Securing Behavior-based Opinion Spam Detection

Shuaijun Ge, Guixiang Ma, Sihong Xie and Philip S. Yu

Dec 13, 2018 @BigData

Fake reviews

?

Online reviews

3

Source: https://www.brightlocal.com/learn/local-consumer-review-survey/ based on a pool of representative sample of 1,031 US-based consumers

The challenges

Source: https://www.brightlocal.com/learn/local-consumer-review-survey/ based on a pool of representative sample of 1,031 US-based consumers

Existing efforts

Outcome + Explanations

7

Behavior based Attacking

Behavior based Attacking

• Accessing knowledge of detector (publications)

What yelp fake review filter might be doing, ICWSM, 2013

Number of 5-star posts per day

avg

Deviation from

simple, and well-flavored menu, good service and I would

recommend the Quesadillas and Burrito.

BigData 2018

10

Behavior based Attacking

Accessing knowledge of detector (Released data)

619 other reviews that are not currently recommended .

🚼 38 reviews

0 8 photos

Advertisers get no special treatment. The reviews below didn't make the cut and are therefore not factored into this business's overall star rating. Watch the video above or check out our FAQ for more details.

Continue reading other reviews that are not currently recommended

Behavior based Attacking

To defend: need to generate the attacks.

Behavior based Attacking

To defend: need to generate the attacks. How?

Behavior based Attacking

Spammer objective function = (risk of being detected) – (profit of spamming)

Behavior based Attacking

Spammer objective function = (risk of being detected) – (profit of spamming)

 $ar{\mathbf{p}}$: Background

Rating distribution anomaly

$$\operatorname{KL}(\boldsymbol{p}||\bar{\boldsymbol{p}}) = \sum_{i=1}^{5} p_i \log \frac{p_i}{\bar{p}_i}$$

5 star	73%
4 star	12%
3 star	5%
2 star	3%
1 star	7%

${f p}$: Rating dist at time t

5 star	83%
4 star	13%
3 star	2%
2 star	1%
1 star	1%

Behavior based Attacking

Spammer objective function = (risk of being detected) – (profit of spamming)

Rating distribution anomaly

$$EN(t) = -\sum_{i=1}^{5} p_i(t) \log p_i(t)$$
$$\Delta EN = EN(t+1) - EN(t)$$

5 star	73%
4 star	12%
3 star	5%
2 star	3%
1 star	7%

 $ar{\mathbf{p}}$: Rating dist at time t \mathbf{p} : Rating dist at time t+1

83%
13%
2%
1%
1%

15

Behavior based Attacking

Spammer maximizes [risk of being detected – profit of spamming]

17

Behavior based Attacking

Find amout of promotion

are set to 80th percentiles of the corresponding changes estimated from the historic data

Behavior based Attacking

Find a proper amount of promotion in AVG rating $\,\delta\,$

are set to 80th percentiles of the corresponding changes estimated from the historic data

Behavior based Attacking

find a proper number of spamming ratings n_{δ}

Behavior based Attacking

Compute an evasive rating distribution \boldsymbol{p}

	$ar{\mathbf{p}}$: Background	${f p}$: Rating dist at time t	$ \min_{\mathbf{p}} \mathrm{KL}(\mathbf{p} \bar{\mathbf{p}}) $	from the
5 star	73%	83%		
4 star	12%	13%		
3 star	5%	2%		
2 star	3%	1%		
1 star	7%	1%		
			J	

Optimal rating distribution found by the dual problem. 20

Behavior based Attacking

The found evasive rating distribution $\, {f p} \,$

 $n_{\delta} = 60$ $\star \star 50$ $\star \star 0$ $\star \star 0$ $\star \star 0$ $\star \star 0$ $\star 3$ $\star 0$

BigData 2018

Behavior based Attacking

Flexible attacks generation.

Behavior based Attacking

Probe parameters

Long-history data

Product 383

Targets with long review histories Targets with short review histories Products with >= 1,000 reviews The remaining products / restaurants are used. ٠ • Reviews span more than 37 months Longitudinal data are too sparse for each target. • (Yelp) / weeks (Amazon) amazon 1,175,088 reviews / 383 products ٠ tripadvisor 247,117 reviews / 327 restaurants. ٠ **Probe parameters** Attack! **Probe parameters** Attack! short-history last 5 weeks Long-history data last 5 weeks Product 1

short-history

Attack!

last 5 weeks

23

last 5 weeks

Behavior based Attacking

Average spams posted by each attack

Behavior based Attacking

Attacking rate (% of windows can be spammed)

Behavior based Attacking

Promotion in ranking per spam

Behavior based Attacking

Secure the detector again

27

Behavior based Attacking

Behavior based Attacking

Full information detection / evasion game: single spammer

29

Behavior based Attacking

W^m	Max of signals
W^a	Avg of signals
W^r	Randomly selection
EN_A	Re-train avg
EN_M	Re-train Max
DETER	Re-train Pool
Max-min	Game equilibrium

Behavior based Attacking

W^m	Max of signals
W^a	Avg of signals
W^r	Randomly selection
EN_A	Re-train avg
EN_M	Re-train Max
DETER	Re-train Pool
Max-min	Game equilibrium

Behavior based Attacking

- Unsupervised
- Attack agnostic
- Simple and good performance
- Good for long and short review histories
- Can secure the detector!
- Source codes and data avaiable at:

https://bitbucket.org/Doris_Ge/bigdata18_spam_detection

http://www.cse.lehigh.edu/~sxie/codes.html

Thank you

