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ABSTRACT
There are many applications where positive instances are rare but
important to identify. For example, in NLP, positive sentences for
a given relation are rare in a large corpus. Positive data are more
informative for learning in these applications, but before one labels
a certain amount of data, it is unknown where to find the rare
positives. Since random sampling can lead to significant waste in
labeling effort, previous ”active search” methods use a single ban-
dit model to learn about the data distribution (exploration) while
sampling from the regions potentially containing more positives
(exploitation). Many bandit models are possible and a sub-optimal
model reduces labeling efficiency, but the optimal model is un-
known before any data are labeled. We propose Meta-AS (Meta
Active Search) that uses a meta-bandit to evaluate a set of base ban-
dits and aims to label positive examples efficiently, comparing to
the optimal base bandit with hindsight. The meta-bandit estimates
the mean and variance of the performance of the base bandits, and
selects a base bandit to propose what data to label next for explo-
ration or exploitation. The feedback in the labels updates both the
base bandits and the meta-bandit for the next round. Meta-AS can
accommodate a diverse set of base bandits to explore assumptions
about the dataset, without over-committing to a single model before
labeling starts. Experiments on five datasets for relation extraction
demonstrate that Meta-AS labels positives more efficiently than the
base bandits and other bandit selection strategies.

CCS CONCEPTS
• Information systems → Crowdsourcing; • Theory of com-
putation → Sequential decision making; Online learning the-
ory; Active learning.
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1 INTRODUCTION
In many applications of classification, a large unlabeled dataset can
be collected without much cost (e.g. via Internet crawling), while
identifying the rare positive data instances can be labor-intensive.
In NLP, relation extraction classifies a pair of words/phrases in a
sentence into one of the multiple relations. For example, a model
can extract the relation hasSpouse between the occurrences of the
two concepts (Barack_Obama, Michelle_Obama) from the text snip-
pets “. . . Barack Obama and his wife Michelle Obama . . . ”. Such
an occurrence of the pair in a sentence is called a mention or an
instance, which needs to be classified as having a specific relation
(positive) or not (negative). Currently, the best relation extractors
are based on machine learning and need to be trained on a large
number of labeled data. Positive data are informative for model
training and yet are much rarer and more difficult to find. The more
prevalent negative mentions can be obtained less expensively by
random sampling.

To learn a relation extractor on a new corpus, one starts with
an unlabeled dataset. Weak supervision for relation extraction [18]
can be helpful in data augmentation but can only complement
human-labeled data whenever an annotation budget is available.
Data annotation will face the exploration vs. exploitation dilemma:
an annotator needs to find positive samples without knowing where
they are ahead of time, but also has to explore the data distribution
by labeling certain samples that are negatives. On the one hand,
more exploratory labeling leads to better knowledge of the data
distribution but leaves less budget to exploit the regions that have
more positives. On the other hand, less exploration may trap the an-
notator in a narrow part of the dataset, missing the areas potentially
with more positives.

To address the dilemma, active search (AS) algorithms are de-
signed to carefully balance the exploration and exploitation in
order to obtain the most positive samples. Active search differs
from active learning (AL): an AL algorithm labels data for a specific
model and is evaluated by the model’s performance trained on the
data, while an AS algorithm is model-agnostic and aims to find as
many positives as possible that potentially can be used to train a
model, construct a knowledge base, or for other downstream tasks.
Greedy active search algorithms with limited steps of look-ahead
and without exploration have been proposed in [6, 8, 21], but their
search scales poorly with the number of unlabeled data due to the
look-ahead. Bandit algorithms can manage the trade-off between
exploration and exploitation in active search [2–4, 10, 11, 16, 17].
However, prior bandit based active search [12, 15] committed to a
single bandit model by making an implicit assumption about the
data distribution, which is unknown before the bandit is selected.
As a result, the selected bandit can be sub-optimal with respect to
the true data distribution. Indeed, we empirically show that differ-
ent bandit algorithms lead to a rather diverse annotation efficiency.
One possible explanations is that, a bandit may assume that the
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positives are from multiple clusters under a specific distance metric,
while another bandit uses a different distance metric, so that the
positives form a single cluster and less exploration is needed.

To avoid over-committing to a presupposition of data distribu-
tion of a particular dataset, in an online fashion, the ”usefulness”
of different bandit algorithms should be actively evaluated (explo-
ration of the algorithms), and then be selected to propose unlabeled
data for annotation (exploration in the data space). We propose
Meta-AS (Meta Active Search) that has the following benefit over
the prior work. First, Meta-AS has a set of more diverse bandit
models, including linear [3, 10, 16], kernel-based [17], and graph-
based bandits [1, 19] to fit the unknown data distribution. The EXP4
algorithm [2] uses a bandit to manage a set of linear bandits, while
Meta-AS adopts more diverse bandits to allow more exploration
in the algorithm space. Second, specific to the annotations for re-
lation extraction, a bag of multiple mentions regarding the same
pair of words/phrases appearing in one or multiple sentences, can
be annotated all at once to save human mental effort. We design
Meta-AS to propose bags of mentions, not individual mentions.

2 PROBLEM DEFINITION
Let {x1, . . . , xn } denote the feature vectors of n mentions, which
are initially in the set of unlabeled data U = {xi }ni=1. Let B

j =

{xji , i = 1, . . . ,mj } ⊂ {x1, . . . , xn } denote the j-th bag of mentions
(instances). The label of xi is yi ∈ {0, 1}. A bag is positive if and
only if at least one of the mentions it contains is positive. The subset
P ⊂ U is the designated set of positive instances to be discovered
using a budget ofM units of human annotation. The generic active
search algorithm works iteratively, as shown in Algorithm 1. At
iteration t , the algorithm chooses a bag B j(t ) from the unlabeled
set U and asks the human annotator to label the mentions in B j(t ).
Since we are interested in collecting positive data, an instance
labeled as positive leads to reward 1 and a negative instance leads
to reward 0. Themodel is updated according to the label of instances
in B j(t ), which are then removed from U as their labels are now
revealed. The labels of the data points that are not selected remain
unknown. The goal is to design a query strategy, parametrized by
θ , that can select B j(t ) over t = 1, . . . until the budget is used up,
so that the number of positive instances labeled is maximized.

Algorithm 1: Generic Active Search

Input: unlabeled dataset U; labeling budgetM .
Output: labeled dataset L
Initialize the parameters θ of the selection strategy.
t = 1; L(t ) = ∅.
for t = 1, . . . do

if |L(t ) | ≥ M then
Out of budget and return L(t ).

end if
(∗) Use θ to select a bag B j(t ) of unlabeled instances.
Label the instances in B j(t ).
Remove B j(t ) from U and let L(t+1) = L(t ) ∪ B j(t ).
Update parameters θ using the labeled data in B j(t ).

end for

3 METHODOLOGIES
The above generic framework can be implemented using a single
bandit algorithm, such as UCB [3] or Thompson sampling [4, 10],
or a meta-bandit with multiple base bandit algorithms.

3.1 Base bandits
3.1.1 UCB. The UCB [3] for the multi-armed bandit problem aims
to attain maximal cumulative rewards by pullingK arms {1, . . . ,K}
over time to explore the arm reward distributions and collect the
rewards. At iteration t , it pulls the arm a(t) ∈ {1, . . . ,K} with the
highest upper bound of the mean rewards:

a(t) = argmax
j ∈{1, ...,K }

µ̄ j (t) +C
√

2 ln t/tj (1)

where µ̄ j (t) is the empirical average reward collected by arm j up to
time t , and tj is the number of times the arm j has been pulled up to
time t . The parameter θ in Algorithm 1 for UCB is µ̄ j (t) and tj for
j = 1, . . . ,K . When the reward of the pulled arm a(t) is revealed,
µ̄ j (t) and tj will be updated accordingly for the next iteration. UCB
will be used as a base bandit with arms being K clusters of data, or
as a meta-bandit with base bandits as arms (see Section 3.2).

3.1.2 Thompson sampling. Thompson sampling (TS for short) is a
Bayesian treatment of the bandit problem. Here we adopt Thomp-
son sampling in the contextual bandit setting [4] to take feature
vectors xi into account. As the rewards are binary, logistic regres-
sion is used to model the likelihood of a positive label/reward
p(yi = 1|xi ;θ ), given a context xi and a linear model θ :

p(yi = 1|xi ) = (1 + exp(−w⊤xi ))−1. (2)

For exploration, TS draws a sample ofw from the posteriorp(w|L(t )),
whereL(t ) is the set of instances labeled up to time t . Using Laplace
approximation, the posterior p(w|L(t )) can be parametrized by the
mean vector m and a diagonal covariance matrix q. When a new
batch of data is labeled, the mean and the covariance are updated
in an online fashion. See [4] for more details.

3.1.3 UCB using Gaussian Process. TS assumes a linear relation-
ship between yi and xi . The GP-UCB algorithm [17] uses Gaussian
Process and kernel functions to model a nonlinear relationship be-
tween the data and the labels. Let f (x) be a function that predicts the
reward when x is selected for labeling. GP-UCB assumes the func-
tion f is sampled from a Gaussian Process GP(f ), which controls
the smoothness of f via a kernel function k(x, x′) ∈ R for any two
instances x and x′. Given ℓ labeled points {(x1,y1), . . . , (xℓ ,yℓ)},
the reward of any unlabeled point x can be estimated using the pos-
terior Gaussian distribution with the following mean and variance:

fℓ(x) = kℓ(x)⊤(Kℓ + σ
2Iℓ)−1yℓ ,

σ 2
ℓ
(x) = k(x, x) − kℓ(x)⊤(Kℓ + σ

2Iℓ)−1kℓ(x),

where kℓ(x) = [k(x, x1), . . . ,k(x, xt )]⊤ is the function k(x, ·) eval-
uated on the ℓ labeled instances, Kℓ is the kernel matrix with
Kℓ(i, j) = k(xi , xj ), and yℓ = [y1, . . . ,yℓ]⊤. GP-UCB [17] selects

x = argmaxx∈U
[
fℓ(x) + β1/2σℓ(x)

]
, (3)

where β balances exploitation and exploration.



3.1.4 UCB using graph information. If there are some relationships
among the instances beyond the data vectors, a graph can describe
the relationships to benefit active search. In the graph, an instance
is a node and two related nodes are connected by an edge. For
example, the ”homophily relationship” assumes that connected
instances are more likely to have similar labels. In particular, graph
bandits (Graph-UCB for short) assume that the rewards of a node
can be inferred from those of its neighbors [1, 19]. We construct
a graph of mentions so that two mentions are connected if they
shared at least one word. The motivation is that if a mention is
positive, then other mentions including the shared word(s) are
likely to be positive. We first run DeepWalk [14] on the constructed
graph to obtain embeddings of the nodes, and then run the k-means
algorithm to cluster the nodes into clusters. Each cluster will contain
instances that are likely to have similar labels. A UCB bandit uses
the clusters as arms and all instances from a cluster will receive the
same UCB score (Eq. (1)).

3.1.5 Proposing Bags of Instances. Each base bandit (TS, GP-UCB,
Graph-UCB) returns a score for each instance while we need to
propose multiple instances in a bag to reduce annotator mental
effort. For each bag and each base bandit, we can take the mini-
mum, average, or maximum of the scores of instances in the bag to
estimate the value of the bag. Note that different instances from a
bag can belong to multiple clusters in Graph-UCB.

3.2 Meta-bandit for Active Search
We don’t know which of the above bandit algorithm has the best
performance in finding positives. We propose Meta-AS, a “meta-
bandit” that uses UCB to learn to select base bandit to propose
data for labeling to collect as many positives as possible. The faster
Meta-AS can find the optimal base bandit, the more remaining
budget can be used to exploit the positive part of the dataset. The
meta-bandit maintains performance statistics of a set A of base
bandit algorithms. To diversify the base bandit portfolio, we set
different values to the hyper-parameters of each base bandit (kernel
function, exploration rate, etc.). At iteration t of Algorithm 1, step
(∗), Meta-AS first samples a base bandit according to

a(t) = argmaxa∈A

{
pa (t)

p(t) × ra (t)
+C

√
ln t
na (t)

}
, (4)

where pa (t) is the number of positives collected using the a-th
base bandit, p(t) = ∑

a pa (t) is the number of all positive instances
collected so far, and ra (t) is the proportion of iterations that arm
a was selected by the meta-bandit among the first t iterations.
The exploration is controlled by the hyper-parameter C and how
frequent the base bandit a has been used to sample data (na (t)). The
selected base bandit (indexed by a(t) ∈ A) then selects an unlabeled
bag B j(t ) for labeling, and the labeled instances are used to update
the parameters of the selected base bandit (e.g. Graph-UCB) and
the parameters pa (t), p(t), ra (t) and na (t) of the meta-bandit (Eq.
(4)).

4 EXPERIMENTS
Datasets.Weadopt a review corpus used in [7] and four larger prod-
uct review corpora (Pet, Auto, Instruments, and Videos) from [13].

Table 1: Datasets statistics

Datasets # of Bags # of Pos Instances # of all instances # Edges

Pet 1163 721 3052 204883
Auto 1439 776 2758 99708

Instruments 1463 1084 3946 343214
Videos 1963 841 3841 339603

5-Products 961 795 2117 118309

Our goal is to discover mentions of an adjective and a noun that
appear in the same sentence, where the adjective modifies the noun
(considering “modification” as a relationship). For example, in the
sentence “This large screen is what I have been looking for for long
time.”, the adjective “large” modifies “screen” and they are a posi-
tive mention of the pair (“large”, “screen”), while the pair (“long”,
“screen”) is a negative one. The statistics of the bags and instances
in the corpora are listed in Table 1.
Bandits settings and baselines. There are hyper-parameters for
the base bandits: the covariancematrix q in Thompson sampling (set
to the identitymatrixmultipled by a scalar in {0, 0.01, 0.1, 1.0, 10.0}),
the bandwidth of the radial basis function kernel in GP-UCB (set to
the inverse of the number of features in x), the β in Eq. (3) (set to
values from {1, 10, 100, 1000, 10000}). We vary the length of walks
in {3, 4, 7, 10} with a fixed walk length 80 for DeepWalk and the
number of clusters in Graph-UCB is fixed at 20 for all datasets.
When running UCB on the resulting clusters, the hyper-parameter
C =

√
2 in Eq. (1). To show that Meta-AS can learn from a set of

base bandits with diverse performances, on each unlabeled dataset,
we evaluate each base bandit with different combinations of hyper-
parameter values and aggregation functions (min, mean, and max)
for bag proposal, and identify the worst, median, and best settings.
We then have three instances of TS, denoted as TS-0, TS-1, and TS-
2, with increasing performances, and similarly for GP-UCB (GP-0,
GP-1, and GP-2) and Graph-UCB (GU-0, GU-1, and GU-2). Note that
GP-UCB is not scale only tested on the small dataset.

We compare the performances of Meta-AS and invidivual base
bandits to see how much Meta-AS can approach or even exceed the
best base bandit. Also, by comparing the performances of different
base bandit algorithm with different hyper-parameters, we can see
the diverse performance of the base bandits and confirming the
need of bandit selection during data annotation.

4.1 Results
Overall performance. We run Meta-AS with the selected set of
base bandits on the five datasets. In Figure 1, we show the per-
formance of each bandit, measured in recall (the percentage of all
positive instances that are selected and annotated by the bandit). On
the smaller 5-product dataset, Meta-AS is the runner-up among all
nine base-bandits, indicating that Meta-AS learned to identify the
best base bandit and aimed to approximate the best performance.
Even more interesting is the performance of Meta-AS on the four
larger corpora: Meta-AS learned to find the best base bandit and
started to exceed the best after between 200 to 300 rounds of human
feedback. We believe that the better performance comes from less
exploration in the meta-bandit, which safely enter the exploitation
mode early. Note the diversity of the performances in the base
bandits indicate the necessity of Meta-AS to learn to avoid the low-
performing bandits. Although not shown here, we observed that
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Figure 1: From left to right: how the recall rates change as Meta-AS and the base bandits on the datasets 5-Products, Pet, Auto, Instruments, and Videos.
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Figure 2: From left to right: the performance of Meta-AS under different exploration parameter C on the five datasets.

more base bandits leads to better Meta-AS performance, confirming
that Meta-AS can learn to find the optimal base bandit.
Sensitivity studies. In Figure 2, we study how sensitive Meta-AS
is to its hyper-parameter C in Eq. (4) that controls the amount of
exploration in the space of base bandits. We can see that on all five
datasets, the hyper-parameter C (set to values in {3, 4, 5, 6}) does
not affect the performance of Meta-AS much.

5 RELATEDWORK AND CONCLUSION
The selection of base bandit algorithms is an instance of “algorithm
selection” [5] and more broadly an instance of “meta learning” [20].
In [5], they proposed to use a bandit to select SAT solvers to find
solutions to different SAT problem instances in an online learning
setting. In meta learning [20], features describing different problem
instances (in our case, different datasets to be actively searched)
are designed to guide the selection the best from a portfolio of
algorithms to solve each problem. In [9], the performance of a
trained classifier is actively evaluated. An ensemble of base bandits
has been applied to recommendation systems [22]. However, the
experts or base models themselves are not learning as more data are
annotated and therefore can’t reflect the latest exploration results.

We conclude that Meta-AS is needed when multiple search algo-
rithms exist but have unknown and diverse performance.We plan to
include more base bandit algorithms in Meta-AS, and demonstrate
its usefulness beyond text data.

ACKNOWLEDGMENT
This work is supported by NSF through grants CNS-1931042, IIS-
2008155, and CNS-1757787. Shengli and Jakob finished the work
when they are undergraduates at Lehigh. We would like to thank
Sam Chebruch for implementing the GP-UCB algorithm, and Shel-
don Xu for implementing the contextual Thompson sampling.

REFERENCES
[1] N Alon, N Cesa-Bianchi, C Gentile, S Mannor, Y Mansour, and O Shamir. Non-

stochastic Multi-Armed Bandits with Graph-Structured Feedback. SIAM Journal
on Computing, 46(6):1785–1826, 2017.

[2] P Auer, N Cesa-Bianchi, Y Freund, and R Schapire. The Nonstochastic Multiarmed
Bandit Problem. SIAM Journal on Computing.

[3] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the
Multiarmed Bandit Problem. Machine Learning, 2002.

[4] Olivier Chapelle and Lihong Li. An Empirical Evaluation of Thompson Sampling.
NIPS, 2011.

[5] Matteo Gagliolo and Jürgen Schmidhuber. Algorithm Selection as a Bandit
Problem with Unbounded Losses. In Learning and Intelligent Optimization, 2010.

[6] Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong, Jeff G Schneider, and
Richard P Mann. Bayesian Optimal Active Search and Surveying. In ICML, 2012.

[7] Minqing Hu and Bing Liu. Mining Opinion Features in Customer Reviews. AAAI,
2004.

[8] Shali Jiang, Gustavo Malkomes, Geoff Converse, Alyssa Shofner, Benjamin Mose-
ley, and Roman Garnett. Efficient nonmyopic active search. In Proceedings of the
34th International Conference on Machine Learning, 2017.

[9] N Katariya, A Iyer, and S Sarawagi. Active Evaluation of Classifiers on Large
Datasets. In ICDM, 2012.

[10] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A Contextual-bandit
Approach to Personalized News Article Recommendation. In WWW, 2010.

[11] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased Offline Evalu-
ation of Contextual-bandit-based News Article Recommendation Algorithms. In
WSDM, pages 297–306, 2011.

[12] Yifei Ma, Tzu-Kuo Huang, and Jeff G Schneider. Active Search and Bandits on
Graphs using Sigma-Optimality. In UAI, 2015.

[13] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying Recommendations using
Distantly-Labeled Reviews and Fine-Grained Aspects. In EMNLP-IJCNLP, 2019.

[14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. 2014.

[15] Jean-Michel Renders. Active search for high recall: A non-stationary extension
of thompson sampling. In Gabriella Pasi, Benjamin Piwowarski, Leif Azzopardi,
and Allan Hanbury, editors, ECIR, 2018.

[16] Steven L Scott. A Modern Bayesian Look at the Multi-armed Bandit. Appl. Stoch.
Model. Bus. Ind., 26(6):639–658, 2010.

[17] N Srinivas, A Krause, S M Kakade, and M W Seeger. Information-Theoretic
Regret Bounds for Gaussian Process Optimization in the Bandit Setting. IEEE
Transactions on Information Theory, 2012.

[18] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D Manning.
Multi-instance Multi-label Learning for Relation Extraction. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, 2012.

[19] Michal Valko. Bandits on graphs and structures. PhD thesis, 2016.
[20] Ricardo Vilalta and Youssef Drissi. A Perspective View and Survey of Meta-

Learning. Artificial Intelligence Review, 18(2):77–95, 2002.
[21] Xuezhi Wang, Roman Garnett, and Jeff Schneider. Active Search on Graphs. In

KDD, 2013.
[22] Qingyun Wu, Huazheng Wang, Yanen Li, and Hongning Wang. Dynamic En-

semble of Contextual Bandits to Satisfy Users’ Changing Interests. In WWW,
2019.


	Abstract
	1 Introduction
	2 Problem definition
	3 Methodologies
	3.1 Base bandits
	3.2 Meta-bandit for Active Search

	4 Experiments
	4.1 Results

	5 Related work and conclusion
	References

