
Shuaijun Ge, Guixiang Ma, Sihong Xie and Philip S. Yu 
Dec 13, 2018 @BigData

Securing Behavior-based
Opinion Spam Detection 
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Fake reviews

?



Online reviews
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Source: https://www.brightlocal.com/learn/local-consumer-review-survey/ based on a pool of representative sample of 1,031 US-based consumers



The challenges
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Source: https://www.brightlocal.com/learn/local-consumer-review-survey/ based on a pool of representative sample of 1,031 US-based consumers
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Existing efforts

ReviewMeta.com
1. Feature engineering
2. Detection models

Outcome + Explanations

Help make decision
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Behavior based Attacking

Number of 5-star posts per day
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Behavior based Attacking
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● Accessing knowledge of detector (publications)

What yelp fake review filter might be doing, ICWSM, 2013 Number of 5-star posts per day
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max # of review per day Positive ratio Review length Rating deviation
Maximum content
similarity 
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● Accessing knowledge of detector (Detection websites)

Number of 5-star posts per day
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● Accessing knowledge of detector (Released data)

Number of 5-star posts per day
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Behavior based Attacking
To defend: need to generate the attacks.

Attack parameters:
• # of 5-star per day = 4
• Dev from avg = 0.5

Actionable?

Number of 5-star posts per day
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Behavior based Attacking

Actionable attack 1
• post 4                

per day
• post 1                

per week
Actionable attack 2
• post 3                

per dayActionable attack 3
• post 4                 

per day
• post 1                 

per day
• post 1                  

per day

Attack parameters:
• # of 5-star per day = 4
• Dev from avg = 0.5

Actionable?

To defend: need to generate the attacks. How?



Temporal anomalies AVG rating
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Behavior based Attacking

Spammer objective function = (risk of being detected) – (profit of spamming)

Change in rating Deviation from predicted avg

Predicted AVG rating
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Behavior based Attacking

Rating distribution anomaly

Spammer objective function = (risk of being detected) – (profit of spamming)

: Rating dist at time t: Background
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Behavior based Attacking

Rating distribution anomaly

Spammer objective function = (risk of being detected) – (profit of spamming)

: Rating dist at time t+1: Rating dist at time t
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Behavior based Attacking

Spammer maximizes [risk of being detected –profit of spamming]
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Behavior based Attacking

Organic AVG

Predicted

Manipulated

Deviation from predicted avg

Cap of all ratings <= 5

promotion >= 0

Temporal change in AVG

promotion

are set to 80th percentiles of the corresponding changes estimated from the historic data 

Find amout of promotion

AVG rating
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Behavior based Attacking

Organic AVG

Manipulated

are set to 80th percentiles of the corresponding changes estimated from the historic data 

Find a proper amount of promotion in AVG rating

Large temporal
change in AVG?
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Behavior based Attacking
find a proper number of spamming ratings

Large incremental in the
number of reviews?

<= 80th percentile of
historic increments Large absolute number

of reviews?

<= 80th percentile of
historic NR

Organic NR

Manipulated NR

Number of spams
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Behavior based Attacking
Compute an evasive rating distribution 

Optimal rating distribution found by the dual problem.

from the
last step

: Rating dist at time t: Background
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Behavior based Attacking

x 50

x 0

x 0

x 3

x 7

The found evasive rating distribution
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Behavior based Attacking
Flexible attacks generation.

E1: NR E2: NR
+ ∆NR

E3: NR
+ deviation in AVG rating

E4: NR
+ deviation in AVG rating
+ change in AVG rating

E-A: NR + ∆NR
+ change in AVG rating
+ Max Entropy

E-B: NR + ∆NR
+ change in AVG rating

For short history targetsE5: KL-DIV

E6: KL-DIV
+ change in entropy

E9: Max Entropy
+ change in entropy

Evade time series 
based detectors

Evade both time series and rating 
distribution based detectors
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Behavior based Attacking
Targets with long review histories
• Products with >= 1,000 reviews
• Reviews span more than 37 months 

(Yelp) / weeks (Amazon)
• 1,175,088 reviews / 383 products
• 247,117 reviews / 327 restaurants.

Targets with short review histories
• The remaining products / restaurants are used.
• Longitudinal data are too sparse for each target.

last 5 weeksLong-history data

last 5 weeksLong-history data

Product 1

Product 383

last 5 weeksshort-history

last 5 weeksshort-history

Probe parameters

Probe parameters

Attack!

Attack!

Probe parameters Attack!
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Behavior based Attacking
Average spams posted by each attack
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Behavior based Attacking
Attacking rate (% of windows can be spammed)
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Behavior based Attacking
Promotion in ranking per spam



Linear model
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Behavior based Attacking
Secure the detector again

Re-trained linear model

Number of 5-star posts per day
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Behavior based Attacking
Attack simulationProbe parameters

First 30 weeks
Target

last 5 weeks

Attack in the wild!

Training data 
generated from E9

EnsemblePooling 
(DETER)

Training data 
generated from E1

Training data 
generated from E2

model 1

model 2

model 9

Model re-training
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Behavior based Attacking
Full information detection / evasion game: single spammer
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equilibrium

Game 1 Game 2
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Behavior based Attacking

W^m                  Max of signals

W^a                   Avg of signals

W^r          Randomly selection

EN_A                     Re-train avg

EN_M                    Re-train Max

DETER                 Re-train Pool

Max-min      Game equilibrium
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Behavior based Attacking

W^m                  Max of signals

W^a                   Avg of signals

W^r          Randomly selection

EN_A                     Re-train avg

EN_M                    Re-train Max

DETER                 Re-train Pool

Max-min      Game equilibrium
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Behavior based Attacking
• Unsupervised
• Attack agnostic
• Simple and good performance
• Good for long and short review histories
• Can secure the detector!
• Source codes and data avaiable at:

https://bitbucket.org/Doris_Ge/bigdata18_spam_detection
http://www.cse.lehigh.edu/~sxie/codes.html



Thank you


