
Opportunities and Limitations of Hardware
Timestamps in Concurrent Data Structures

Olivia Grimes
Lehigh University
Bethlehem, USA

oag221@lehigh.edu

Jacob Nelson-Slivon
Lehigh University
Bethlehem, USA
jjn217@lehigh.edu

Ahmed Hassan
Lehigh University
Bethlehem, USA

ahh319@lehigh.edu

Roberto Palmieri
Lehigh University
Bethlehem, USA

palmieri@lehigh.edu

Abstract—Designing high-performance, highly-concurrent lin-
earizable data structures is complex, especially when bulk op-
erations (e.g., range queries) are included. Relying on a single
source of synchronization, such as a logical global timestamp,
unequivocally eases the design of the synchronization schemes.
However, such a design creates a single point of contention, and
thus carries performance downsides. As a result, designers often
face the dilemma between a simple design and a performance
bottleneck. Recently, modern commodity architectures have en-
abled low-level mechanisms that guarantee that the timestamp
registers of all CPUs are synchronized, thus enabling the use of
hardware timestamps in data structure designs. Although recent
work already exploits this, this work aims at understanding the
opportunities and limitations of using hardware timestamps in
existing data structure designs. We address this challenge by
applying hardware timestamping to three recent state-of-the-art
algorithms that use logical timestamps to support range queries
in concurrent data structures. Our evaluation shows that the
use of hardware timestamps does indeed improve performance
compared to the original designs, achieving up to 5.5x improve-
ment. More importantly, by removing the bottleneck of using
global logical timestamps in these algorithms, we highlight the
design choices that most significantly impact the use of hardware
timestamps. Specifically, we show that the mechanism of labeling
objects with timestamps plays an important role in maximizing
the benefits of leveraging hardware timestamps.

Index Terms—Concurrent Data Structures, Linearizability,
Range Query

I. INTRODUCTION

Concurrent data structures are widely used to provide
high performance for applications running on multicore ma-
chines [1]–[8]. Until recently, they have mostly supported
elemental operations, meaning operations that only affect
one element in the abstract state of the data structure. A
growing number of data structure designs (e.g., [9]–[13]) have
been augmented to support the execution of efficient, highly
concurrent, linearizable bulk operations, meaning operations
that potentially affect multiple elements in the abstract state of
the data structure. A range query is a typical implementation of
a read-only bulk operation that returns all elements belonging
to a given range in the data structure. Supporting efficient bulk
operations allows data repositories, such as key-value stores,
to enrich the semantics of their operations, resulting in more
functionalities offered to applications.

Producing an efficient synchronization strategy for data
structures that incorporate both elemental and bulk operations

is a very challenging task. Utilizing a global timestamp to
synchronize operations is a common (and simple) approach
to support linearizable bulk operations on a wide variety of
underlying data structures, as demonstrated in literature [9]–
[11]. However, this approach comes with a major performance
caveat: requiring each operation to access and/or increment
a global timestamp produces a single point of contention
that can significantly affect the performance of the overall
system, especially in large multicore architectures (see our
performance evaluation in Section III). This degradation in
performance is due to cache-coherence since threads are both
reading and writing the logical timestamp, as well as the
latency overhead due to NUMA. Other approaches (e.g., [12])
avoid the use of a global timestamp by deploying highly
specific synchronization strategies that are difficult to extend
to other structures and whose safety is difficult to prove. Trans-
actional memory [14], [15] solves the problem of supporting
linearizable bulk operations by relying on the transaction
abstraction. However, the generality of transactional memory
disallows the exploitation of data structure semantics, which
generally results in poor performance.

Since their release in 1993, devices utilizing the Intel
Pentium processor have included a per-core timestamp register,
allowing access to the CPU’s timestamp counter (or simply
TSC). TSC tracks every cycle that occurs on the CPU, and is
thereby a monotonically increasing value. In recent Intel pro-
cessors, the timestamp counter in each CPU is guaranteed to be
synchronized with respect to one another [16]. The RDTSC and
RDTSCP assembly instructions allow programmers to access
TSC by loading the timestamp register into the RDX and
RAX registers. By utilizing TSC to synchronize operations,
we remove the point of contention caused by threads concur-
rently trying to access and update the same logical timestamp
variable (causing cache-coherence overhead), thus ridding of
the major bottleneck that is associated with using a simple,
version-based approach to synchronization. Recent literature
exploits TSC to improve the performance of their work [5],
[13], [17], [18].

This paper aims to analyze the effects of using a hardware
timestamp in the context of versioned data structures to
understand how design factors impact the usefulness of using
a hardware timestamp. Our analysis can help programmers
to assess whether their prior work could benefit from the

use of a hardware timestamp, as well as factors to consider
when designing a new data structure to most effectively use a
hardware timestamp.

In order to conduct our analysis, we provide a simple
API allowing programmers to utilize the fast, monotonically
increasing timestamp. We focus on three state-of-the-art algo-
rithms meant to enhance data structures by providing lineariz-
able range queries: Bundled References [9], EBR-RQ [10],
and vCAS [11]. Each of these data structure designs rely on a
logical timestamp to synchronize range queries with the other
operations. We replace the logical timestamp in each range
query technique with the use of our API.

In our evaluation, we test the three aforementioned tech-
niques on some subset of the following data structures: a lock-
free Binary Search Tree [1], a lock-based Citrus Tree [19]
(a variant of a Binary Search Tree), and a lock-based Skip
List [20]. In the case of augmenting the Binary Search Tree
with vCAS, our evaluation reveals that this simple modifica-
tion to the use of a timestamp produces a speedup of up to 5.5x
compared to the original implementation. Our evaluation also
reveals cases in which little speedup is observed, for example,
when augmenting the Citrus Tree to use EBR-RQ. In either
case, the results allow us to analyze how the properties of each
algorithm impact the benefits achieved by using the hardware
timestamp.

In analyzing our results, we observe that the significance of
using TSC relies on the strategy that the algorithm uses to tag
an object with a timestamp. We call this step timestamp label-
ing and evaluate under what conditions it enables effectively
leveraging hardware timestamps. We find that algorithms that
do not require atomically reading the timestamp and labeling
the object, such as vCAS and Bundling, benefit greater from
hardware timestamps than approaches that do require these
steps to be atomic (e.g., EBR-RQ).

A summary of our contributions is as follows:
• Provide an API allowing programmers to utilize the

monotonically increasing hardware timestamp, thereby
avoiding contention and thus removing the bottleneck
produced by using a logical timestamp.

• Evaluate the results of replacing the global timestamp in
relevant state-of-the-art algorithms with the hardware’s
synchronized clock, and determine key performance in-
dicators.

• Outline the ideal cases for using the hardware timestamp,
as well as its limitations and design implications.

To the best of our knowledge, this is the first study
correlating different data structure designs with performance
achievable by the exploitation of hardware timestamps as
opposed to logical timestamps.

This paper proceeds as follows: Section 2 elaborates on
TSC and describes our simple API. In Section 3, we evaluate
improvements in performance achieved by using TSC instead
of a logical timestamp. Section 4 provides a detailed analysis
of timestamp labeling and its effect on leveraging TSC.
Finally, Section 5 discusses related work, and we conclude
in Section 6.

II. THE HARDWARE TIMESTAMP

In this section, we describe TSC and the memory ordering
guarantees provided by the assembly instructions that access
the timestamp register. We then introduce our simple API,
written in C++, which allows programmers to utilize the CPU’s
timestamp counter.

A. TSC

Beginning with the Pentium processor, Intel 64 and IA-
32 architectures have included the ability for programmers to
access the CPU timestamp counter, called TSC [21]. Other
modern processor vendors, namely AMD, Sparc, and ARM,
also provide a hardware timestamp counter [22]. For exam-
ple, ARM provides the Performance Monitors Cycle Count
Register, or simply PMCCNTR [23]. Similar to RDTSC/P,
PMCCNTR is a register that stores the value of the processor
cycle counter, which counts the processor’s clock cycles. We
focus only on Intel processors as they are most commonly
used in the context of data structures [9]–[11], [13]. These
processors include per-core timestamp registers which store
the value of TSC. In order to use TSC as a timestamping
mechanism on a multi-core system, it must be (1) monotoni-
cally increasing, and (2) each core must be synced with respect
to one another. Until more recently, this second condition
was not necessarily met with regard to TSC. Some processor
families increment the timestamp counter at a constant rate,
meaning all cores are synced with respect to one another. Other
processor families, however, capture the number of cycles by
incrementing TSC with every internal processor clock cycle.
The timestamp counter in these cores may become out of sync
since the duration of clock cycles may vary for a variety of
reasons, such as energy saving mechanisms and other types of
interrupts.

Invariant TSC is a more recent enhancement to the hardware
timestamp counter and allows the second condition required
for using TSC as a timestamping mechanism to be met. The
availability of invariant TSC is indicated by a bit in the
CPUID, and ensures that TSC is incremented at a constant
rate [21]. TSC is thus kept in sync amongst cores and can
be used to synchronize operations. For the remainder of this
paper, we assume the use of invariant TSC when referring to
TSC.

B. Comparing Assembly Instructions

There are two assembly instructions that load the value of
TSC into the timestamp register: RDTSC and RDTSCP. Each
instruction performs the same basic operation but comes with
different memory ordering guarantees. On a 64-bit architec-
ture, RDTSC and RDTSCP load the high-order 32 bits of the
timestamp register into RDX and the low-order 32 bits into
RAX. In a 32-bit architecture the timestamp is instead loaded
into EAX and EDX registers respectively. A bitwise OR is
performed to reconstruct and store the timestamp value into a
local variable.
RDTSC has no memory ordering guarantees, meaning it

is possible that the processor could reorder the instruction

from the order in which it appears in the program. This
would clearly create a problem with using a timestamp since
the point at which the timestamp is read in program order
affects whether the operation occurring is properly serialized
or not. To solve this issue, we use the CPUID assembly
instruction in conjunction with the RDTSC instruction. CPUID
is a serializing instruction that forces the CPU to complete
every preceding instruction of the code before fetching and
executing the next instruction, thus ensuring that the read of
the timestamp occurs at the correct time. A negative to this
approach is that the CPUID instruction incurs decent overhead
as it requires over 200 clock cycles to complete.
RDTSCP has a pseudo-serializing property, such that it

waits until all preceding instructions have executed before
reading the counter, however, it allows for the possibility that
subsequent instructions may begin execution before the read
operation of TSC is performed. This presents a similar issue
to the RDTSC instruction of breaking serializability. Since
CPUID produces substantial overhead and RDTSCP has the
pseudo-serializing property, we fix this issue by adding an
LFENCE instruction after the RDTSCP instruction. Adding
the LFENCE instruction guarantees that RDTSCP will be ex-
ecuted before any subsequent instructions (including memory
accesses), thus solving the issue related to using the RDTSCP
instruction.

In order to understand the potential performance of using
a logical timestamp versus accessing TSC, we compare the
throughput of incrementing the logical timestamp using the
atomic fetch-and-add operation, with accessing TSC using
both RDTSC and RDTSCP respectively. We test the perfor-
mance of using RDTSC and RDTSCP both with and without
the memory-ordering guarantees provided by the fences as
previously discussed.

Figure 1 shows the results of performing this experiment.
We use the same machine as is subsequently described in
the Evaluation. This machine has four NUMA zones, each
equipped with a total of 24 cores, allowing for 48 hardware
threads (using hyperthreading) per NUMA zone, and a total
of 192 hyperthreads. Each thread is pinned to a core in order
to achieve the best performance. We pin threads by saturating
one NUMA zone before beginning to pin threads to the next
one. Within a NUMA zone, we pin each pair of hardware
threads to their shared physical core consecutively. The same
pattern is applied to the remaining three NUMA zones as the
threads continue to scale. This policy for pinning threads is
optimal for the Logical TS approach since hyperthreads
on the same core share its L1 cache and are thus able to take
better advantage of caching.

Our results indicate that with fences, the RDTSCP in-
struction always outperforms the RDTSC instruction due to
the overhead incurred by the CPUID instruction. While the
LFENCE and CPUID instructions add significant overhead
as evident by the performance achieved without fences, both
RDTSC and RDTSCP still vastly outperform the logical times-
tamp approach, even with their memory-ordering guarantees.
Aside from assessing the overhead of LFENCE and CPUID,

Fig. 1: Throughput of accessing and incrementing a logical
integer variable in a loop (denoted Logical TS) and ac-
cessing TSC with RDTSC and RDTSCP respectively in a loop.
The x-axis represents the number of threads. The figure on the
bottom differs from the figure on the top only in that it does
not include (most of) the RDTSCP data to better highlight the
differences between RDTSC and Logical TS.

we included the results of accessing RDTSC and RDTSCP
without fences because if an algorithm implicitly provides
proper synchronization around the timestamp, there may not be
a need for any fences. However, since fences ensure safety and
consistency, we use them in our evaluation and thus assume the
use of fences when referencing the two assembly instructions
going forward.

As clear from the top plot in Figure 1, the RDTSCP
instruction is very fast to access, achieving over 95x more
throughput than the Logical TS approach. Additionally, the
bottom plot in Figure 1 reveals that the RDTSC approach
improves over the Logical TS approach by as much as 2.6x
with 192 hyperthreads.

It is also worth discussing the single-threaded behavior as
seen in the bottom plot in Figure 1. With one thread, the
Logical TS approach benefits from the positive effect of
caching, while the RDTSC/P approaches suffer from their re-
spective additional memory-protecting instruction (i.e., CPUID
and LFENCE). However, as the thread count increases, the

inverse relationship applies. The Logical TS approach is
unable to benefit from caching due to the use of many cores
and eventually NUMA zones, while the RDTSC/P approaches
appear to become less inhibited by the overhead incurred by
the memory-protecting instructions since each core has its own
hardware timestamp to access.

Clearly, the RDTSCP assembly instruction with the use of
fences is the fastest and safest option. From this point on we
only use the RDTSCP assembly instruction with its LFENCE
serializing instruction.

C. Hardware Timestamp API

Listing 1: Hardware Timestamp API
1 t i m e s t a m p _ t g e t _ n e x t _ t i m e s t a m p () {
2 unsigned long long cyc l e s _ low ,
3 c y c l e s _ h i g h ;
4 asm v o l a t i l e (
5 "RDTSCP \ n \ t "
6 "mov %%rdx , %0\n \ t "
7 "mov %%rax , %1\n \ t "
8 "LFENCE \ n \ t " : "= r " (c y c l e s _ h i g h) ,
9 "= r " (c y c l e s _ l o w) : :

10 "%r a x " , "%r c x " , "%rdx ") ;
11 t i m e s t a m p _ t t s = (((u i n t 6 4 _ t) c y c l e s _ h i g h
12 << 32) | c y c l e s _ l o w) ;
13 re turn t s ;
14 }

Our simple API is provided in Listing 1. We call the
RDTSCP instruction which loads the value of TSC into the
RDX and RAX registers as previously described. We then
move the value in these registers into variables cycles_low
and cycles_high. The LFENCE instruction ensures that we read
TSC before executing any further instructions.

We must clobber the RAX, RCX and RDX registers (Line 10)
to indicate that they will be overwritten by the inline assembly
code. RCX must be clobbered in addition to RAX and RDX
because RDTSCP additionally loads the CPU ID into RCX.
Finally, we reconstruct the full timestamp with a bitwise OR
and return the value of TSC.

For each of the three aforementioned algorithms that we
analyze, we replace the use of a logical timestamp with the
use of our API. In each case, modifying the code simply
requires replacing each call to read or increment the logical
timestamp with a call to our API to read the next timestamp
from TSC. We remove the global timestamp variable in each
implementation and add no additional lines of code. Replacing
code with our API is thus a simple programming task and
using it for a new project is very straightforward.

III. EVALUATION

To evaluate the use of a hardware timestamp, we replace
the logical timestamp with our API in three state-of-the-art
techniques for supporting linearizable range queries: Bundled
References [9], vCAS [11], and EBR-RQ [10]. Before digging
deeper into our evaluation, we first describe the characteristics
of each algorithm relevant to our analysis. We refer the reader
to their respective publications for more details.

Bundled References implements range queries for lock-
based linked data structures. A bundle stores a history of
links between nodes such that each link is augmented with
a timestamp, allowing a range query to traverse a consistent
snapshot of the data structure. Bundling increments the logical
timestamp during an update operation, and each range query
reads it to define its linearizable snapshot. Since Bundling
exclusively augments lock-based data structures, its range
query operation is also blocking.

vCAS implements range queries for lock-free data struc-
tures. vCAS introduces the so called versioned CAS (or vCAS)
object, which is meant to replace mutable objects in the
structure. Akin to bundling, each vCAS object records the
history of updates to it. When applied to lock-free linked
data structures, it allows a range query to traverse a consistent
snapshot and properly retrieve constituent elements in a non-
blocking manner. Unlike Bundling, vCAS increments the
logical timestamp at the start of a range query operation and
this timestamp is read by update operations to tag any modified
vCAS objects.

Finally, EBR-RQ takes advantage of a property of epoch-
based-reclamation (EBR) algorithms that make them ideal for
implementing range queries. Specifically, EBR temporarily
places deleted nodes in what is called a limbo list, and waits
to reclaim the nodes until the algorithm is sure that no process
needs to access them. EBR-RQ harnesses this property by
augmenting nodes with insertion and deletion times, allowing
range queries to scan the current state of the data structure
followed by the limbo lists. These lists are created by EBR
algorithms and used to ensure all nodes in the range at the
time the range query is linearized will be captured.

As with vCAS, EBR-RQ increments the logical timestamp
at the start of a range query operation. EBR-RQ is imple-
mented using both a lock-free and lock-based approach. In
both approaches, reading the timestamp by an update operation
must be atomic with assigning it to the modified node. To
accomplish this, the lock-based version uses a readers-writer
lock, while the lock-free version uses a double-compare-
single-swap (DCSS) primitive. This design severely limits the
ability of the lock-based version of EBR-RQ to benefit from
the use of TSC, as is subsequently analyzed in this section. In
the next section, we also discuss how the use of DCSS in the
lock-free version prevents it from effectively using TSC.

Although all three techniques address the same problem,
their different design choices directly influence the efficacy
of porting them to use hardware timestamps. Specifically,
we identify three significant algorithmic differences between
them:

• The first difference is the progress guarantees that they
offer. EBR-RQ and Bundled References are lock-based
while vCAS is lock-free.

• Second, they differ in the operation responsible for updat-
ing the timestamp (range queries in vCAS and EBR-RQ,
and updates in Bundling).

• Third, EBR-RQ adopts more complex handling of the
timestamp as we mentioned earlier.

Given the above techniques, we test the impact of hardware
timestamps by measuring the performance of various data
structures ported to use them. We test each design with some
subset of the following data structures: a lock-free Binary
Search Tree [1], a lock-based, unbalanced Binary Search Tree
called a Citrus Tree [19], and a lock-based Skip List [20]. Due
to the progress guarantees provided by each technique, they
are not applicable to all data structures. Specifically, vCAS is
tested with the lock-free Binary Search Tree. Then, we use
the codebase in [9] to test the lock-based Citrus Tree with
the three algorithms. Finally, Bundling is tested with the lock-
based Skip List.

We applied vCAS and EBR-RQ to the Skip List structure
as well, however, since we did not observe performance gains
with using TSC, we decided to omit them from the paper. We
additionally tested the range query techniques on a lazy-list
data structure, however, we did not see any improvement in
performance since the bottleneck in such data structures is the
time required to traverse it (i.e., its linear complexity), not the
timestamp itself. In general, we choose to include experimental
results that allow us to analyze the limitations of hardware
timestamps in cases where we do see improvement.

A. The Effect of Ties in TSC

As previously noted, TSC is incremented in accordance
with every internal processor clock cycle, and thus the TSC
values read by threads are monotonically increasing but not
necessarily strictly increasing. One corner case that arises from
this is when two threads in different CPUs read the same TSC
value. In this section, we discuss how this tie may affect some
protocols, but not others. It is worth noting that we include this
part for completeness since such ties are theoretically possible,
even if in practice they are unlikely to happen. Specifically, we
discuss tie TSC values in two algorithms that use TSC: EBR-
RQ [10] and a related work, Jiffy [13]. These two algorithms
represent the two extreme cases in which on the one hand TSC
ties are harmless (in EBR-RQ), and on the other hand TSC
ties are algorithmically avoided (in Jiffy).

The EBR-RQ (lock-based) algorithm protects the timestamp
with a lock L. EBR-RQ already allows for tie timestamp values
for update and single-read operations; thus, tie TSC values
are also acceptable for these operations. On the other hand,
range queries increment the timestamp at the start of their
traversal, by acquiring L in exclusive mode, incrementing the
timestamp, setting the linearization point, and then releasing
L. Thus, when we replace the increment of the timestamp with
reading from TSC, it still remains impossible for two range
queries to read the TSC value at the same time since this read
is executed in a critical section protected by a lock.

Jiffy on the other hand must make algorithmic considera-
tions to ensure that no two revisions in their so-called revision
list, which stores the history of updates to a node, have the
same version. This is theoretically not guaranteed since the
values of those revisions are assigned from the TSC, which
is monotonically but not strictly increasing. Their solution to
overcome this includes adding a wait period, which they note

is never used in practice due to the clock-cycle resolution by
which TSC increments.

To conclude, while this is an important theoretical question,
it is rare and unlikely to occur in practice given the extremely
fast increment rate of TSC. Importantly, the empirical study
we are performing is not impaired by this discussion.

B. Experimental Setup

All of our code is written in C++ and compiled with
-std=c++11 -O3 -mcx16. We run our tests on a machine
running Ubuntu 20.04, with four Intel Xeon Platinum 8160
processors containing a total of 192 hyper-threaded cores split
between four non-uniform memory access (NUMA) zones.

In the following experiments, threads execute a given mixed
workload consisting of range queries, updates, and contains
operations on keys that are randomly generated with a uniform
distribution. Workloads are represented as U-RQ-C such that
U is the total percentage of update operations, RQ is the
percentage of range query operations, and C is the percentage
of contains operations. In each of our experiments, range
queries are 100 keys long such that the starting point is
randomly generated from the key range. Each of the three data
structures evaluated is pre-populated with elements having a
key range of 1,000,000. In each experiment, the given structure
is initialized with half of the elements in the key range. An
equal amount of deletions and insertions are attempted to
stabilize the size of the structure. Each data point is the result
of averaging five trials performed for three seconds each. The
results obtained in our experiments are consistent across trials
(i.e., the average coefficient variation across all trials is 1.6%).
Our code is public and available on Github.1

C. Results

We begin our evaluation by discussing the resulting perfor-
mance of incorporating hardware timestamps into vCAS for
the lock-free binary search tree, the results of which are shown
in Figure 2. The most significant source of speedup achieved
across all of our experiments is seen with these plots, which
highlight the potential for hardware timestamps to significantly
improve operation throughput. Figures 2a - 2d and 2i, and
Figures 2e - 2h represent a fixed range query percentage of
10% and 20% respectively with updates increasing left to right.
Figure 2a represents the outcome of a read-only workload
with 10% range query operations. Utilizing TSC allows the
throughput on 192 hyper-threaded cores to grow to nearly
200 Mops/s compared to about 67 Mops/s with the use of
a logical timestamp, producing nearly 3x speedup. Figure 2e
shows the results of another read-only workload, this time with
20% range query operations. In this case, the throughput of
utilizing TSC is about 221 Mops/s, while the use of a logical
timestamp only achieves about 40 Mops/s, thus producing a
speedup of over 5.5x with 192 hyper-threaded cores. Recall
that vCAS increments its timestamp for each range query
operation, explaining the increase in speedup as the percentage
of range query operations increases.

1https://github.com/sss-lehigh/rdtsc-versioning

(a) 0− 10− 90 (b) 2− 10− 88 (c) 10− 10− 80 (d) 50− 10− 40

(e) 0− 20− 80 (f) 2− 20− 78 (g) 10− 20− 70 (h) 50− 20− 30

(i) 90− 10− 0 (j) 100− 0− 0

Fig. 2: Throughput of a Binary Search Tree ported to use vCAS using both a logical timestamp approach (vCAS) and a
hardware timestamp approach (vCAS-RDTSCP) while varying the number of threads.

As the percentage of update operations increases through
Figures 2b - 2d and 2i, and Figures 2f - 2h, the speedup
of utilizing TSC compared to using a logical timestamp
decreases, but nonetheless there is significant speedup in
each case, ranging from 1.6-5x improvement in throughput
with 192 hyper-threaded cores. The throughput of the update-
only workload (Figure 2j) is the same for both methods of
timestamping (using a logical timestamp and using TSC),
which is expected since it is the responsibility of range query
operations to increment the timestamp in vCAS.

We now move our attention to evaluating the Citrus Tree
data structure. Figure 3 contains results for augmenting
the lock-based Citrus Tree data structure with vCAS and
Bundling. Figure 3a shows the throughput for a read-only
workload with a mix of range query operations and con-
tains operations. Since Bundled References increments the
timestamp during update operations, there is no difference in

throughput between each timestamping approach in Figure 3a,
as expected. vCAS on the other hand experiences speedup
for such a read-only workload, though notably less than it
achieves for the same workload on the lock-free binary search
tree (Figure 2a). The rest of the plots in Figure 3 show at least
some speedup in all cases.

Figure 4 includes the results of evaluating EBR-RQ with
the Citrus Tree data structure. Speedup is achieved by using
TSC rather than a logical timestamp in Figures 4a and 4b,
in which the range query rate is 10%, and the update rate
is 2% and 10% respectively. For each of these workloads,
speedup is achieved when saturating all non hyper-threaded
cores in the first NUMA zone (i.e., using no greater than 24
threads) and then takes a significant drop. The remainder of
the plots experience a similar trend wherein there is a spike
through the first NUMA zone up until the use of hyper-threads,
and then the throughput drops from there. Additionally, this

(a) 0− 10− 90 (b) 2− 10− 88 (c) 10− 10− 80 (d) 50− 10− 40

(e) 0− 20− 80 (f) 2− 20− 78 (g) 10− 20− 70 (h) 50− 20− 30

(i) 90− 10− 0 (j) 100− 0− 0

Fig. 3: Throughput of a Citrus Tree ported to use both vCAS and Bundling. Each range query technique uses both a logical
timestamp approach (vCAS and Bundle) and a hardware timestamp approach (vCAS-RDTSCP and Bundle-RDTSCP). The x
axis represents threads.

(a) 2− 10− 88 (b) 10− 10− 80 (c) 90− 10− 0

Fig. 4: Throughput of a Citrus Tree ported to use EBR-RQ using both a logical timestamp approach (EBR-RQ) and a hardware
timestamp approach (EBR-RQ-RDTSCP). The x axis represents threads.

(a) 10− 10− 80 (b) 90− 10− 0 (c) 100− 0− 0

Fig. 5: Throughput of a Skip List ported to use Bundled References using both a logical timestamp approach (Bundle) and a
hardware timestamp approach (Bundle-RDTSCP). The x axis represents threads.

is the only figure wherein the use of TSC performs worse
than the use of a logical timestamp, though only a few data
points reflect this behavior and the performance of TSC is
only slightly worse. These behaviors are due to the coarse-
grained locking nature of EBR-RQ in conjunction with the
lock-based approach taken by the Citrus Tree. Further analysis
of the algorithmic implications of this behavior is provided in
Section IV.

Finally, Bundling is evaluated using the lock-based Skip
List. The results are shown in Figure 5. While the TSC
method of timestamping is never worse than the logical
timestamp approach, it only shows speedup for update-heavy
workloads (Figures 5b and 5c). Due to the fact that Bundled
References updates its timestamp during update operations,
we see speedup in this workload configuration since with
the use of TSC, performing an update no longer requires
atomically incrementing the timestamp. The lack of perfor-
mance improvement for read-heavy workloads indicates that a
bottleneck in the Skip List data structure itself outweighs the
bottleneck associated with the use of a logical timestamp in
Bundled References.

IV. CONSEQUENCES OF TIMESTAMP LABELING

As demonstrated by our results, using TSC to synchronize
operations presents an opportunity to take advantage of the
simplicity and general purpose nature of a timestamp-based
approach, while avoiding the performance bottleneck that
results from using a logical timestamp. However, this may
not always apply. For example, the implications of a clever
algorithmic design of some component of a data structure
may have been hidden previously due to the use of a logical
timestamp. Conversely, an algorithm may be designed in such
a way that it is unable to realize any performance gains even
when utilizing TSC. Eliminating the timestamp bottleneck
allows us to focus on how the algorithmic choices made by
a programmer affect a data structure’s ability to scale and
generally achieve high throughput. To take full advantage of
the speed provided by using TSC, it is important to understand
how design choices impact the benefits of using it. Before

analyzing the correlation between the granularity of each
approach and the performance achieved by utilizing TSC, we
first introduce our notion of timestamp labeling and overview
the consequences of design choices related to it.

Timestamp Labeling. Timestamps are helpful constructs for
concurrent algorithms because they encapsulate the order of
events in a globally accessible variable. In order to record the
history of steps, an algorithm necessarily must label objects
with a timestamp to convey some information related to the
moment that a particular event occurred relating to that object
(e.g., insertion and deletion timestamps in EBR-RQ). We
denote this action timestamp labeling and observe that the
behavior of an algorithm during this step directly influences
the algorithm’s ability to harness hardware timestamps.

Consider the three algorithms we evaluate. Each has a
unique treatment of timestamp labeling. For instance, EBR-RQ
requires that the read of the timestamp and labeling of a data
structure node occur in the same logical instant, leading to a
global lock that protects the timestamp. Alternatively, Bundled
References requires that the timestamp labeling step occurs
atomically with the original structural modifications in order to
capture the total order of updates. Compared to EBR-RQ, this
has a finer granularity since it only entails holding the locks
required by the original data structure operation. Finally, vCAS
takes an approach whereby threads help each other to perform
timestamp labeling, which also represents the linearization
point of the update that is labeling the versioned CAS object.
When applying vCAS to traversal data structures, this step
corresponds to the linearization point of a given operation
(e.g., setting a child pointer). Through helping, timestamp
labeling is not the responsibility of a single thread but can
be delegated to the first operation that is able to perform the
step.

The above algorithmic characteristics directly correlate to
the performance observed in Section III. The global locking
technique of EBR-RQ causes the introduction of hardware
timestamps to be ineffectual since contention on the lock is
the primary bottleneck, not the timestamp itself. On the other
hand, Bundled References and vCAS have a much more fine-

grained timestamp labeling policy that allows them to benefit
from hardware timestamps by reducing the negative effects
(i.e., coherence traffic) of simultaneous accesses to a logical
timestamp. In the remainder of this section, we investigate the
consequence of these behaviors in more detail.

vCAS and Bundling. Recall that Figure 3 contains results
for augmenting a Citrus Tree to use vCAS and Bundling
respectively. The fine-grained timestamp labeling nature of
both vCAS and Bundled References lends itself to taking
advantage of hardware timestamps since alleviating the bot-
tleneck associated with accessing a logical timestamp is not
overshadowed by other algorithmic behaviors. Removing the
timestamp bottleneck in vCAS allows it to achieve perfor-
mance comparable to Bundling in the cases where Bundling
previously outperformed vCAS, revealing that the logical
timestamp is a critical bottleneck in vCAS.

This case exemplifies that by leveraging the hardware times-
tamp, we are able to truly understand the limitations of the data
structures as it directly relates to the design of algorithms,
rather than attributing overhead to the bottleneck of a logical
timestamp. For example, the read-intensive workloads in Fig-
ure 3 demonstrate that vCAS obtains superior speedup when
using TSC relative to Bundling since the logical timestamp is
incremented by range queries, whereas Bundling simply reads
it. Furthermore, the update-heavy workloads reveal that the
design of vCAS is better suited for such workloads compared
to Bundling. Since contention on the logical timestamp is
removed from Bundling, we know that other characteristics
of the algorithm are the reason for its worse performance.
With this knowledge, the update methods of each approach
can be analyzed to determine design factors that allow vCAS
to outperform Bundling, without concern for the bottleneck
produced by a logical timestamp. In this case, the larger
speedup achieved by vCAS for update-heavy workloads is
likely due to their use of helping for update operations.

Comparing the results of Figure 2 and Figure 3 clearly
indicates that for an augmentation approach like vCAS, using
TSC with a lock-free data structure vastly outperforms the
use of TSC on a lock-based structure, as it is able to take full
advantage of the fine-grained timestamp labeling.

Lock-based EBR-RQ. As previously discussed, EBR-RQ
implements its range query operation with a global readers-
writer lock to protect critical regions of code associated with
accessing and/or incrementing the timestamp, resulting in
coarse-grained timestamp labeling compared to vCAS and
Bundling. Specifically, the lock is acquired in exclusive mode
when the timestamp is incremented at the beginning of a
range query operation and is acquired in shared mode when
performing an update to (atomically) read the timestamp and
set the linearization point value at the proper address. This is
why, unlike vCAS and Bundling, EBR-RQ does not solely rely
on using an atomic variable to store the logical timestamp to
synchronize updates and range queries. As a result, in EBR-
RQ we must retain the readers-writer lock when accessing
TSC. While with vCAS and Bundling we were able to see

performance improvements when eliminating the bottleneck
associated with using a logical timestamp, this reliance on
using locks essentially creates the same bottleneck as if we
were still using a logical timestamp. Thus, there is little
improvement when using TSC over a logical timestamp for
the lock-based EBR-RQ implementation.
Lock-free EBR-RQ. Thus far we have only focused on the
lock-based EBR-RQ implementation, as the lock-free imple-
mentation prevents the use of TSC altogether. Specifically,
the critical section in the update method is replaced with a
lock-free approach, namely by leveraging the lock-free double-
compare single-swap (DCSS) atomic primitive provided by
Harris et al. [24]. DCSS takes five arguments: two addresses
to read from, two corresponding expected values, and one
new value. It swaps the new value with the second address
only if the two expected values match the value stored at their
respective addresses, all atomically. DCSS allows the update
method to succeed only if the timestamp contains a certain
value. More specifically, an update first reads the timestamp
and is only (potentially) successful if the timestamp has not
changed when later performing the DCSS.

Using TSC in place of a logical timestamp necessitates that
there is no algorithmic reliance on using the address of the
timestamp, as it is non-existent when using TSC. This case
arises when the algorithm uses a mechanism to ensure lock-
freedom that requires validating that the value of the timestamp
does not change over time, thus relying on checking the value
at some address. The lock-free EBR-RQ approach requires
access to the address of the timestamp in order to perform
the DCSS, which creates an algorithmic dependence on the
logical timestamp. This dependency is inherent in the proposed
labeling solution since reading the timestamp must be atomic
along with the update to a variable, all without using locks.
As a result of this requirement, the logical timestamp cannot
be eliminated.

A. General Takeaways
Analyzing the algorithmic design of Bundling, vCAS and

EBR-RQ provides us with many lessons indicating how to
optimally utilize TSC as a timestamping mechanism. These
lessons can be summarized as follows:

• The more granular the approach to timestamp labeling,
the more speed-up will be achieved when utilizing TSC
to synchronize bulk operations.

• Lock-free data structures allow for the most advantageous
speedup when utilizing TSC as a timestamping mecha-
nism.

• To ensure maximal performance benefits from the use of
TSC on a versioned data structure, a programmer should
ensure that their algorithmic design does not rely on a
dependency that places the timestamp in a critical section
or validates that its value did not change.

• Using TSC instead of a logical timestamp on a structure
that itself is lock-free, and is augmented using a lock-free
(or more generally, non-blocking) approach to support
bulk operations enables achieving higher performance

than current state-of-the-art solutions, with half of the
processing power (i.e., half the amount of cores).

V. RELATED WORK

TSC has been used in past literature for synchronization
purposes, however no work that we are aware of analyzes
how design factors of algorithms impact the ability of TSC to
maximize performance.

Jiffy [13] is a lock-free, linearizable, ordered key-value
store that offers both: (1) batch updates, i.e., some set of put
and remove operations that are executed atomically, and (2)
consistent snapshots which are used by range queries. The
relevance of Jiffy is that it uses the CPU’s timestamp counter to
synchronize operations, as is done in this paper to three other
algorithms that allow support for linearizable range queries in
various data structures. Jiffy, however, is specifically built as
a lock-free skip list structure, whereas we evaluate techniques
meant to augment an assortment of data structures to support
linearizable range queries.

OpLog [17] is a general-purpose library meant to provide
update-heavy data structures with good scalability. It achieves
scalability by writing updates to a per-core log and only
combining logs when required by a read. To synchronize
update and read operations, OpLog relies on utilizing TSC as a
timestamping mechanism. While OpLog focuses on supporting
scalable, update-heavy workloads in data structures, our work
focuses on how to optimally utilize TSC based on the design
factors of various data structures for a variety of workloads.

TSC has additionally been used in a concurrent stack
implementation [5], a shared memory synchronization mech-
anism [18], and a serializable, though not linearizable, trans-
actional database engine [25]. In each case, it is used as a
timestamping mechanism to synchronize operations and does
not analyze TSC as we do in our work.

Looking more generally at the realm of concurrent pro-
gramming, two pieces of work [22], [26] have analyzed TSC
in the contexts of using it as a synchronization primitive,
and using it to boost transactional memory, respectively. The
first work, ORDO [22], is a scalable ordering primitive for
multicore machines that utilize TSC. The ORDO primitive
is motivated by the assumption that hardware clocks are
inherently skewed and attempts to fix this skew for a variety
of underlying architectures (Intel, AMD, Sparc and ARM) to
provide a properly synchronized global timestamp. However,
processor vendors claim that the hardware timestamp is in fact
synchronized amongst cores [16], and many others make this
assumption in their work [5], [13]–[15], [17]. In our paper,
we analyze patterns of highly concurrent data structure designs
with the assumption that TSC provides us with a synchronized
clock.

The second work aims to utilize the hardware timestamp
counter to boost timestamp-based transactional memory [26].
The work focuses on identifying properties of the hardware
timestamp which make it suitable in the context of trans-
actional memory. Other work has also used TSC in the
context of transactional memory [14], [15]. Our work instead

focuses on the use of a hardware timestamp in the context of
concurrent data structures that involve linearizable operations
with specific data structure semantics, rather than generic
transactions.

VI. CONCLUSION

In this paper, we study the effects of replacing logical
timestamps with hardware timestamps in existing algorithms
that support linearizable range queries in concurrent data
structures. We do so by developing a simple API that can
be used as a drop-in replacement for the logical timestamps
and port three existing techniques to use our timestamp re-
placement. Our results demonstrate that the key consideration
when deciding whether hardware timestamps will positively
influence performance is how objects are labeled with them.
In other words, the relationship between reading the timestamp
and writing the value to a field in an object is paramount. As
our paper demonstrates, this plays a critical role in the efficacy
of hardware timestamping. For example, some techniques
do not require that these steps happen atomically and are
therefore able to benefit from the reduced contention on the
timestamp. In contrast, other approaches which rely on an aux-
iliary synchronization mechanism do require that they happen
atomically, thus limiting the ability to take advantage of fast
hardware timestamps. Additionally, we identify cases when
hardware timestamps cannot replace their logical counterpart.
Our work determines that while the use of logical timestamps
is a fundamental building block in many algorithms, not all of
them are able to capture the benefits of hardware timestamping
equally.

ACKNOWLEDGMENT

Authors would like to thank the anonymous reviewers for
the constructive comments. This material is based upon work
supported by the National Science Foundation under Grant
No. CNS-2045976.

REFERENCES

[1] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel, “Non-blocking
binary search trees,” ser. PODC ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 131–140. [Online].
Available: https://doi.org/10.1145/1835698.1835736

[2] A. Natarajan and N. Mittal, “Fast concurrent lock-free binary search
trees,” SIGPLAN Not., vol. 49, no. 8, p. 317–328, feb 2014. [Online].
Available: https://doi.org/10.1145/2692916.2555256

[3] J. D. Valois, “Lock-free linked lists using compare-and-swap,” in
Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing, ser. PODC ’95. New York, NY, USA:
Association for Computing Machinery, 1995, p. 214–222. [Online].
Available: https://doi.org/10.1145/224964.224988

[4] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,”
in Proceedings of the 15th International Conference on Distributed
Computing, ser. DISC ’01. Berlin, Heidelberg: Springer-Verlag, 2001,
p. 300–314.

[5] M. Dodds, A. Haas, and C. M. Kirsch, “A scalable, correct time-stamped
stack,” in Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
233–246. [Online]. Available: https://doi.org/10.1145/2676726.2676963

[6] N. Shafiei, “Non-blocking patricia tries with replace operations,”
Distrib. Comput., vol. 32, no. 5, p. 423–442, oct 2019. [Online].
Available: https://doi.org/10.1007/s00446-019-00347-1

[7] D. Basin, E. Bortnikov, A. Braginsky, G. Golan-Gueta, E. Hillel,
I. Keidar, and M. Sulamy, “Kiwi: A key-value map for scalable
real-time analytics,” ACM Trans. Parallel Comput., vol. 7, no. 3, jun
2020. [Online]. Available: https://doi.org/10.1145/3399718

[8] H. Avni, N. Shavit, and A. Suissa, “Leaplist: Lessons learned in
designing tm-supported range queries,” in Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing, ser. PODC ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
299–308. [Online]. Available: https://doi.org/10.1145/2484239.2484254

[9] J. Nelson-Slivon, A. Hassan, and R. Palmieri, “Bundling linked data
structures for linearizable range queries,” in Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 368–384. [Online]. Available:
https://doi.org/10.1145/3503221.3508412

[10] M. Arbel-Raviv and T. Brown, “Harnessing epoch-based reclamation
for efficient range queries,” in Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 14–27. [Online]. Available:
https://doi.org/10.1145/3178487.3178489

[11] Y. Wei, N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, and
Y. Sun, “Constant-time snapshots with applications to concurrent data
structures,” in Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
31–46. [Online]. Available: https://doi.org/10.1145/3437801.3441602

[12] M. Rodriguez and M. F. Spear, “Optimizing linearizable bulk operations
on data structures,” in ICPP 2020: 49th International Conference on
Parallel Processing, Edmonton, AB, Canada, August 17-20, 2020, J. N.
Amaral, L. K. John, and X. Shen, Eds. ACM, 2020, pp. 24:1–24:10.
[Online]. Available: https://doi.org/10.1145/3404397.3404414

[13] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Jiffy: A lock-free
skip list with batch updates and snapshots,” in Proceedings of the
27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 400–415. [Online]. Available:
https://doi.org/10.1145/3503221.3508437

[14] E. Giles, K. Doshi, and P. Varman, “Hardware transactional persistent
memory,” in Proceedings of the International Symposium on Memory
Systems, ser. MEMSYS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 190–205. [Online]. Available:
https://doi.org/10.1145/3240302.3240305

[15] R. M. Krishnan, J. Kim, A. Mathew, X. Fu, A. Demeri, C. Min, and
S. Kannan, Durable Transactional Memory Can Scale with Timestone.
New York, NY, USA: Association for Computing Machinery, 2020, p.
335–349. [Online]. Available: https://doi.org/10.1145/3373376.3378483

[16] Intel, “clock() or gettimeofday() or ippgetcpuclocks()?”
Intel, Tech. Rep., 2010. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/best-
timing-function-for-measuring-ipp-api-timing.html

[17] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich,
“Oplog: a library for scaling update-heavy data structures,” MIT CSAIL,
Tech. Rep., 2013.

[18] M. Arbel and A. Morrison, “Predicate rcu: An rcu for
scalable concurrent updates,” in Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 21–30. [Online]. Available:
https://doi.org/10.1145/2688500.2688518

[19] M. Arbel and H. Attiya, “Concurrent updates with RCU: search
tree as an example,” in ACM Symposium on Principles of
Distributed Computing, PODC ’14, Paris, France, July 15-
18, 2014. ACM, 2014, pp. 196–205. [Online]. Available:
https://doi.org/10.1145/2611462.2611471

[20] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit, “A simple
optimistic skiplist algorithm,” in Structural Information and
Communication Complexity, 14th International Colloquium, SIROCCO
2007, Castiglioncello, Italy, June 5-8, 2007, Proceedings, ser. Lecture
Notes in Computer Science, vol. 4474. Springer, 2007, pp. 124–138.
[Online]. Available: https://doi.org/10.1007/978-3-540-72951-8_11

[21] Intel, “Intel 64 and ia-32 architectures software
developer’s manual,” 2022. [Online]. Available:

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.html

[22] S. Kashyap, C. Min, K. Kim, and T. Kim, “A scalable ordering
primitive for multicore machines,” in Proceedings of the Thirteenth
EuroSys Conference, ser. EuroSys ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3190508.3190510

[23] ARM, “Pmccntr, performance monitors cy-
cle count register, vmsa.” [Online]. Available:
https://developer.arm.com/documentation/ddi0406/c/System-
Level-Architecture/System-Control-Registers-in-a-VMSA-
implementation/VMSA-System-control-registers-descriptions–in-
register-order/PMCCNTR–Performance-Monitors-Cycle-Count-
Register–VMSA

[24] T. L. Harris, K. Fraser, and I. A. Pratt, “A practical multi-word compare-
and-swap operation,” in Proceedings of the 16th International Confer-
ence on Distributed Computing, ser. DISC ’02. Berlin, Heidelberg:
Springer-Verlag, 2002, p. 265–279.

[25] H. Lim, M. Kaminsky, and D. G. Andersen, “Cicada: Dependably fast
multi-core in-memory transactions,” in Proceedings of the 2017 ACM
International Conference on Management of Data, ser. SIGMOD ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
21–35. [Online]. Available: https://doi.org/10.1145/3035918.3064015

[26] W. Ruan, Y. Liu, and M. Spear, “Boosting timestamp-based
transactional memory by exploiting hardware cycle counters,” ACM
Trans. Archit. Code Optim., vol. 10, no. 4, dec 2013. [Online].
Available: https://doi.org/10.1145/2541228.2555297

