser.

7.2 JSPredicateForm

13

The class represents a literal which is any of the following:

• a logical atom (predicate) a;
• an expression of the form (not a) where a is a logical atom (the intended

meaning is that the expression is true if a is false).

This class is extended from Vector class to store a list of JSTerm objects, which will be
the arguments of a predicate. The JSPredicateForm class has a constructor that can read
an input file and initialize its contents from that file.

7.2.1 Instance Variables

No instance variables are declared for this class.

7.2.2 Method Details
JSPredicateFormInit(StreamTokenizer tokenizer)
 Method to parse the input predicate

void print()
 Prints the predicate to standard output

StringBuffer toStr()
 Prints the contents of the predicate into a string buffer.

JSPredicateForm clonePF()
 Returns a new JSPredicateForm object that has the same content as this one

JSPredicateForm applySubstitutionPF(JSSubstitution alpha)
 Returns a new JSPredicateForm object such that the variables appearing in the
substitution (alpha) are replaced with the corresponding terms.

JSSubstitution matches(JSPredicateForm t)
 Returns a substitution that will unify this predicate with the one given as the parameter
provided that there are no current bindings for the variables.

JSSubstitution matches(JSPredicateForm t, JSSubstitution
alpha)
Returns a substitution that will unify this predicate with the one given as the parameter
provided that there is a current binding (alpha) for some of the variables. Below is the
pseudo-code for this function:

if number of terms in two predicates are not same
 return a failure substitution (a substitution, such that subs.fail() is true)

14

if the first elements of the predicates (names) are not literally the same then
 return a failure substitution
Create a new substitution beta that is cloned from alpha (current bindings)
for every term in this predicate do
 if the current term is equal to the corresponding term in the second predicate
 then
 continue with the next term
 else if the current term matches with the corresponding term in the second

 predicate then
 add the substitution that will unify them to beta
 else

return a failure substitution
end for
return beta

boolean equals(JSPredicateForm t)
Checks if this predicate is equal to the predicate given in the parameter

public JSPredicateForm standarizerPredicateForm()
standarizer function for predicates.

public JSPredicateForm applySubstitutionPF(JSSubstitution
alpha)

Replaces each occurrence of each variable in predicate form with the
corresponding term in substitution alpha.

7.3 JSTerm

As defined in section 4.2 a term is either a variable symbol, a constant symbol, or an
expression of either of the forms

(list t1 t2 ... tn) or (f t1 t2 ... tn)

where f is a function symbol and each ti is a term. Also call-term is an expression of the
form:

(call f t1 t2 ... tn)

 where f is the name of an attached procedure and each ti is a term or a call-term. JSTerm
class implements these two definitions. JSTerm is an extended form of JSPredicateForm
class. JSTerm class has some flags that identify whether its content is a constant,
variable, a function or a call-term. It has a constructor that can initialize its contents from
an input file.

15

7.3.1 Instance Variables

boolean isVariable
True if the term is a variable

boolean isConstant
True if the term is a constant

boolean isFunction
True if the term is a function

boolean isEval
True if the term should be evaluated (i.e., the term is defined as (call f t1 t2 ... tn))

7.3.2 Method Details

public void print()
Prints the term.

public void printList()
Prints the term that is in the form (list t1 t2 ... tn) which is internally represented as (. t1

(. t2 . (.t3 nil)) .

public JSTerm parseList(InputStream)
Parses the term that is in the form (list t1 t2 ... tn) which is internally represented as (. t1

(. t2 . (.t3 nil)) .

public JSTerm cloneT()
Creates a copy of the term

public JSTerm applySubstitutionT(JSSubstitution alpha)
Returns a new term object such that the variables in this object are instantiated with the
corresponding terms in the substitution alpha and the term is evaluated if isEval for this
object is true.

public JSSubstitution matches(JSTerm t)
Returns the most general unifier of this term and the parameter term when there is no
prior binding for the variables.

public JSSubstitution matches(JSTerm t, JSSubstitution
alpha)

Returns the most general unifier of this term and the parameter term unify when there are
prior bindings for the variables given in alpha. .

 public boolean equals(JSTerm t)

16

Returns true if the two terms are lexically equal

public boolean isVariable()
public boolean isConstant()
public boolean isFunction()
public boolean isEval()
public void makeFunction()
public void makeVariable()
public void makeConstant()
public void makeEval()
 Methods for checking and setting the values of instance variables.

public boolean isGround()
Returns true if there is no variable in the term.

public JSTerm standardizerTerm()
Replaces the names of the variables with unique new names and returns a new term

public JSTerm call()
If the term is a constant term then it just returns itself. If it is a variable term it

returns failure because any term to be evaluated should be grounded. If this is a function
then the first element gives the operator name and the rest of them are the arguments.
Returns the term computed by the JSEvaluate.applyOperator function.

7.4 JSListLogicalAtoms

This class represents a conjunct as defined in section 4.3. The class is an extension from
the Vector class and contains a list of JSPredicateForm objects. It can be seen as a form:

(P1 P2 ... Pn) or (:first P1 P2 ... Pn)

where the Pi’s are literals.

It has a constructor that can initialize its contents from an input file. There are functions
for printing and standardizing its contents.

7.4.1 Instance Variables

string label
If this is a tagged conjunct, then label contains the string “first”; otherwise label is
null.

string name
The name of the conjunct.

boolean varlist

17

 The value is true if the whole list is to be constructed from a variable that contains a list
of logical atoms. For example, consider the following operator definition:

(:operator (!assert ?g)
 ()
 ()
 ?g
 0)

In the above expression, the operator’s add list is given by the variable ?g .The value of
?g should have the form(P1 P2 ... Pn), where the Pi’s are literals. When parsing an
operator definition that contains a variable such as ?g, JSHOP sets the value of varlist to
true, and when searching for a plan, JSHOP creates the addlist of the operator using the
bound value of the variable ?g.

7.4.2 Method Details
void addElements(JSListLogicalAtoms l)

Appends the contents of l to this list. Used for creating new conjuncts.

void print()
Usual print method.

JSListLogicalAtoms standarizerListLogicalAtoms()
Usual standarizer function

JSListLogicalAtoms
ApplySubstitutionListLogicalAtoms (JSSubstitution alpha)

This method returns a new object such that in this new object the variables that are
defined in the substitution alpha are replaced with the corresponding terms.

JSListLogicalAtoms Cdr()
Returns a new object such that it is same as this one but it does not have the first element
in the list.

public String Label()
public String Name()
public void setName(String newName)

Methods for checking and setting the values of instance variables.

7.5 JSListConjuncts

The JSListConjuncts class is extended from the Vector class, It represents a structure of
the form:

18

(C1 C2 C3 ... Cn)

where each Ci . is a conjunct (list of logical atoms). This structure is used for defining the
tail of an axiom. The constructor of the class reads from an input file and initializes the
contents of its list.

7.5.1 Instance Variables

No instance variable is declared.

7.5.2 Method Details

void print()
Prints all conjuncts.

JSListConjuncts standarizerListConjuncts()
Returns a new axiom in which all the variable names are changed with the new unique
names.

7.6 JSAxiom

This class represents an axiom defined in the planning domain. The expected form is:
(:- a [n1] C1 [n2]C2 [n3]C3 ... [nn] Cn)

7.6.1 Instance Variables

JSPredicateForm head
 Represents the head of the axiom

JSConjuncts tail
 Tail of the axiom

7.6.2 Method Details

public void print()
 Prints the axiom to standard output in the form: (:- a C1 C2 C3 ... Cn)

JSPredicateForm head()

JSListConjuncts tail()

JSAxiom standarizerMet()
Returns a new axiom in which all the variable names are replaced with new unique
names.

19

7.7 JSListAxioms

JSListAxioms class stores all the axioms defined in the planning domain. It is extended
from the Vector class.

7.7.1 Instance Variables

No instance variable is declared.

7.7.2 Method Details

void print()
Prints all axioms

JSListSubstitution TheoremProver(JSListLogicalAtoms
conds,JSState S, JSSubstitution alpha,Boolean findall)
Finds all the substitutions that make conds (a list of conjuncts) true in the current state
S with the bindings alpha of the variables. If the parameter findall is false it returns
only the first substitution.

procedure TheoremProver(C, S, alpha , all)
let answers be an empty JSListofSubstitution
 if C is empty then
 add an empty substitution to answers
 return answers
end

 l = the first literal in C; B = the remaining literals in C

 if l is an expression of the form (not e) then
if TheoremProver(e, S, alpha, false) is failure then

 return TheoremProver(B, S, alpha , all)
else

 return empty ListofSubstitution indicating failure
end

else if l is an expression of the form (call e) then
 if call(applySubstitution (e)) is not failure then
 return TheoremProver(B, S, alpha,all)
 else
 return nil
 end
end

20

for every atom s in S that unifies with l
 let u be the unifier
 for every v in TheoremProver(B, S, compose-substitutions(alpha, u))
 insert compose-substitutions(u,v) into answers
end

for every axiom x whose head unifies with l
 let u be the unifier
 if tail(x) contains a conjunct D such that TheoremProver(append(D,B), S,
 compose-substitutions(alpha, u)) is not failure then
 let D be the first such conjunct
 for every v in TheoremProver(append(D,B),
S,composesubstitutions(alpha,u))
 insert compose-substitutions(u, v) into answers

end
end
return answers
end TheoremProver

7.8 JSMethod
This class represents a method defined in the planning domain. Methods have the form:

(:method h C1 T1 C2 T2 ... Ck Tk)

7.8.1 Instance Variables

JSTaskAtom head
Head of the method (h)

JSListIfThenElse ifThenElseList
The tail of the method where the preconditions and the task lists are stored.

boolean notDummy
For any method that is defined in the domain, notDummy is false. For an empty method it
is true indicating that it is meaningless.

7.8.2 Method Details

JSMethod standarizerMet()
Returns a new method in which all the variable names are replaced with the new unique
names.

21

void print()
Prints the method to the standard output in the form: (:method h C1 T1 C2 T2 ...)

JSTaskAtom head()

JSListIfThenElse ifThenElseList()

boolean notDummy()

7.9 JSListMethods
This is a subclass of Vector. JSListMethod class stores all the methods defined in the
planning domain. .

7.9.1 Instance Variables

No instance variables declared

7.9.2 Method Details

void print()
 Prints all the methods defined in the domain .

JSReduction findReduction(JSTaskAtom task, JSState s,
JSReduction red , JSListAxioms axioms)

This method returns a reduction of task relative to the state s and a list of axioms. If red is
a dummy reduction, it will search all the methods. If red is the reduction of a method m,
it will start searching in all methods listed after m

JSAllReduction findAllReduction(JSTaskAtom task, JSState s,
JSAllReduction red , JSListAxioms axioms)

This method returns all the reductions of task relative to the state s and a list of axioms. If
red is a dummy reduction, it will search all the methods. If red is the reduction of a
method m, it will start searching in all methods listed after m

7.10 JSOperator

This class stands for an operator in SHOP. It has a constructor that can initialize the head,
precondition, add list, and the delete list of the operator. With the exception of the print()
method, all other methods in this class access the instance variables.

7.10.1 Instance Variables

JSTaskAtom head;
The head of the operator

22

double cost
Cost of the operator

JSListLogicalAtoms deleteList;
Delete list for the operator

JSListLogicalAtoms addList;
Add list for the operator

7.10.2 Method Details

JSTaskAtom head()
JSListLogicalAtoms addList()
JSListLogicalAtoms deleteList()

Methods for accessing instance variables

void print()
Prints the operator in the SHOP format.

JSOperator standarizerOp()
This method is used for replacing all the variables in the operator with the unique

variable names.

7.11 JSListOperators
This class extends the Vector class. Its purpose is solely to hold all the operators defined
in the domain.

7.11.1 Instance Variables

No instance variables declared.

7.11.2 Method Details

void print()
Prints all operators defined in the domain.

7.12 JSPlanningDomain

This class stores the domain definition that consists of the methods, operators and the
axioms. Other than the methods for accessing and printing its variables, it has a

23

constructor that can read an input file and initialize its variables. An outstanding method
provided by this class is "solveAll" (see below).

7.12.1 Instance Variables

String name;
Name of the planning domain.

JSListAxioms axioms
The axioms defined for this domain.

JSListOperators operators
The operators defined for this domain.

JSListMethods methods
The methods defined for this domain.

7.12.2 Method Details

void parserOpsMethsAxs (StreamTokenizer tokenizer)
Method that parses the input file and initializes the methods, operators and axioms.

JSPairPlanTSListNodes solve(JSPlanningProblem prob, Vector
listNodes)
This method calls the seekplan function defined in the Tasks class to solve a given
problem "prob" and returns the first plan along with the derivation tree.

JSListPairPlanTSListNodes solveAll(JSPlanningProblem prob,
boolean All)
This method calls the seekplanAll function defined in the Tasks class to solve a given
problem "prob" and returns all the plans along with the derivation trees. If the value of
All is false it returns only the first plan.

public void print()
Prints the axioms, operators and methods defined in this domain.

public JSListMethods methods()
public JSListAxioms axioms()
public JSListOperators operators()
Methods for accessing instance variables.

7.13 JSPairVarTerm

24

This class represents the dotted pairs in the substitution. The form of such an expression
is :
 (x1 . t1)

where x1 is a variable and t1 is the corresponding term.

7.13.1 Instance Variables

JSTerm var
 Contains the variable

JSTerm term
Contains the term

7.13.2 Method Details

public JSTerm var()

JSTerm term()

JSPairVarTerm clonePVT()
 Returns a new pair that has the same variable and term values

void print()
Usual print function

JSPairVarTerm standarizerPVT()
Usual standarizer function

7.14 JSSubstitution
This class represents for a list of dotted pairs of the form

((x1 . t1) (x2 . t2) ... (xk . tk))

JSSubstitution class is extended from Vector class to hold a list of objects of the type
JSPairVarTerm. It is used as a list of current variable bindings. When two terms are
checked for unification a list of bindings that makes the two unify will be generated, an
empty list does not mean that the two terms don’t unify, it just shows that no variables
have to be bound. If the objects don’t unify a failed substitution is returned.

7.14.1 Instance Variables
boolean fail

25

True if the substitution is a failure

7.14.2 Method Details

JSTerm instance(JSTerm var)
Returns the corresponding term for the given var if var appears in one of the dotted pairs

JSSubstitution cloneS()
Returns a new JSSubstitution object that has the same content with this one.

boolean fail()
Indicates if this is a failed substitution

void assignFailure()
 Makes a failed substitution

void addElements(JSSubstitution Sub2)
 Applies Sub2 to the right-hand-side of each item in this substitution, and appends
all items in Sub2 whose left-hand-sides are not in this one.

void removeElements(JSSubstitution l)
Removes the elements from this list if they are also listed in “l”

void print()
Prints the contents of the substitution

JSSubstitution standarizerSubs
Replaces all the variables in the list with the unused variable names.

7.15 JSListSubstitution

This is an extension of Vector class. The aim of the class is to store a list of substitution
objects. It is generally the return type for the functions that check whether the current
state satisfies a condition. Such functions return all the substitutions that will satisfy that
condition. So if there is no element in this list this indicates a failure.

7.15.1 Instance Variables

There are no instance variables for this class.

7.15.2 Method Details

boolean fail()

26

Returns true if this is a failed substitution .

void print()
Prints all the substitutions in list.

7.16 JSPairIfThen

In SHOP a method can have different decompositions for different preconditions.

(:method head C1 T1 C2 T2 ... Cn Tn)

 JSPairIfThen class stands for the Ci Ti pairs in the form above. Ci (ifPart) is a conjunct
and Ti (thenPart) is a list of tasks. This class has a constructor that can initialize the ifPart
and the thenPart from an input file. It also has methods that allow to accesses instance
variables, print them and standardize the variables used in this pair.

7.16.1 Instance Variables

JSListLogicalAtoms ifPart;
The conjunct part of the pair.

JSTasks thenPart;
 The task list for the pair.

String name;
 The name of the pair.

7.16.2 Method Details

JSListLogicalAtoms ifPart()
JSTasks thenPart()
String name();
String setName(String newName);

methods for accesing the instance variables

void print()
 Usual print function

JSPairIfThen standarizerPIT()
Returns a new pair that has its variable name changed with a new name.

27

7.17 JSListIfThenElse

This class stores a list of PairIfThen objects. The class represents the tail part (C1 T1 C2

T2 ... Cn Tn) of the method. It has a constructor that can initialize its elements from an
input file. Like other classes it has the functions for printing and standarizing its contents.
One outstanding method defined in this class is the "evalPrec" function (see details
below).

7.17.1 Instance Variables

No instance variable is declared.

7.17.2 Method Details

void print()
Prints the contents

JSTasks evalPrec(JSState s, JSSubstitution
alpha,JSListAxioms axioms)
 Given the State, axioms and current bindings (alpha) this function checks all the pairs in
order to find one pair whose "ifPart" can be satisfied. Whenever such a pair found, the
substitution that makes the "ifPart" true is applied to the "thenPart" and those list of tasks
are returned. If none of the pairs can be satisfied then a task list of failure is returned.

Vector evalPrecAll(JSState s, JSSubstitution
alpha,JSListAxioms axioms)
 Given the State, axioms and current bindings (alpha) this function checks all the pairs in
order to find one pair whose "ifPart" can be satisfied. Whenever such a pair found, for
every substitution v that makes the "ifPart" satisfied, v is applied to the "thenPart" and
the new thenPart is added to a list l . If none of the pairs are satisfiable then a list will be
empty indicating the failure. The return value of this function is l

JSListIfThenElse standarizerListIfTE()
Standarizes the variables

7.18 JSReduction

This is a data structure that stores a list of tasks and a method that produced this task list.
All the functions defined in this class are for accessing the instance variables. There are
two constructors for the class one takes a method and a task list and one with no
parameters. The one with no parameters creates a dummy reduction.

7.18.1 Instance Variables

JSMethod selectedMethod;

28

The method used for creating this reduction.

JSTasks reduction;
The resulting subtask if the selected method is applied.

7.18.2 Method Details
JSMethod selectedMethod()
public JSTasks reduction()

Methods for accessing instance variables.

boolean isDummy()
Returns true if the selected method is a dummy method.

7.19 JSAllReduction

This class contains a list of tasks and a method that produced this list of task list. All the
functions defined in this class access the instance variables.

7.19.1 Instance Variables

JSMethod selectedMethod;
The method used for creating this reduction.

Vector reduction;
The resulting subtask if the selected method is applied.

7.19.2 Method Details
JSMethod selectedMethod()
public Vector reduction()

Method for accessing instance variables

boolean isDummy()
Returns true if the selected method is a dummy method.

7.20 JSTaskAtom

This class represents a task in SHOP and extends the JSPredicateForm class. The
outstanding method implemented in this class is seeksimpleplan. The contents of the class
can be initialized from an input file.

7.20.1 Instance Variables

29

boolean isPrimitive
True if the task is a primitive task.

boolean isCompound
 True if the task is a compound task.

7.20.2 Method Details

JSPairPlanTState seekSimplePlan(JSPlanningDomain dom,
JSTState ts)
This method searches for all the operators defined in the planning domain for one that is
applicable to this task atom. If it finds one, it returns a PairPlanTstate object such that the
plan variable of that object will contain the grounded operator head and the Tstate
variable of that object contains the state that will result from applying this operator.

JSReduction reduce(JSPlanningDomain dom,JSState s,
JSReduction red)
Calls the findReduction function defined in ListMethods class to find a reduction for this
compound task.

JSTaskAtom applySubstitutionTA(JSSubstitution alpha)
Returns a new task atom object that is same as this one except the variables bounded in
alpha are substituted in the new one with their corresponding values.

JSTaskAtom cloneTA()
Returns a new TaskAtom object that has the same content as this one.

boolean isGround()
Returns true if this task atom is ground.

JSTaskAtom standarizerTA()
Standarizes this task atom.

JSJshopNode findInList(Vector list)
Searches in a List of JshopNodes to find the one with the same TaskAtom in it.

boolean isPrimitive()
void makePrimitive()
void makeCompound()
Methods changing the truth values of instance variables.

7.21 JSTasks

This class extends JSListLogicalAtoms, the difference is it has a list of task atoms. The
main function of JSHOP, seekplanAll, is implemented in this class. The contents of this
class can be initialized from an input file. An empty task list is not a failing plan, it may

30

be the case that the plan is doing nothing. So an instance variable “fail” keeps track of
this situation.

7.21.1 Instance Variables

boolean fail
True if the task list indicates a failure.

7.21.2 Method Details

JSPairPlanTState seekPlan(JSTState ts, JSPlanningDomain
dom, JSPlan pl, Vector listNodes)
This method finds the first plan for the list of tasks in this object.
The pseudo code for this function:

Let t be the first task atom in list and rest the rest of the atoms
if t is primitive then
 Answer= t.seek_simpleplan
 if answer is a failure

 return failure
 else

return rest.seekplan()
 else

Find the first reduction “red” for t by calling t.reduce
while (red is not a dummy reduction)

Subtasks= red.reduction
 Add the task atoms in “rest” to subtasks.

Answer= subtasks.seekplan
if Answer has not a falied plan

return Answer
else

red is the next reduction
end while

return an empty PairPlanTState object with failed plan

JSListPairPlanTStateNodes seekPlan(JSTState ts,
JSPlanningDomain dom, boolean All)
This method finds all plans for the tasks in this object. If All is false it returns the first
plan. It also returns a list that contain tuples of plan, state, global additions list, global
deletions list and the derivation tree. This can be useful if one is interesting in observing
the whole derivation of the plan.

boolean fail()
void makeFail()
void makeSucceed()

31

Methods for changing the truth value of the instance variables.

JSTasks applySubstitutionTasks(JSSubstitution alpha)
Returns a new task list that is same as this one except the variables bounded in alpha are
changed in the new one to their corresponding values.

boolean contains(JSTaskAtom t)
Returns true if the task atom “t” is in the list of this object.

JSTasks cloneTasks()
Returns a new task list that is the same as this one.

JSTasks cdr()
Returns a new task list that has the same content with this one except the first element is
removed.

JSTasks standarizerTasks()
Returns anew task list such that all the variables names in the list are replaced with new
names.

7.22 JSPlan

This class extends JSTasks (a plan is a list of primitive tasks) . The only extension to
JSTasks class (which represents a list of tasks) is an instance variable that shows whether
a plan failed or not. There are also some functions to manipulate this variable.

7.22.1 Instance Variables

boolean isFailure
True when there is no plan, an empty list of tasks does not mean a failure.

7.22.2 Method Details

void assignFailure()
Assigns true value to “isFailure”

boolean isFailure()
Returns the value of “isFailure”

void addElements(JSPlan pl)
Append the contents of the plan p1 to this plan

7.23 JSState

32

This class is extends the JSListLogicalAtoms class. It is used for representing the current
state of the world. The functions defined in this class can check whether a predicate,
conjunct can be satisfied with in the current state. The effects of applying an operator are
also defined in this class.

7.23.1 Instance Variables

No instance variables are declared.

7.23.2 Method Details

JSTState applyOp(JSOperator op, JSSubstitution alpha,
JSListLogicalAtoms addL,JSListLogicalAtoms delL)
Returns a new TState object that has the new state resulting from applying the operator
and a delete list and add list that shows which state atoms should be deleted or added
from this state. This function does not change current state. “addL” and “delL” can be
empty or may contain elements.

public JSSubstitution satisfies(JSListLogicalAtoms conds,
JSSubstitution alpha, JSListAxioms axioms)

Tests if “conds” can be inferred from this (the current state) state and axioms
relative to the substitution alpha. If “conds” can be inferred, it returns the first matching
substitution else it returns the failed substitution

 public JSListSubstitution satisfiesAll(JSListLogicalAtoms
conds, JSSubstitution alpha, JSListAxioms axioms)
Tests if “conds” can be inferred from this (the current) state and axioms
modulo the substitution alpha. If ‘conds’ can be inferred, it returns all of the satisfying
substitutions else it returns an empty list indicating a failure.

public JSListSubstitution satisfiesTAm(JSPredicateForm t,
JSSubstitution alpha)
It searches all atoms in the current state to find the ones that unify with t under the
current variable bindings given in alpha. The list unifiers or an empty list is returned. –

7.24 JSTState

This class stores a target state and the list of additions and deletions that must be
performed on the current state to reach the target state. This class has no use in the
SHOP algorithm. This is useful for systems integrated with SHOP which may need the
list of changes in the state. When searching for a plan a list for global additions and
deletions are propagated along the plan seeking functions so that whenever an operator is
applied these lists are also updated.

7.24.1 Instance Variables

33

JSState state
Target state

JSListLogicalAtoms addList
Additions to current state to reach the target state

JSListLogicalAtoms deleteList
Deletions from current state to reach the target state

7.24.2 Methods Details

JSState state()
JSListLogicalAtoms addList()
JSListLogicalAtoms deleteList()

Methods for accessing instance variables

void print()
Prints the target state, add and delete lists.

7.25 JSPairPlanTState

This is a data structure that has two main variables of type JSPlan and JSTSate. It does
not correspond to a form defined in SHOP. This class is used to store the plan and the
resulting state if the plan is applied The methods defined in this class are as usual for
accessing and printing the instance variables.

7.25.1 Instance Variables

JSPlan plan
The plan generated for a given problem

 JSTState tState
The final state that will be produced when the plan is applied.

7.25.2 Method Details

JSPlan plan()
JSTState tState()
Functions for accessing instance variables

void print()
Prints the plan and the TState.

7.26 JSPlanningProblem

34

This class stores a planning problem, initial state and the task list to be accomplished. It
has a constructor that can initialize its contents from an input file that contains a make-
problem statement. The methods declared in this class are for assigning values to the
instance variables and for accessing and printing them.

7.26.1 Instance Variables

String name
Name of the problem

JSState state
Initial state of the world

JSTasks tasks
Task list to be planned

String domainName
Name of the domain this problem belongs to

7.26.2 Method Details

void assignState(JSState aState)
Assigns the value of parameter "astate" to variable "state"

void makeTask(JSTaskAtom pred)
 Assigns the value of parameter "pred" to variable "tasks"

JSState state()
JSTasks tasks()

Functions for accessing instance variables

void print()
Prints the initial state and the task list to be planned.

7.27 JSListPlanningProblem

This class is extended from Vector class to store a list of planning problem.

7.27.1 Instance Variables

No instance variables declared.

35

7.27.2 Method Details

void print()
Prints all the planning problems.

7.28 JSPairPlanTSListNodes

This is a data structure that has two main variables of type JSPairPlanTSate and a list
(vector) of JSJShopNode .This class is used to store the plan, the resulting state if the
plan is applied and the tree that shows the whole decompositions to generate that plan.
The methods defined in this class are as usual for accessing and printing the instance
variables.

7.28.1 Instance Variables

JSPairPlanTState planS
The plan and the final state generated for a given problem

Vector listNodes
Tree that shows the decomposition of tasks to generate that plan.

7.28.2 Method Details

JSPairPlanTState planS()
Vector listNodes()
Functions for accessing instance variables

void print()
Prints the PairPlanTState and the tree.

7.29 JSListPairPlanTStateNodes

This is a data structure extended from Vector class. The class represents a list of objects
of type JSPairPlanTStateListNodes.

7.29.1 Instance Variables

No instance variables

7.29.2 Method Details

void print()
Prints the PairPlanTState and the tree for every element.

36

7.30 JSJShop
This is the main class that parses and initializes the domain and problems.

7.30.1 Instance Variables

JSPlanningDomain dom
Contains the planning domain

JSPlanningProblem prob
Contains the planning problem

JSPlan sol;
 Contains the solution plan

JSJshopNode tree
Contains the decomposition tree that generates the solution plan

JSPairPlanTSListNodes solution
Contains the solution plan and the final state that will be reached if the plan is applied

7.30.2 Method Details
JSJshopNode getTree()
Returns the decomposition tree

JSPairPlanTSListNodes getSolution()
Returns the solution plan

JSListLogicalAtoms getAddList()
The list of atoms that should be added the current state if the plan is applied.

JSListLogicalAtoms getDeleteList()
The list of atoms that should be deleted from the current state if the plan is applied

void testParser()
void parserFile(String libraryFile)
void processToken(StreamTokenizer tokenizer)
 Methods for parsing the input file.

JSPlanningDomain dom()
JSPlanningProblem prob()
JSPlan sol()
JSJshopNode tree()
Methods for accessing the instance variables.

37

7.31 JSEvaluate
This class is used for evaluating the expressions in a predicate form or a term. For the
time being it accepts the binary operations namely – “+,-,*,/,<,<=,>,>=, member , min ,
max” and unary operations “ floor, ceil,not ”.

7.31.1 Instance Variables

boolean fail;
True if the evaluation fails.

boolean BothInt;
 True if the both parameters are integers.

7.31.2 Method Details

static float numericValue (JSTerm operant1)
Returns the numeric value that is stored in operant1. If the conversion fails it sets the fail
flag.

JSTerm addsub (float operant1, float operant2,int optype)
Performs addition if optype is 1 and subtraction otherwise.

JSTerm mult(float operant1 , float operant2)
Performs multiplication operation

JSTerm div(float operant1 , float operant2)
Performs division operation

JSTerm greater(float operant1 , float operant2)
Checks if the value of operant1 is greater than operant2

JSTerm greaterequal(float operant1 , float operant2)
Checks if the value of operant1 is greater than or equal to operant2

JSTerm equal(float operant1 , float operant2)
Checks if the value of operant1 is equal to operant2

JSTerm floor(float operant)
Returns a term containing the floor value of the operant

JSTerm ceil(float operant)
Returns a term containing the ceiling value of the operant

JSTerm minOf(float operant1 , float operant2)
Returns the term that contains the minimum of operant1 and operant2

JSTerm maxOf(float operant1 , float operant2)
Returns the term that contains the maximum of operant1 and operant2

38

JSTerm member(JSTerm operant1 , JSTerm operant2)
Checks if the term operant1 is a member of the list that is in operant2

JSValue applyOperator (String op, JSTerm operant1, JSTerm
operant2)
Checks the operant values and calls the appropriate binary function depending on the
value of op.

int OperantNum (String op)
Returns the the number of operants for the given operator op.

JSTerm applyOperatorUnary (String op ,JSTerm operant1)
Calls the appropriate binary function depending on the value of op

7.32 JSJshopNode
This is a data structure that corresponds to a node of a tree. The data on each node is a
task atom T and the children of a node contains the nodes for subtasks generated by
reducing T. The whole derivation tree is represented as a adjacency list of JSJshopNode.

7.32.1 Instance Variables

JSTaskAtom atom
Task atom that the node stands for

Vector children
List of subtasks reduced from atom

7.32.2 Method Details

JSJshopNode(JSTaskAtom a, Vector c)
Class constructor that initializes atom to a and children to c

public void print()
Prints the atom and the children

public JSTaskAtom atom()
public Vector children()
Method for accessing instance variables.

7.33 JSParserError
This class is extended from the Error class. When the parser encounters something it does
not expect it throws an error of type JSParserError. There are no instance variables or
methods defined in this class.

39

7.34 JSUtil

This class includes a list of functions to read tokens from an input file and to print
messages on standard error. It serves as a library function for I/O operations.

8 Difference between SHOP and JSHOP

The differences between SHOP and JSHOP can be can be grouped in two sets: syntactic
changes in the domain definitions, and differences in functionality.

8.1 JSHOP Syntax

The table below gives examples of JSHOP’s syntax, comparing it to the syntax used in
SHOP:

Previous syntax New Syntax
(make-domain 'travel
 '(
 (:- (have-taxi-fare ?distance)
 ((have-cash ?m)
 (eval (>= ?m (+ 1.5 ?distance)))))

 (:- (walking-distance ?u ?v)

 ((weather-is 'good)
 (distance ?u ?v ?w)
 (eval (<= ?w 3)))

 ((distance ?u ?v ?w)
 (eval (<= ?w 0.5))))

 (:method (pay-driver ?fare)
 ((have-cash ?m)
 (eval (>= ?m ?fare)))
 `((!set-cash ?m ,(- ?m ?fare))))

 (:method (travel-to ?q)
 ((at ?p) (walking-distance ?p ?q))
 '((!walk ?p ?q)))

 (:method (travel-to ?y)
 ((at ?x) (at-taxi-stand ?t ?x)
 (distance ?x ?y ?d) (have-taxi-fare ?d))
 `((!hail ?t ?x) (!ride ?t ?x ?y)
 (pay-driver ,(+ 1.50 ?d)))
 ((at ?x) (bus-route ?bus ?x ?y))
 `((!wait-for ?bus ?x) (pay-driver 1.00)
 (!ride ?bus ?x ?y)))

 (:operator (!hail ?vehicle ?location)

(defdomain travel
 (
 (:- (have-taxi-fare ?distance)
 ((have-cash ?m)
 (call >= ?m (call + 1.5 ?distance))))

 (:- (walking-distance ?u ?v)

 good ((weather-is good)
 (distance ?u ?v ?w)
 (call <= ?w 3))

 bad ((distance ?u ?v ?w)
 (call <= ?w 0.5)))

 (:method (pay-driver ?fare)
 ((have-cash ?m)
 (call >= ?m ?fare))
 ((!set-cash ?m (call - ?m ?fare))))

 (:method (travel-to ?q)
 ((at ?p) (walking-distance ?p ?q))
 ((!walk ?p ?q)))

 (:method (travel-to ?y)
 by-taxi
 ((at ?x) (at-taxi-stand ?t ?x)
 (distance ?x ?y ?d) (have-taxi-fare ?d))
 ((!hail ?t ?x) (!ride ?t ?x ?y)
 (pay-driver (call + 1.50 ?d)))
 by-bus
 ((at ?x) (bus-route ?bus ?x ?y))
 ((!wait-for ?bus ?x) (pay-driver 1.00)
 (!ride ?bus ?x ?y)))

40

 ()
 ((at ?vehicle ?location)))

 (:operator (!wait-for ?bus ?location)
 ()
 ((at ?bus ?location)))

 (:operator (!ride ?vehicle ?a ?b)
 ((at ?a) (at ?vehicle ?a))
 ((at ?b) (at ?vehicle ?b)))

 (:operator (!set-cash ?old ?new)
 ((have-cash ?old))
 ((have-cash ?new)))

 (:operator (!walk ?here ?there)
 ((at ?here))
 ((at ?there)))
))

 (:operator (!hail ?vehicle ?location)
 () ()
 ((at ?vehicle ?location)))

 (:operator (!wait-for ?bus ?location)
 () ()
 ((at ?bus ?location)))

 (:operator (!ride ?vehicle ?a ?b)
 ()
 ((at ?a) (at ?vehicle ?a))
 ((at ?b) (at ?vehicle ?b)))

 (:operator (!set-cash ?old ?new)
 ((have-cash ?old))
 ((have-cash ?old))
 ((have-cash ?new)))

 (:operator (!walk ?here ?there)
 ((at ?here))
 ((at ?here))
 ((at ?there)))
))

(make-problem 'go-park-rich 'travel

 `((distance downtown park 2)
 (distance downtown uptown 8)
 (distance downtown suburb 12)
 (at-taxi-stand taxi1 downtown)
 (at-taxi-stand taxi2 downtown)
 (bus-route bus1 downtown park)
 (bus-route bus2 downtown uptown)
 (bus-route bus3 downtown suburb)
 (at downtown)
 (weather-is good)
 (have-cash 80)))

'((travel-to park)))

(defproblem go-park-rich travel

 ((distance downtown park 2)
 (distance downtown uptown 8)
 (distance downtown suburb 12)
 (at-taxi-stand taxi1 downtown)
 (at-taxi-stand taxi2 downtown)
 (bus-route bus1 downtown park)
 (bus-route bus2 downtown uptown)
 (bus-route bus3 downtown suburb)
 (at downtown)
 (weather-is good)
 (have-cash 80)))

((travel-to park)))

(make-problem-set 'travel
 '(go-park-broke
 go-park-rich
))

 Not defined in JSHOP. Instead JSHOP
parses and solves all the problems in a
problem file.

(defparameter *downtown-broke-bad*
 `((distance downtown park 2)
 (distance downtown uptown 8)
 (distance downtown suburb 12)
 (at-taxi-stand taxi1 downtown)
 (at-taxi-stand taxi2 downtown)
 (bus-route bus1 downtown park)
 (bus-route bus2 downtown
 uptown)
 (bus-route bus3 downtown
 suburb)

 Not defined in JSHOP

41

 (at downtown)
 (weather-is bad)
 (have-cash 0)))
(do-problems travel :which ':all) Not defined in JSHOP

(1 g ?y 6) an ordinary list (list 1 g ?y 6)

Table 2 Simple travel domain defined in JSHOP’s syntax and SHOP’s syntax.

To summarize, the changes in syntax are as follows:

• Quotes, back quotes or commas are not used in JSHOP.
• make-domain is replaced with defdomain.
• make-problem is replaced with defproblem.
• defparameter,make-problem-set, do-problem and do-problem-set are not

implemented in JSHOP. Instead JSHOP parses and solves all the problems in a
problem file.

• Operators have preconditions in JHOP.
• Instead of using eval (e) where e is a lisp expression, JSHOP uses (call f t1 t2

..tn). Call is not as powerful as eval, because it can only compute a small subset of
functions that eval can.

• The tail of an axiom can have names for each of the conjuncts, and the tail of a
method can have names for each of the precondition-decomposition pairs. These
names are optional.

• An ordinary list should be differentiated from a predicate or a function by
inserting the label “list” before the first element of the list.

• “.” can be used in JSHOP only for ordinary lists. Predicates and functions are
treated different from ordinary lists. Thus, unlike in SHOP, one can not use a list
to serve as a function in JSHOP.

• The JSHOP parser expects only alphanumeric characters and the special
characters defined in JSJshopVars class (see section 7.1). The only whitespace
characters that the parser expects, are the space and newline characters. If the
parser encounters a tab or any other nonexpected characters, it returns an error
message.

• In SHOP the following is valid.
 (:method (varSubtasks ?tasklist)
 ((precondition))
 ?tasklist
)

This kind of method, in which the sunbtasks are created on the fly, is not
supported in JSHOP.

8.2 The usage of JSHOP

The command line below will run JSHOP :

42

 java JSJshop domaindef-file-name problem-def-file-name [numer-of-plans] [flag-level]

where

• JSJshop is the name of the main class
• domaindef-file-name is the name of the file in which the domain definiton is

specified,
• problem-def-file-name is the name of the file in which a list of problems are

defined
• numer-of-plans is an optional parameter. It can be one or all . If the value of this

parameter is one then only the first plan will be displayed, if the value is all then
all of the plans will be displayed. The default value is one.

• Another optional parameter is flag-level, it can have any value in the range 1 to 10.
The higher the value the more output is displayed.

Given the command line above JSHOP will parse the domain definition and problem
definition files. If any parsing error occurs the program terminates. Otherwise JSHOP
will solve all the problems defined in the problem definition file.

8.3 Functionality differences in JSHOP

The following functions are implemented in SHOP but not in JSHOP;

• Iterative Deepening search for a plan
• Statistics like depth and cost of the plan
• The check-for-loop option, which tells SHOP to checks for loops in the plan.
• JSHOP’s unification mechanism does include the “occurs check.”
• The depth first search for the plan has no depth limit.

When JSHOP finds a plan, it also returns the following items that SHOP does not return:

• The final state that will be reached upon applying the plan ,
• The list of state atoms that will be added and deleted from current state to reach

the final state,
• The derivation tree for the plan

