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Abstract—Graphs are widely found in social network analysis
and e-commerce, where Graph Neural Networks (GNNs) are
the state-of the-art model. GNNs can be biased due to sensitive
attributes and network topology. With existing work that learns a
fair node representation or adjacency matrix, achieving a strong
guarantee of group fairness while preserving prediction accuracy
is still challenging, with the fairness-accuracy trade-off remaining
obscure to human decision-makers. We first define and analyze
a novel upper bound of group fairness to optimize the adjacency
matrix for fairness without significantly harming prediction
accuracy. To understand the nuance of fairness-accuracy trade-
off, we further propose macroscopic and microscopic explanation
methods to reveal the trade-offs and the space that one can ex-
ploit. The macroscopic explanation method is based on stratified
sampling and linear programming to deterministically explain
the dynamics of the group fairness and prediction accuracy.
Driving down to the microscopic level, we propose a path-based
explanation that reveals how network topology leads to the trade-
off. On seven graph datasets, we demonstrate the novel upper
bound can achieve more efficient fairness-accuracy trade-offs and
the intuitiveness of the explanation methods can clearly pinpoint
where the trade-off is improved.

I. INTRODUCTION

Nowadays, Graph Neural Networks (GNNs) have been play-
ing a pivotal role in many machine learning applications, such
as molecule property prediction [36], fraud detection [17],
[35], social network analysis [16] and recommendation sys-
tems [39], formulated as node classification, link prediction,
and graph classification [6], [11], [16], [33]. GNNs achieve the
state-of-the-art predictive performance by adopting message-
passing to the aggregate edge, node, and graph topology
information of the local neighborhood in multiple layers.

Despite their superior performance, GNNs inherit or even
amplify bias in the input graph data [8], limiting its ap-
plications that involve critical decisions about humans and
organizations. The unfairness is caused by node sensitive
attributes or biased topological properties such as node degree.
Specifically, we focus on the degree-related group fairness for
the node classification task. We put nodes of low degree in the
protected group (indicated by the sensitive attribute S = 1),
and the remaining nodes in the favored group (S = 0). The
degree distributions of most real-world graphs follow power
law [1], [7], [9], [32], and GNNs heavily rely on message
aggregation so that low-degree nodes receive fewer messages
than the high-degree nodes, resulting in disparate performance
between the two groups [4], [32] and violation of fairness
criteria, such as equal opportunity [12].

To address the fairness issues, most existing works learn a
fair node or graph representation by optimizing adjacency ma-
trices [18], [31], adversarial training [8], or fairness-oriented
DeepWalk [15], [24]. One challenge is that prediction fairness
and accuracy can be competing with each other, and improving
one metric can hurt the other. While multi-objective opti-
mization techniques have been proposed to explore the model
parameters space and optimal trade-offs of the two metrics,
only existing group fairness loss functions are used [4]. It
remains unclear if a better fairness loss function can be
designed to find more efficient trade-offs, i.e., improving
fairness while hurting prediction accuracy less. If the answer to
the question is affirmative, then a follow-up question is what
leads to the difference in the trade-off. Existing explainable
machine learning techniques can attribute the GNN predictions
to node attributes or edge connections of the input graph [27],
[38], but attributing the trade-offs between two metrics to the
input graph as an explanation is a less studied problem.

To address the above challenges, in this work, we study
a novel problem of learning fair graph neural networks with
limited sensitive information. The classifier should maintain
high accuracy while satisfying fairness. Besides, to understand
what leads to better trade-offs, we propose the macroscopic
method to select the critical nodes to explain the difference
between trade-offs. See Figure 1 for details. The contributions
of this work can be summarized as follows:

• We propose a novel upper bound of group fairness to train
the adjacency matrix to mitigate the inequal opportunity
due to degree-related biases on GNNs. The loss leads to
more fairness with less harm to the accuracy.

• We formulate a novel optimization problem to find the
critical nodes that can explain the difference between
fairness and accuracy.

• Extensive experiments on seven datasets for node clas-
sification demonstrate our method can not only ensure
fairness but also classification performance. Besides, the
proposed explanation approach outperforms state-of-the-
art baselines.

II. RELATED WORK

A. Fair machine learning on graphs

Many works have been conducted to deal with the bias in
the training data to achieve fairness in machine learning [12],
[14], [19], [43]. However, recently, with the success of GNNs,
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Fig. 1: The overall workflow. We adopt the GNN model for the node classification task where nodes are in protected (blue) and favored (red)
groups. As an example, disparate impact concerns about the discrepancy in the predicted probabilities of nodes from the two groups. We
design a novel fairness loss function to train a mask matrix for more efficient fairness-accuracy trade-offs. Finally, to understand what lead to
the better trade-offs, we propose a macroscopic method to select representative nodes to explain the difference between two trade-offs. For
the selected nodes, we propose a microscopic method to find a small set of paths that explain the computations that lead to the difference.

researchers started to investigate the fairness of GNNs. Due to
the importance of representation learning to downstream tasks
such as link prediction and node classification, some works
focused on learning fair node embeddings [3], [5], [22]. Some
of these approaches achieve fairness by adversarial learning.
Compositional fairness constraints [3] learned a set of adver-
sarial filters that remove dependencies on sensitive attributes.
In [8], a method that learns fair GNNs with limited sensitive
attribute information via adversarial attacks is proposed. For
fair link prediction [22], they employed adversarial learning to
ensure that inter-group links are well-represented among the
predicted links. [24] proposed Fairwalk, the random walk
based graph embedding method that revises the transition
probability according to the vertex’s sensitive attributes. [15]
developed Crosswalk, the key idea is to bias random walks to
cross group boundaries, which enhances fairness. In [18], [31],
they proposed to learn a fair adjacency matrix that respects
graph structural constraints and preserves predictive accuracy.
In [32], they proposed a self-supervised learning method that
mitigates the degree-related biases of GNNs.

B. Explanations for graph neural networks

Graph neural networks (GNNs) and their explainability are
experiencing rapid developments. In the survey [41], existing
GNN explanation approaches are categorized as instance-level
and model-level methods. The instance-level category includes
gradient/features-based methods [2], [23], perturbation-based
methods [21], [26], [38], [42], decomposition-based meth-
ods [2], [27], [28], and surrogate-based methods [13], [34].
In the model-level category, [40] proposed to explain the

TABLE I: Notation

Symbols Definitions and Descriptions
J, U, V,K Nodes in a graph
j, u, v, k Neurons of the nodes in upper-case

N Number of nodes in a graph
n Index of nodes in the graph
C The number of classes
c A specific class
S A sensitive attribute

Vs,c Set of nodes with S = s in class c

H0, H1
The set of probabilities that the nodes in Vs,c

are predicted to be class c in the graph G0 and G1

B0, B1
Divide the data in Hτ into the buckets. τ = 0, 1,

Bτ [l] denotes the l-th bucket of the histogram of Hτ

V∗
s,c The set of important nodes to explain the fairness
F The data flow matrix.

zJ(G) The logits zj(G), j ∈ [1, . . . , C], of node J
∆zJ(G0, G1) ∆zJ(G0, G1) = zJ(G1)− zJ(G0)

PrJ(G) Class distribution of J , with elements Prj(G)
W (G) Paths on the computation graph of GNN
WJ(G) The subset of W (G) that computes PrJ(G)

∆WJ(G0, G1) Altered paths in WJ(G0) as G0 → G1

Cp,j Contribution of the p-th altered path to ∆zj

GNNs via reinforcement learning, and the Monte Carlo search
is used for exploration. Our method is similar to that in [38],
where they learned a soft mask over the edges to explain the
prediction of graph neural networks, while we propose a new
fairness loss function that drives the optimization of the mask
and shows more efficient accuracy-fairness trade-offs. In [27],
a GNN prediction is attributed to the important path on the
input graph, while we attribute the difference in the trade-offs
to paths.



III. PRELIMINARIES

Graph neural networks. We use G = (V, E) to denote
an attributed graph, where V is the set of a total of N
nodes of G, and E ⊆ V × V is the set of edges. A is
the adjacency matrix of the graph G, where Aij = 1 if
nodes I and J are connected; otherwise, Aij = 0. Let
N (J) = {I|(I, J) or (J, I) ∈ E} be the neighbors of node
J . Upper-case letters I ,J ,. . . ,K represent certain nodes in the
graph. For each node, y ∈ {1, . . . , C} is the label of the node.

We train a GNN of T layers that predicts the class distri-
bution of each node. On layer t, t = 1, . . . , T and for node J ,
GNN computes hidden vector h

(t)
J using messages sent from

its neighbors:

a
(t)
J = f

(t)
AGG(h

(t−1)
J ,h

(t−1)
K ,K ∈ N (J)) (1)

z
(t)
J = f

(t)
UPDATE(a

(t)
J ), (2)

h
(t)
J = NOLINEAR(z(t)J ), (3)

where f
(t)
AGG aggregates the messages from all neighbors and

can be the element-wise sum, average, or maximum of the
incoming messages. f (t)

UPDATE maps a
(t)
J to z

(t)
J , using z

(t)
J =〈

a
(t)
J ,θ(t)

〉
or a multi-layered perceptron with parameters

θ(t). Let θ = [θ(0),θ(1), . . . ,θ(T )] ∈ Rd denote all the d

trainable parameters of the GNN. At the input layer, h(0)
J is

the node feature vector xJ . At layer T , the logits are z
(T )
J ≜

zJ(G) = [z1(G), z2(G), . . . , zC(G)]. zJ(G) is mapped to the
class distribution PrJ(G) through softmax. The model can be
trained by minimizing the loss function w.r.t. θ:

LC(θ) = − 1

|VL|
∑
n∈VL

[yn log ŷn + (1− yn) log (1− ŷn)] ,

(4)
where VL is the set of labeled nodes of G.
Measuring fairness of predictions. For each node, we let the
sensitive attribute S indicate if the node has the high (S = 0)
or low (S = 1) degree. The nodes with the same value of S
are grouped and we obtain the favored (S = 0) and protected
(S = 1) group, respectively. Equal opportunity [12] requires
the equal probability of true positives and false positives
between the two groups defined by the protected attribute S.
Let ŷ ∈ {1, . . . , C} denotes the prediction of the classifier.
Multi-class classification problems are less studied in fair
ML literature. Because of the multi-class prediction of node,
consider the specific class c, the property of equal opportunity
is defined as:

P (ŷ = c | S = 1, y = c) = P (ŷ = c | S = 0, y = c) (5)

According to [20], and to facilitate gradient based optimiza-
tion, we adopt the following surrogate loss function for EO
for the class c [10]:

Lc
EO = |Pr(ŷ = c | S = 0, y = c)−Pr(ŷ = c | S = 1, y = c)|

(6)
where Pr(ŷ = c | S = s, y = c) is estimated as the percentage
of the nodes with sensitive attribute s and label c classified

as class c by ŷ. Since the GNN has probabilistic outputs, we
approximate Pr(ŷ = c | S = s, y = c) using∑N

n=1 1 [Sn = s, yn = c] Pr (ŷn = c)∑N
n=1 1 [Sn = s, yn = c]

(7)

The GNN trained on G can make biased predictions be-
cause its information aggregation mechanism depends on the
neighborhood structure, and node degree, indicated by S,
becomes a factor deciding the informativeness and accuracy of
the aggregation. In particular, with more neighbors providing
useful class information, high-degree nodes are more likely
to be predicted accurately, leading to the violation of equal
opportunity.

Problem definition. Given the graph G = (V, E), defined the
sensitive attribute S (related to the degree of the node), learn
the fair GNN with the model parameters θ and the mask matrix
M for fair node classification. The classifier should maintain
high accuracy whilst satisfying the fairness standard such as
equal opportunity. After obtaining the fairness model, it is
necessary to find important nodes to explain the transition of
the fairness of the graph model. Then, for the node, find the
critical walks to explain the changed probability.

IV. METHOD

A. A novel fair loss for better accuracy-fairness trade-off

To make the GNN more balanced in the accuracy of nodes
from two different groups, we train the mask matrix M to
balance the discrepancy between the informativeness of the
neighbors of nodes from two distinct demographic groups. A
trivial solution is to prune the neighbors of high-degree nodes
(S = 0), so that they become the low-degree nodes and thus
they are treated equally by the GNN model as the low-degree
nodes (S = 1). However, it is likely that the predictions of
the class of high-degree nodes become less accurate due to
the pruning of their neighbors. In other words, the accuracy
is sacrificed for a high degree of equal opportunity.

While the Lc
EO measures the difference in means between

the two groups, it ignores the difference in probability distri-
butions. For example, [0.5, 0.5, 0.5, 0.5] and [0.8, 0.8, 0.2,
0.2] are the class probabilities of nodes in two groups. They
have the same mean but different probability distributions and
Lc
EO = 0. Using Lc

EO to train the mask matrix M can lead to
little or no improvement in fairness but bring down accuracy.

Therefore, for the specific class c, we define the fairness
loss based on EO for class c:

L̄c
EO =

∑
I∈V0,c

∑
J∈V1,c

|Pr (ŷI = c)− Pr (ŷJ = c) |
|V0,c| × |V1,c|

(8)

where Pr (ŷI = c) ,Pr (ŷJ = c) denote the probability that
node I, J is judged to be class c. Pr (ŷI = c) =
(ŷI = c | G = A⊙ σ(M)). M ∈ RN×N denotes the mask that
we need to learn, ⊙ denotes element-wise multiplication, and
σ denotes the sigmoid that maps the mask to [0, 1]

N×N . |V0,c|
and |V1,c| denote the size of V0,c and V1,c.



Note that L̄c
EO is the upper bound of Lc

EO:

L̄c
EO =

∑
I∈V0,c

∑
J∈V1,c

|Pr (ŷI = c)− Pr (ŷJ = c) |
|V0,c| × |V1,c|

≥
|
∑

I∈V0,c

∑
J∈V1,c

(Pr (ŷI = c)− Pr (ŷJ = c))|
|V0,c| × |V1,c|

=

∣∣∣∣∣
∑

I∈V0,c
Pr (ŷI = c)

|V0,c|
−
∑

J∈V1,c
Pr (ŷJ = c)

|V1,c|

∣∣∣∣∣
= Lc

EO

Since nodes from different classes are in disjoint sets, we
can enforce fairness in all classes independently by minimizing
the following weighted sum of fairness losses from all classes:

L̄EO =

C∑
c=1

λcL̄c
EO, (9)

where the weights λc, c = 1, . . . , C, determine the importance
of the fairness within each class.

Overall, we can ensure and balance the accuracy and
fairness of the prediction when training the adjacency matrix
mask M using the following loss function:

min
M

L = LC + λL̄EO. (10)

λ is a hyperparameter that balances the trade-off between
the two objectives. In the experiments, we will demonstrate
that the upper-bounds of the EO fairness losses will lead to
more efficient trade-offs, compared to that obtained using the
fairness losses themselves.

B. Contrastive explanations of accuracy-fairness trade-offs.

It is important to understand the price that one has to pay for
more fairness to aid model selection and design in applications.
For example, a model user may be wondering, to improve the
fairness metric defined in Eq. (6) by 5%, which nodes will
benefit from fairer treatment while which sample will suffer
from incorrect classification; a model designer would like to
dive deeper into the graph topology to understand how the
different adjacency matrix and local neighborhood lead to the
different accuracy-fairness trade-offs. These questions can be
answered by the following two novel explanation tasks and
the corresponding methods.

1) Macroscopic node-level contrastive explanations: Since
the training data can be large and it may be difficult for a
human user to screen all samples and analyze their contribu-
tions to the change in the trade-offs, we design an optimization
problem, whose optimal solution selects the most critical nodes
that can best represent and approximate the change in the
trade-offs. As a result, human users only need to understand
the change through these critical nodes. The selected sample
are “macroscopic explanations” since they do not attribute the
change to the details of the GNN computation model.

Since EO can be measured by the means of the predicted
probabilities of the nodes, the change in EO can be attributed
to the shift of these probabilities. Explaining the shift of
probabilities of a population has not been studied before

Fig. 2: Histograms about frequencies of predicted probabilities
of a class c for nodes from two groups V0,c and V1,c. A solid
circle in a bucket represents a example node classified with the
corresponding class. Left column: as the graph G0 got masked to G1,
predicted probability distributions are different and are fairer with
equal opportunity. Right column: select node subsets V∗

s,c ⊂ Vs,c,
s = 0, 1 to closely approximate (explain) the shift of the histograms
of G0 to those of G1, and how fairness is increased.

in the explainable ML literature. We propose a node-based
explanation that can preserve the shift. More broadly, the
method belongs to the instance-based explanations [37] that
select critical data instances to explain a phenomenon. In
Fig. 2, the distribution of the predicted probabilities of nodes
from group Vs,c obtained from GNN on G0 (first column,
top row) is shifted to that of the same group obtained on G1

(first column, bottom row), and we aim to select the node
subset V∗

s,c ⊂ Vs,c, as shown in the second column, that
reproduces the distribution shift from top to bottom in the first
column. The shift over each group Vs,c can be approximated
independently, and we take a specific Vs,c to present an
optimization problem for selecting the optimal V∗

s,c.
Let Hτ be the set of probabilities for nodes in Vs,c predicted

by the GNN model on Gτ , τ = 0, 1. To make the resulting
explanations more intuitive, we describe the distributions of
the probabilities in Hτ by a histogram that discretizes the
probabilities into a small number of buckets, each of which
contains the nodes whose predicted class probabilities fall into
the same interval. Let Bτ [l] denote the l-th bucket of the
histogram of Hτ .

We aim to explain the shift of the histogram of H0 to
that of H1, or more specifically, how the nodes are predicted
differently due to the difference between two graphs G0 and
G1. The difference in the probabilities is then described by
the movement of nodes moving from a bucket B0[l] for G0 to
a bucket B1[r] for G1. We track the movement using a data
flow F , where Fl,r is the set of nodes that move from B0[l]
to B1[r] and Fl,r[n] denotes the n-th node in Fl,r. Let |Bτ |
denote the number of buckets in the histogram for Hτ , and
for simplicity, we assume that |Bτ | is a constant |B| for all
τ . Similarly, |B0[l]|, |B1[r]|, and |Fl,r| all denote the size of



the corresponding sets. We have the following properties:

•
∑|B|

l=1 B0[l] =
∑|B|

r=1 B1[r] = |Vs,c| (preserve all nodes)

•
∑|B|

r=1 |Fl,r| = B0[l] (preserve source nodes)

•
∑|B|

l=1 |Fl,r| = B1[r] (preserve destination nodes)

See the figure 2 for a demonstration.
As the original histograms can contain many nodes and

tracking the flow F is non-trivial for human beings. We select
p% of the original data from Hτ , denoted by H∗

τ , to represent
the shift in distributions. Let |V∗

0,c| = |V0,c|× ratio. Randomly
sampling nodes from H0 or H1 has two disadvantages: 1) there
is randomness that is hampering human interpretation; 2) data
from individual buckets in Bτ may not be well-represented,
leading to misleading explanations.

To address these drawbacks, we propose the following linear
program to deterministically and optimally select p% of the
nodes that well-represent individual buckets Bτ and the shift
in prediction probability distributions. Let the Select be the
optimization variables indicating the selection of each node in
each flow. In particular, Selectl,r[n] ∈ [0, 1] means the chance
that the node indexed by Fl,r[n] is selected to represent the
shift from bucket B0[l] to B1[r]. Intuitively, if we can select a
small set of nodes that represent the individual flow Fl,r, the
human users will be able to see how the changes in predicted
probabilities lead to a fairer distribution between the favored
and protected groups V0,c and V1,c for class c.

Let B∗
τ be the buckets of selected nodes, and H∗

τ denote
the histogram based on B∗

τ . we constrain |B∗
0 [l]| = p×|B0[l]|

for l = 1, . . . |B| and similarly for |B∗
1 [r]|. These cardinality

constraints are to improve the simplicity of the resulting dis-
tributions. We also want the simplified histogram of H∗

τ to be
close to the original histogram of the original set of predicted
probabilities Hτ , for τ = 0, 1. We match the first-order
moments (i.e., the means) of the original and simplified his-

tograms Mean(H∗
τ ) =

∑|B|
l=1

∑|B|
r=1

∑|Fl,r|
n=1 Selectl,r[n]×PrFl,r [n]

|V∗
s,c|

,

minSelect

1∑
τ=0

|Mean(Hτ )− Mean(H∗
τ )| (11)

s.t.
|B|∑
l=1

|Fl,r|∑
n=1

Selectl,r[n] = B∗
1 [r],∀r = 1, . . . , |B|,

|B|∑
r=1

|Fl,r|∑
n=1

Selectl,r[n] = B∗
0 [l],∀l = 1, . . . , |B|,

(12)
|B|∑
l=1

B∗
0 [l] =

|B|∑
r=1

B∗
1 [r] = |V∗

s,c|

By solving the linear programming problem, we obtain V∗
τ,c

for τ = 0, 1 and c = 1, . . . , C. Because V∗
τ,c can well-

approximate Vτ,c on both G0 and G1 for both groups and
any class c, V∗

τ,c can explain the change in fairness.

2) Microscopic path-based contrastive explanations: G0 =
(V, E), G1 = (V, E ′

), and E ′
is obtained with some edges in

E masked. Let ∆E = {e : e ∈ E ∧ e /∈ E ′} be the set of
removed edges. Due to ∆E , some nodes will be classified with
different class distributions that lead to a different accuracy-
fairness trade-off. We want a more detailed explanation of the
change in the probability of the selected nodes in V∗ = {J :
J ∈ V∗

s,c, s ∈ {0, 1}, c = 1, . . . , C}.
The GNN for node classification at node J is generated by

a computation graph, which is a spanning tree of G rooted
at J of depth T . From the computation graph perspective, let
a path be (. . . , U, V, . . . , J), where U and V represent any
two adjacent nodes on the path and J is designated as the
root. For a GNN with T layers, the paths are sequences of
T + 1 nodes and we let W (G) be the set of all such paths.
Let WJ(G) ⊂ W (G) be the paths ending at J . The symmetric
set difference ∆WJ(G0, G1) = WJ(G1)∆WJ(G0) contains
all paths rooted at J with at least one removed edge when
some edges are masked. ∆WJ(G0, G1) is the changes to
the computation graph that completely cause and explain the
change in PrJ .

For node J ∈ V∗, let the difference in its logits on
graphs G0 and G1 be ∆zJ(G0, G1) = zJ(G1) − zJ(G0) =
[∆z1, . . . ,∆zC ]. According to the method mentioned in [30],
we apply it to GNN model and obtain the contribution of
paths. Assume that the change in the logits can be linearly
and exactly attributed to m removed propagation paths in
∆WJ(G0, G1). Formally, for j = 1, . . . , C, let ∆zj =∑m

p=1 Cp,j , where Cp,j is the contribution of the p-th removed
path to ∆zj . Then

[z1(G0), . . . , zC(G0)] = [z1(G1), . . . , zC(G1)]−[∆z1, . . . ,∆zC ] .
(13)

We will explain the KL-divergence between PrJ(G1) and
PrJ(G0), which is a well-defined distance metric of prob-
ability distributions. One can show that the KL-divergence
KL(PrJ(G1)∥PrJ(G0)) is a function of ∆zj :

C∑
j=1

Prj(G1)∆zj − log[Z(G1)/Z(G0)],

=

C∑
j=1

[Prj(G1)∆zj ]− logZ(G1)

+ log

C∑
j=1

exp(zj(G1)−∆zj︸ ︷︷ ︸
=zj(G0)

), (14)

where Z(Gτ ) =
∑C

j=1 exp(zj(Gτ )) for τ = 0, 1.
Consider selecting a subset En of n paths from

∆WJ(G0, G1) as a microscopic explanation. The contribu-
tions from paths in En lead to a variant of Eq. (13)

zJ(G0) = zJ(Gn)−

∑
p∈En

Cp,1, . . . ,
∑
p∈En

Cp,C

 . (15)



We can substitute zJ(G0) in Eq. (14) with the right hand side
of Eq. (15) and get

C∑
j=1

Prj(G1)

zj(G1)− zj(G0)−
∑
p∈En

Cp,j


− logZ(G1) + log

C∑
j=1

exp

zj(G0) +
∑

p∈∆En

Cp,j

 (16)

This is the KL-divergence between two distributions PrJ(G1)
and PrJ(Gn) and has the minimum of 0. If it is close to 0,
then the contribution from the paths in En, when added to G0,
can help GNN reproduce Pr(Y |G1) and En thus succinctly
explain the prediction shift when G0 is changed to G1.

We optimize En to minimize the KL-divergence in Eq. (16).
Let xp ∈ [0, 1], p = 1, . . . ,m, represent the probabilities of
selecting path p from ∆WJ(G0, G1) into En. We solve the
following problem:

x∗ = argmin
x∈[0,1]m

∥x∥1=n

c∑
j=1

(
−Prj(G1)

m∑
p=1

xpCp,j

)

+ log

c∑
j′=1

exp

(
zj′(G0) +

m∑
p=1

xpCp,j′

)
. (17)

In going from Eq. (16) to the objective, we ignore the
constants zj(G0), zj(G1), and logZ(G1). The problem is
convex and ensures a unique optimal solution. The linear
constraint ensures the total probabilities of the selected paths
is n. En will then include the paths with the highest x∗

p values.

V. EXPERIMENT

A. Datasets and experimental settings.

TABLE II: Seven networks from three application domains.

Datasets Classes Nodes Edges Edge/Node Features

Cora 7 2,708 10,556 3.90 1,433
Citeseer 6 3,321 9,196 2.78 3,703
PubMed 3 1,9717 44,324 2.24 500

Amazon-C 10 13,752 574,418 41.77 767
Amazon-P 8 7,650 287,326 37.56 745

Coauthor-C 15 18,333 327,576 17.87 6,805
Coauthor-P 5 34,493 991,848 28.76 8,415

We drew real-world datasets from three applications for the
node classification task.
• Citeseer, Cora, and PubMed [16]: each node is a paper with

a bag-of-words feature vector, and nodes are connected by
the citation relationship. The goal is to predict the research
area of each paper.

• Amazon-Computer (Amazon-C) and Amazon-Photo
(Amazon-P) [29]: Amazon co-purchase graph, where
nodes represent products and edges indicate that two
products are frequently purchased together, node features
are the bag-of-words vectors of the product reviews.

• Coauthor-Computer (Coauthor-C) and Coauthor-Physics
(Coauthor-P): co-authorship graphs based on the Microsoft
Academic Graph from the KDD Cup 2016 Challenge. We
represent authors as nodes, that are connected by an edge
if they co-authored a paper [29]. Node features represent
paper keywords for each author’s papers.

We randomly divide each graph into three portions with
a ratio of training : validation : test = 60 : 20 : 20. The
GNN parameter θ is trained on the training set using the loss
function LC . With θ fixed, we optimize the mask M according
to the Eq. (10). We remove edges with lower values in the
mask M to obtain E ′

for graph G1. We explain the change in
the fairness-accuracy trade-off as G0 is shifted to G1.

B. Baselines

1) Training the mask matrix M : We use the loss function
minM L′

=
∑C

c=1 λ
cLc

EO + LC to train the mask M as a
baseline. Compared with training with the upper-bounds L̄c

EO,
it can be difficult to learn a satisfying M if the means between
the two groups V0,c and V1,c are similar. Similar to obtaining
G1, we obtain a new graph G2 with a pruned set of edges E ′′

.
2) Microscopic node-level contrastive explanations: We

adopt the following methods as path explanation baselines.
The proposed method is denoted as “Stratified-Mean”.
• Random sampling. We randomly select nodes from V0,c

and V1,c to obtain V∗
0,c and V∗

1,c. We run the baseline 1000
times to calculate the means and standard deviations of the
fairness metrics.

• Mean sampling. We solve the problem in Eq. (11) without
considering the constraints. We require V∗

s,c to have similar
mean as Vs,c for s = 0, 1. The baseline may ignore the
detailed differences in the histograms.

• Stratified sampling. Given the ratio of the selected nodes,
we randomly select nodes from Fl,r in the same ratio and
obtain the V∗

s,c, s = 0, 1. This baseline takes into account
the details of class probability distributions through stratified
sampling, but the randomness can hamper explainability.
Evaluation metrics are calculated based on 1000 repetitions.
3) Microscopic path-based contrastive explanations: We

adopt the following methods as path explanation baselines.
The proposed method is denoted as “AxiomPath-Convex”.
• Gradient (Grad) first computes the gradients of the logit of

the predicted class j of the target node J , with respect to
individual edges. Path importance is the sum of gradients
of the edges on the path and is calculated on G0 and
G1 independently. The contribution of a path to prediction
change is the difference between the two path importance
scores on G0 and G1 (if a path exists on just one graph, the
path importance on the graph is used). The paths are ranked
based on path importance to find En.

• GNN-LRP adopts the back-propagation attribution method
LRP to GNN [27]. Path relevance is calculated in the same
way as specified in [27] for node classification. The path
ranking and selection is the same as the baseline Grad.



• DeepLIFT [30] can explain the change in predicted class on
two graphs. For a target node, if the predicted class changes,
the difference between a path’s contributions to the new and
original predicted classes is used to rank and select paths.
If the predicted class remains the same but the distribution
changes, a path’s contribution to the predicted class is used.
Only removed paths are ranked and selected.

• AxiomPath-Topk is a variant of AxiomPath-Convex. It se-
lects the top paths with the highest contributions

∑c
j=1 Cp,j

into En.
• AxiomPath-Linear optimizes the objectives in Eq. (17)

without the log terms. It is thus a linear programming
problem. The resulting optimal x∗ is processed in the same
way as AxiomPath-Convex.

C. Evaluation metrics and performance

1) Training the mask matrix M : We use the l1(Gτ ) =∑C
c=1 L̄c

EO(Gτ ) and the l2(Gτ ) =
∑C

c=1 Lc
EO(Gτ ), τ =

0, 1, 2 as the fairness metrics (note: G2 is obtained by masking
G0 with the loss function Lc

EO). We calculate ∆l1 = l1(Gτ )−
l1(G0) and ∆l2 = l2(Gτ )− l2(G0) in the graph Gτ (τ=1,2) to
evaluate the change in fairness. Node classification accuracy
(Acc.) is also reported.

Based on table III, our method has the best performance on
the ∆l2 over all datasets. On four settings (Citeseer, Pubmed,
Amazon-C and Coauthor-C), it decreases the ∆l1 more than
the baseline method. What’s more, the baseline method only
outperforms our method on two datasets for the ∆l1 and it
increases the ∆l2 on the five datasets instead of reducing it.
Fig. 3 shows the probability distribution of H0 and H1 in the
graph G0, G1 and G2, and we can see that our method makes
the probability distribution of H0 and H1 closer.

TABLE III: Fairness (equal opportunity) performance (the
lower (↓) the ∆l1 and the ∆l2 and the higher (↑) the accuracy,
the better). The circle and the underlines denote the best
method of the ∆l1 and the ∆l2. • indicates the best accuracy.

Datasets G0 G1 G2

l1 l2 Acc. ∆l1(↓) ∆l2(↓) Acc. ∆l1(↓) ∆l2(↓) Acc.

Cora 1.47 0.44 0.83 -0.34 0.02◦ 0.90• 0.71 0.15 0.81
Citeseer 1.74 0.77 0.74 -0.53 -0.34◦ 0.77• 0.44 -0.11 0.71
Pubmed 0.86 0.44 0.86 -0.47 -0.36◦ 0.86 0.26 -0.19 0.85

Amazon-C 4.20 1.74 0.65 -2.44 -1.33◦ 0.78• -0.47 -1.32 0.70
Amazon-P 1.94 0.94 0.82 -1.00 -0.51 0.92• -0.44 -0.55◦ 0.86

Coauthor-C 4.11 2.26 0.85 -1.59 -0.98◦ 0.89• 1.14 -0.64 0.80
Coauthor-P 0.88 0.38 0.92 -0.34 -0.17 0.96• 0.21 -0.22◦ 0.92

2) Macroscopic node-level contrastive explanations: The
faithfulness of the macroscopic explanations of fairness
changes is defined as

1∑
τ=0

|L̄c
EO(Gτ ;V0,c;V1,c)− L̄c

EO(Gτ ;V∗
0,c;V∗

1,c)|, (18)

where L̄c
EO(Gτ ;V0,c;V1,c) denotes L̄EO calculated between

the groups V0,c and V1,c in the graph Gτ , and similarly for
L̄c
EO(Gτ ;V∗

0,c;V∗
1,c). If the selected nodes in V∗

0,c and V∗
1,c are

representative of V0,c and V1,c, respectively, the above metric
should be small. We also demand the probability distribution
of H∗

0 and H∗
1 is consistent with the H0 and H1, respectively.

We calculate the EMD [25] distance between H0 (H1, resp.)
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Fig. 3: The probability distribution histograms of H0 and H1 in the
graph G0, G1 and G2 on Citeseer(Left) and Pubmed(Right).

and H∗
0 (H∗

1 , resp.). The smaller the EMD distance, the more
similar the two probability distributions are.

Based on Table IV, we can see that the proposed method
(Stratified-Mean) achieves the best results across different
classes on most datasets, with the smallest fairness change
explanation faithfulness and the EMD distance. The stratified
sampling method performs best in some classes on the EMD
distance metric. Since it uniformly selects nodes from Fl,r,
the probability distributions of H0 (H1, resp.) is close to H∗

0

(H∗
1 , resp.). This also reveals that F plays an important role

in preserving the shift in probability distribution from H0

to H1. For fairness change explanation faithfulness, in some
classes, the mean sampling and the stratified-mean have the
same effect. Although the stratified sampling performs better
than stratified-mean in some classes, the gap is less significant.

We show the probability distribution of nodes located in
V0,c, V1,c, V∗

0,c and V∗
1,c on Fig. 4. On the Pubmed and

Coauthor-C datasets, the probability distributions of V∗
0,c and

V∗
1,c obtained according to our method are consistent with V0,c,

V1,c in the two graphs G0 and G1. What’s more, in the G0,
the nodes in V1,c has a higher probability of being classified
into class c compared to the nodes in V0,c, while in the G1,
the degree-related unfairness is almost negligible. In short, the
key nodes obtained by our method can be effectively to explain
why the GNN changes from unfairness to fairness.

3) Microscopic path-based contrastive explanations: For
the selected nodes, we aim to find a small number of paths on
computational graphs that explain the difference in predictions.
We design the following metric to evaluate the faithfulness of
the selected paths in explaining changes in class distributions:

FidelityKL =
KL(PrJ(¬Gn)∥PrJ(G0))

KL(PrJ(G1)∥PrJ(G0))

where PrJ(¬Gn) is the class distribution computed on the
computation graph for G1, with the selected paths in En

added to the computational graphs on the input graph G1,
which removed some edges from G0. Intuitively, if En indeed
contains the more salient altered paths that turn G0 into G1,
the less information the remaining paths can propagate, the
more similar should ¬Gn be to G0, and thus the smaller
the KL-divergence in the numerator. The denominator is



TABLE IV: Overall performance (the lower (↓) the Fairness metric and the EMD distance, the better). The underlines (circle, resp.) indicates
the winner in the fairness metric (the EMD distance, resp.). Standard deviation are in parentheses.

Datasets Class Fairness metric (↓) EMD distance(↓)
Random Mean Stratified Stratified-Mean Random Mean Stratified Stratified-Mean

Cora

1 0.0468(± 0.0277 ) 0.0172 0.0268(± 0.0062 ) 0.0088◦ 0.1304(± 0.0380) 0.1038 0.0706(± 0.0075) 0.0551
2 0.0458(± 0.0267) 0.0052 0.0189(± 0.0036) 0.0017◦ 0.1129(± 0.0388) 0.0427 0.0724(± 0.0045) 0.0322
3 0.0215(± 0.0133) 0.0053 0.0051(± 0.0024) 0.0043◦ 0.0377(± 0.0136) 0.0335 0.0189(± 0.0020) 0.0145
4 0.0318(± 0.0193) 0.0024 0.0045(± 0.0025) 0.0023◦ 0.0684(± 0.0222) 0.0363 0.0298(± 0.0036) 0.0298
5 0.0382(± 0.0246) 0.0015 0.0433(± 0.0045) 0.0009◦ 0.0787(± 0.0252) 0.0442 0.0734(± 0.0037) 0.0335
6 0.0562(±0.0353) 0.0059 0.0792(± 0.0082) 0.0029◦ 0.1292(± 0.0403) 0.0815 0.1227(± 0.0104) 0.0500
7 0.0365(± 0.0235) 0.0099 0.0401(± 0.0033) 0.0043◦ 0.0869(± 0.0263) 0.0527 0.0794(± 0.0039) 0.0321

total 0.0313(± 0.0247) 0.0067 0.0313(± 0.0247) 0.0036◦ 0.0869(± 0.0263) 0.0563 0.0668(± 0.0322) 0.0353

Citeseer

1 0.0620(± 0.0377 ) 0.0743 0.0398(± 0.0174 ) 0.0242◦ 0.3693(± 0.1010) 0.3350 0.3607(± 0.0287) 0.2052
2 0.0781(± 0.0454 ) 0.1105 0.0412(± 0.0114 ) 0.0092◦ 0.2428(± 0.0751) 0.1962 0.1525(± 0.0116) 0.1027
3 0.0549(± 0.0332 ) 0.0089 0.0328(± 0.0084 ) 0.0064◦ 0.1277(± 0.0378) 0.0959 0.0771(± 0.0072) 0.0864
4 0.0416(± 0.0269 ) 0.0081 0.0464(± 0.0065 ) 0.0046◦ 0.1059(± 0.0309) 0.0737 0.0807(± 0.0079) 0.0606
5 0.0577(± 0.0331 ) 0.0062 0.0344(± 0.0040 ) 0.0009◦ 0.1170(± 0.0404) 0.0560 0.0736(± 0.0045) 0.0384
6 0.0981(± 0.0563 ) 0.0213 0.0781(± 0.0129 ) 0.0172◦ 0.1984(± 0.0720) 0.1392 0.1232(± 0.0116) 0.1265

total 0.0654(± 0.0439) 0.0382 0.0456(± 0.0191) 0.0104◦ 0.1936(± 0.1133) 0.1493 0.1447(± 0.1016) 0.1033

Pubmed

1 0.0156(± 0.0093 ) 0.0265 0.0067◦(± 0.0035) 0.0073 0.0605(± 0.0192) 0.0648 0.0308(± 0.0039) 0.0301
2 0.0122(± 0.0064 ) 0.0126 0.0050(± 0.0022 ) 0.0023◦ 0.0389(± 0.0089) 0.0296 0.0226(± 0.0025) 0.0171
3 0.0123(± 0.0065 ) 0.0043 0.0045(± 0.0022 ) 0.0030◦ 0.0385(± 0.0105) 0.0214 0.0209(± 0.0024) 0.0191

total 0.0132(± 0.0077 ) 0.0144 0.0055(± 0.0030 ) 0.0042◦ 0.0459(± 0.0169) 0.0386 0.0248(± 0.0053) 0.0221

Amazon-P

1 0.0412(± 0.0220 ) 0.0152 0.0259(± 0.0019 ) 0.0144◦ 0.0722(± 0.0250) 0.0321 0.0350(± 0.0014) 0.0290
2 0.0606(± 0.0342 ) 0.0167◦ 0.0212(± 0.0012 ) 0.0167◦ 0.1009(± 0.0460) 0.0359 0.0304(± 0.0009) 0.0273
3 0.0517(± 0.0328 ) 0.0280◦ 0.0288(± 0.0023 ) 0.0280◦ 0.0906(± 0.0364) 0.0517 0.0444(± 0.0010) 0.0448
4 0.0448(± 0.0268 ) 0.0081 0.0090(± 0.0022 ) 0.0049◦ 0.0797(± 0.0364) 0.0368 0.0253(± 0.0033) 0.0245
5 0.0531(± 0.0303 ) 0.0172◦ 0.0229(± 0.0012 ) 0.0172◦ 0.0891(± 0.0373) 0.0309 0.0272(± 0.0009) 0.0263
6 0.0230(± 0.0161 ) 0◦ 0.0127(± 0.0021) 0◦ 0.0250(± 0.0150) 0.0103 0.0138(± 0.0014) 0.0068
7 0.0237(± 0.0144 ) 0.0066 0.0022◦(± 0.0011 ) 0.0034 0.0398(± 0.0162) 0.0248 0.0081(± 0.0006) 0.0109
8 0.0329(± 0.0207 ) 0.0013◦ 0.0072(± 0.0012 ) 0.0013◦ 0.0968(± 0.0445) 0.0180 0.0277(± 0.0011) 0.0164

total 0.0412(± 0.0288 ) 0.0116 0.0162(± 0.0092 ) 0.0107◦ 0.0742(± 0.0423) 0.0304 0.0265(± 0.0107) 0.0232

Amazon-C

1 0.0599(± 0.0316 ) 0.0093◦ 0.0560(± 0.0024 ) 0.0093◦ 0.1556(± 0.0687) 0.0317 0.0918(± 0.0016) 0.0271
2 0.0345(± 0.0177 ) 0.0040 0.0026◦(± 0.0005 ) 0.0031 0.0651(± 0.0274) 0.0159 0.0101(± 0.0005) 0.0109
3 0.0628(± 0.0334 ) 0.0162 0.0104◦(± 0.0104 ) 0.0140 0.1033(± 0.0438) 0.0253 0.0200(± 0.0006) 0.0230
4 0.0506(± 0.0285 ) 0.0029 0.0028◦(± 0.0016 ) 0.0029 0.1329(± 0.0544) 0.0268 0.0212(± 0.0020) 0.0221
5 0.0209(± 0.0114 ) 0◦ 0.0017(± 0.0009 ) 0◦ 0.0476(± 0.0179) 0.0366 0.0072(± 0.0008) 0.0104
6 0.0704(± 0.0434 ) 0.0163◦ 0.0244(± 0.0018 ) 0.0163◦ 0.1256(± 0.0606) 0.0379 0.0414(± 0.0012) 0.0330
7 0.0380(± 0.0210 ) 0.0004 0.0025(± 0.0013 ) 0.0001◦ 0.0896(± 0.0367) 0.0232 0.0341(± 0.0021) 0.0142
8 0.0693(± 0.0374 ) 0.0312◦ 0.0378(± 0.0018 ) 0.0312◦ 0.1555(± 0.0699) 0.0727 0.0584(± 0.0012) 0.0522
9 0.0265(± 0.0159 ) 0.0037 0.0026◦(± 0.0008 ) 0.0033 0.0980(± 0.0406) 0.0445 0.0117(± 0.0009) 0.0250
10 0.0601(± 0.0304 ) 0.0315◦ 0.0326(± 0.0013 ) 0.0315◦ 0.1372(± 0.0544) 0.0620 0.0524(± 0.0021) 0.0567

total 0.0495(± 0.0336 ) 0.0115 0.0173(± 0.0183 ) 0.0111◦ 0.1116(± 0.0613) 0.0376 0.0348(± 0.0254) 0.0274

Coauthor-C

1 0.0569(± 0.0338 ) 0.0207 0.0505(± 0.0063 ) 0.0063◦ 0.1357(± 0.0435) 0.1152 0.0998(± 0.0082) 0.0526
2 0.0310(± 0.0170 ) 0.0410 0.0169(± 0.0083 ) 0.0114◦ 0.1080(± 0.0245) 0.0883 0.0634(± 0.0070) 0.0609
3 0.0214(± 0.0126 ) 0.0138 0.0057◦(± 0.0030 ) 0.0095 0.0736(± 0.0185) 0.0487 0.0310(± 0.0035) 0.0429
4 0.0461(± 0.0283 ) 0.0057 0.0037(± 0.0019 ) 0.0024◦ 0.1069(± 0.0410) 0.0549 0.0346(± 0.0026) 0.0341
5 0.0337(± 0.0220 ) 0.0035 0.0059(± 0.0026 ) 0.0007◦ 0.0683(± 0.0235) 0.0352 0.0264(± 0.0031) 0.0270
6 0.0224(± 0.0132 ) 0.0090 0.0039(± 0.0021 ) 0.0020◦ 0.0577(± 0.0155) 0.0458 0.0235(± 0.0027) 0.0221
7 0.0209(± 0.0108 ) 0.0076 0.0103(± 0.0040 ) 0.0045◦ 0.0719(± 0.0211) 0.0514 0.0419(± 0.0035) 0.0278
8 0.0410(± 0.0275 ) 0.0063 0.0060(± 0.0028 ) 0.0031◦ 0.1080(± 0.0386) 0.0504 0.0373(± 0.0039 ) 0.0413
9 0.0182(± 0.0105 ) 0.0375 0.0077(± 0.0042 ) 0.0046◦ 0.0854(± 0.0214) 0.0864 0.0452(± 0.0051) 0.0451
11 0.0312(± 0.0211 ) 0.0035 0.0047(± 0.0024 ) 0.0003◦ 0.0532(± 0.0203) 0.0371 0.0177(± 0.0018) 0.0167
12 0.0628(± 0.0167 ) 0.0102 0.0121(± 0.0035 ) 0.0027◦ 0.0628(± 0.0189) 0.0994 0.0368(± 0.0036) 0.0299
13 0.0302(± 0.0186 ) 0.0016 0.0151(± 0.0038 ) 0.0015◦ 0.0639(± 0.0208) 0.0318 0.0312(± 0.0027) 0.0188
14 0.0150(± 0.0093 ) 0.0019 0.0044(± 0.0020 ) 0.0006◦ 0.0273(± 0.0089) 0.0366 0.0128(± 0.0013) 0.0106
15 0.0397(± 0.0239 ) 0.0036 0.0167(± 0.0052 ) 0.0018◦ 0.0728(± 0.0248) 0.0480 0.0311(± 0.0032) 0.0357

total 0.0326(± 0.0255 ) 0.0118 0.0121(± 0.0122 ) 0.0036◦ 0.0771(± 0.0377) 0.0592 0.0378(± 0.0206) 0.0332

Coauthor-P

1 0.0193(± 0.0112 ) 0.0087 0.0180(± 0.0027 ) 0.0039◦ 0.0385(± 0.0113) 0.0496 0.0306(± 0.0023) 0.0286
2 0.0247(± 0.0146 ) 0.0079 0.0031(± 0.0015 ) 0.0026◦ 0.0497(± 0.0183) 0.0559 0.0185(± 0.0017) 0.0234
3 0.0067(± 0.0042 ) 0.0001 0.0015(± 0.0008 ) 0◦ 0.0114(± 0.0037) 0.0260 0.0043(± 0.0005) 0.0075
4 0.0234(± 0.0141 ) 0.0039 0.0188◦(± 0.0033 ) 0.0020 0.0476(± 0.0154) 0.0469 0.0374(± 0.0020) 0.0234
5 0.0800(± 0.0494 ) 0.0122 0.0126(± 0.0035 ) 0.0007◦ 0.1444(± 0.0669) 0.0787 0.0385(± 0.0031) 0.0340

total 0.0312(± 0.0371 ) 0.0065 0.0108(± 0.0077 ) 0.0018◦ 0.0578(± 0.0564) 0.0514 0.0259(± 0.0131) 0.0233

for normalization since the total change can be of differ-
ent scales among target nodes/edges. At one extreme, En

contains no salient paths so that the numerator is close to
KL(PrJ(G1)∥PrJ(G0)) and the fidelity is 1 (the worst). At
the other extreme, ¬Gn degrades to G0 after eliminating the
effect of the most salient altered paths and thus the fidelity is 0
(the best). The metric is different from the objective function

in Eq. (17), so that AxiomPath-Convex does not have the
privilege over the baselines due to the evaluation metric. For a
fair comparison, we ensure the same number of altered paths
are selected into En for all methods. Explanation simplicity
is evaluated as we vary the size of the set En.

From Fi. 5, we can see that AxiomPath-Convex has the best
(smallest) fidelity over all levels of explanation complexities
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Fig. 4: The probability distribution of nodes located in V0,c, V1,c, V∗
0,c and V∗

1,c in the graph G0 and G1 on the predicted class (Left 4
plots: Pubmed; Right 4 plots: Coauthor-C ). For each dataset, the upper left figure shows the probability distribution of nodes located in
V0,c, V1,c in graph G0. The upper right figure shows the probability distribution of important nodes V∗

0,c and V∗
1,c obtained by our method

in graph G0. The bottom left and right figures show the probability distribution on G1.

and over all datasets. On three settings (Cora, Coauthor-P
and Coauthor-C), the gap between AxiomPath-Convex and
the runner-up is significant. On the remaining settings, the gap
is less significant but still not ignorable. AxiomPath-Topk and
AxiomPath-Linear underperform AxiomPath-Convex, indicat-
ing that non-linear log term must be considered when finding
optimal salient paths.

VI. CONCLUSIONS

We studied degree-related group fairness for GNN. We
addressed the issues of prior works, such as the lack of
explantation about why a GNN model becomes fairer or less
so with a different adjacency matrix. The proposed algorithm
for training the fair GNNs can not only ensure the fairness
but also have the outstanding performance. What’s more, for
the node based explanations, we obtain the key nodes via
the linear programming to explain the reason why the GNNs
trend to be fair. While for the path based explanations, we
optimally select a small subset of paths to explain the change
in prediction change. On seven graph datasets we demonstrate
the effectiveness in debiasing while keeping high accuracy.
Experiments showed the superiority of the proposed node and
path based explanations over state-of the-art baselines.
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