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ABSTRACT
Spamming reviews are prevalent in review systems to manipulate

seller reputation and mislead customers. Spam detectors based on

graph neural networks (GNN) exploit representation learning and

graph patterns to achieve state-of-the-art detection accuracy. The

detection can influence a large number of real-world entities and it

is ethical to treat different groups of entities as equally as possible.

However, due to skewed distributions of the graphs, GNN can fail

to meet diverse fairness criteria designed for different parties. We

formulate linear systems of the input features and the adjacency

matrix of the review graphs for the certification of multiple fairness

criteria. When the criteria are competing, we relax the certifica-

tion and design a multi-objective optimization (MOO) algorithm

to explore multiple efficient trade-offs, so that no objective can be

improved without harming another objective. We prove that the

algorithm converges to a Pareto efficient solution using duality and

the implicit function theorem. Since there can be exponentially

many trade-offs of the criteria, we propose a data-driven stochastic

search algorithm to approximate Pareto fronts consisting of multi-

ple efficient trade-offs. Experimentally, we show that the algorithms

converge to solutions that dominate baselines based on fairness

regularization and adversarial training.

CCS CONCEPTS
• Information systems→ Spamdetection; •Computingmethod-
ologies→ Neural networks; • Applied computing→ Multi-
criterion optimization and decision-making.
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1 INTRODUCTION
Online reviews evaluate the reputations of businesses and guide

customers on e-commerce websites, such as Amazon [14], Yelp [30],

and Google Play [35]. However, these websites have also attracted

many spammers
1
to manipulate product ratings and the less in-

formed customers. Numerous detectors are proposed, using features

derived from texts [20, 34, 42], reviewer behaviors [27, 33, 46], and

graphs [19, 21, 28, 37]. The literature has seen a steady improvement

in detection accuracy, which is nonetheless not the only evaluation

metric. Since the detection can affect many parties in e-commerce,

ethical aspects, such as fairness, have caught much attention. We

focus on the fairness of graph neural networks (GNN), which com-

bine representation learning and patterns of the review graphs

connecting reviewers, reviews, and products to deliver superior

detection accuracy [28]. The GNN detector outputs Pr(Ŷi = 1|G) as

the probability of the suspiciousness of the i-th review. The reviews

with high probabilities will be screened or automatically removed.

Whether a review needs to be blocked should depend only on

the characteristics relevant to spamming (such as the intention

and impact of the review [47]). However, such characteristics are

unobservable due to the anonymity of the spammers. Furthermore,

the review graphs can contain attributes, such as the number of

reviews by an author, that can bias the detection
2
.

We focus on the fairness issue due to the highly skewed distribu-

tion of node degree (see Figure 1, panel (a)). Prior accuracy-focusing

detectors did not consider the degree and can have unfair detection.

For example, reviewers or products with fewer reviews can have a

higher chance of being screened and such treatment is unfair to the

majority of reviewers. We define the protected group of reviewers

(indicated by the sensitive attributeA = 1) as those that have posted

less than a certain number of reviews, and the remaining reviewers

are in the favored group (A = 0). The reviews are grouped according

to their authors (reviewers).

To demonstrate the fairness issue, Figure 1 panel (b) shows the

computation graphs for example reviews from the two groups. A

review from the favored group (A = 0) is connected to its author (the

larger blue circles), which is connected to many other reviews that

can be spam (red circles) or non-spams (black circles). Informative

detection signals of the reviews in the input (bottom) layer can

be diluted by the aggregation operator (averaging or summing)

as messages are passed up. Pr(Ŷi = 1|G) calculated at the root

of reviews from group 0 can be lower than those from group 1,

due to the dilution. The discrepancy between the probabilities is

termed “disparate impact” [11], and “statistical parity” means the

two probabilities are equal.

1
According to [40], about 40% of the reviews on Amazon are fake ones.

2
The unobservable characteristics form the “construct feature space” (CFS) and the

observable features form the “observable feature space” (OFS) [15]
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(a) Review graph and a GNN model. (b) Computational graphs of the GNN.
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Figure 1: (a) An example review graph G . The GNN runs on G and predicts Pr(Yj = 1 |G), the probability of the corresponding review being
suspicious, given the graphG . (b) Computation graphs of Pr(Yj = 1 |G ) for reviews from the two groups. The roots in group 0 have blue children
(the reviewers), which have many children at the input (bottom) layer that can be spams or non-spams. The messages from non-spams can
dilate the suspicious features from the spam nodes, making group 0 spams harder to detect, thus a gap between the NDCGs of the two groups.
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Figure 2: Satisfying one fairness criterion does not guaran-
tee satisfaction of another fairness criterion.

Statistical parity is not sufficient to ensure fairness: different false

positive rates between two groups means that the innocent reviews

from one group are more likely to be screened, even when the same

percentage of reviews from the two groups are screened [17]. It is

necessary to enforce multiple fairness constraints (e.g., statistical

parity and equalized odds [17]). Note that enforcing one fairness

criterion does not guarantee fairness in another metric (see Figure 2

and Figure 4). Prior work on fair learning on graphs [1, 5, 7, 36]

only concern about a single fairness criterion.

The first challenge is to understand the conflict among multiple

fairness criteria and detection performance. Recent work [15, 24, 26]

certified multiple fairness constraints using the feasibility of the

equality and/or inequality constraints. However, the constraints

are not formulated based on graph properties and detection per-

formance is not considered. Since the class distribution in spam

detection is highly skewed, ranking-based metrics, such as NDCG,

may be more appropriate. However, closed-form constraints for

certificating fair ranking have not been formulated. Fair repre-

sentation learning [1, 5, 9, 31] is agnostic about fairness metrics

and cannot reveal their conflicts. Second, when multiple hard fair-

ness constraints are infeasible, one needs to relax the constraints

and find Pareto efficient trade-offs among the relaxations
3
Prior

3
A trade-off is “Pareto efficient”, if improving one metric (e.g., accuracy) necessarily

harm at least another metric (e.g., a fairness criterion).

work [1, 9, 23] used fairness-regularized optimization, where a

user-specific hyperparameter controls the relative importance of

fairness and classification accuracy. Nonetheless, these methods did

not guarantee Pareto efficiency and thus not reveal the necessary

trade-offs (see Figure 6). While there are multi-objective optimiza-

tion (MOO) algorithms designed for fair machine learning [22], the

convergence proof is incomplete and it is not clear how the graph

and GNN can affect the convergence. Lastly, the relative impor-

tance of the multiple metrics is unknown before model is trained

and evaluated. Preference-based MOO [22, 32] requires preference

vectors from users. However, the number of preference vectors

increases exponentially in the number of objectives.

To address the above challenges, we study four widely-used fair-

ness criteria, including a ranking-based metric, and formulate linear

constraints to certificate the simultaneous satisfaction of these cri-

teria. The constraints are GNN-specific and expressed in terms

of the underlying graph structure and the input feature vectors.

The formulation is of independent interest beyond spam detection.

We adopt a well-studied gradient-based MOO algorithm to search

a Pareto optimal solution efficiently. We develop a proof of the

convergence of the algorithm using the implicit function theorem,

completing the proof in [22]. Unlike [3, 16, 45, 48], we don’t assume

convex formulations of the fairness criteria, since convexity can

over-relax the fairness constraints and lose the regularization [29].

Building on the convergence of the MOO algorithm, we adopt a

stochastic search algorithm [39]
4
for a more efficient data-driven

search without user-specified preference vectors. Experimentally,

we demonstrate the need to enforce multiple fairness criteria and

the convergence of the proposed algorithms. The stochastic search

algorithm finds more efficient solutions that dominate solutions

found by regularization-based methods [45, 48] and adversarial

learning-based methods [1, 5, 31].

2 PRELIMINARIES
2.1 Spam detection based on GNN
Graph neural networks have been used for spam detection [28].

GNN operates on a graph G = (V, E) with a set of nodes V =

{v1, . . . ,vN }. Each nodevi has a feature vector xi encoding various

4
In their paper, GNN is not studied and certificates are not analyzed.



spam detection features. The undirected edge ei j ∈ E indicates that

vi and vj are related. LetW ∈ {0, 1}N×N be the adjacency matrix

of the graph G, so thatWi j = 1 if and only if ei j ∈ E. GNN is a

K-layered neural network. Let {h(k )

j , j = 1, . . . ,N ,k = 1, . . . ,K} be
the feature vectors of the nodevj output at the k-th layer. The input

feature vector xj is considered to be h
(0)

j at layer 0. GNN computes

h
(k )

j , k ∈ {1, . . . ,K}, as follows:

a
(k )

j = AGGREGATE
(k )

({
h

(k−1)

i : ei j ∈ E
})
, (1)

h
(k )

j = COMBINE
(k )

(
h

(k−1)

j ,a
(k )

j

)
, (2)

where the AGGREGATE function finds a single vector a
(k )

j from

the vectors of the neighboring nodes at the previous layer. These

functions can take various forms. For example, AGGREGATE
(k )

can

be the mean of the input vectors, and COMBINE
(k )

the composition

of the ReLU and an affine mapping parameterized by θ (k )
[25].

Let θ = [θ (0), . . . ,θ (K )
] ∈ Rd denote all the d trainable param-

eters of the GNN. The prediction Pr(Ŷj = yj |θ ;G) is computed by

the sigmoid function σ (zj ). zj =

〈
θ (K ),h

(K )

j

〉
is the logic and θ (K )

maps the last layer’s output h
(K )

j to zj .

The aggregation function in multiple layers can represented

by a computation graph. For a node vj , to compute Pr(Ŷj |θ ;G), a

spanning tree of the graph G is constructed with root at vj . The
tree is cut-off at the depth K . We will use the computation graphs

to analyze the compatibility of multiple fairness criteria.

GNN needs to be trained on labeled nodes (assumed to be the first

n of the N nodes on G , whose labels are denoted by yj ∈ {0, 1}, j =

1, . . . ,n). Since the number of spams and non-spams are imbalanced,

we choose to maximize the NDCG metric for evaluating rankings:

1

Z

n∑
j=1

1[yj = 1]

1

log(r j + 1)

, (3)

where r j is the ranking position of the j-th labeled node among

all labeled nodes sorted in descending order of Pr(Ŷj = yj |θ ;G). Z

is the maximal possible value of

∑n
j=1

1[yj = 1]
1

log(r j+1)
across all

rankings so that the loss is in [0, 1]. NDCG is not differentiable due

to the sorting, and we adopt the differentiable surrogate [6]

ℓ1(θ ;G) =

1

Z

∑
j, j′:yj<yj

log(1 + exp(zi − zj )), (4)

where Z is the total number of pairs of positive and negative nodes.

The detection can be evaluated on the test set using the NDCG.

2.2 Optimizing fairness metrics
A commonly found fairness criteria is disparate impact [8, 11]

min

{
Pr(Ŷ = 1|A = 0)

Pr(Ŷ = 1|A = 1)

,
Pr(Ŷ = 1|A = 1)

Pr(Ŷ = 1|A = 0)

}
. (5)

The fairness is maximized when the above metric is 1, and the

predicted probability is independent of A. To facilitate gradient-

based optimization, we adopt the corresponding surrogate [8, 10]:

ℓ(DI)(θ ;G) = |Pr(Ŷ = 1|A = 0) − Pr(Ŷ = 1|A = 1)|, (6)

where Pr(Ŷ = 1|A = a) is estimated as the percentage of the re-

views from group a classified positive by Ŷ . Since the GNN has

probabilistic outputs, we use the approximation

Pr(Ŷ = 1|A = a;θ ,G) =

∑n
j=1

1[Aj = a]Pr(Ŷj = 1|θ ,G)∑m
j=1

1[Aj = a]

. (7)

Equalized odd is another fairness criterion proposed in [18]. Two

specific instances of equalized odd is “equalized false positive rate”,

enforced by the fairness loss

ℓ(EFPR)
(θ ;G) = |Pr(Ŷ = 1|A = 0,Y = 0) − Pr(Ŷ = 1|A = 1,Y = 0)|,

(8)

and “equalized false negative rate” enforced by the loss

ℓ(EFNR)
(θ ;G) = |Pr(Ŷ = 0|A = 0,Y = 1) − Pr(Ŷ = 0|A = 1,Y = 1)|.

(9)

The conditional probabilities in ℓ(EFPR)
and ℓ(EFNR)

can be estimated

similarly as in Eq. (7) but conditioning on both A and Y . Lastly, we
would prefer the detection performance measured in NDCG to be

equal across two groups, using the following loss function

ℓ(XN)
(θ ;G) =

����� 1

Z0

n0∑
j=1

1[yj = 1,Aj = 0]

1

log(r0

j + 1)

(10)

− 1

Z1

n1∑
j=1

1[yj = 1,Aj = 1]

1

log(r1

j + 1)

����� , (11)

with Z0 and Z1 being the normalization for the two groups and r0

j
and r1

j the ranking position of the j-th node from two groups (A = 0

and A = 1), respectively (nodes are ranked within each group). We

approximate the group-wise NDCG using Eq. (4) within individual

groups ℓ(XN)
(θ ;G).

3 MULTI-OBJECTIVE FAIR DETECTION
3.1 Motivating multi-objective optimization
Let’s revisit Figure 2. In the left subfigure, by averaging the pos-

teriors of the three instances within each of the two groups, it is

clear that the averages are different, leading to disparate impact.

However, the detection NDCG are the same across the groups. In

the middle, we let all the Pr(Y = 1|G) be positioned so that their

distances to the decision boundary are the same, leading to statis-

tical parity (no disparate impact). However, the FPR and FNR are

different between both groups. Lastly, on the right subfigure, we see

no disparate impact and the FPR/FNR are equal across the groups,

but the NDCGs are different between the two groups. The above

example shows that enforcing one fairness criterion (e.g., FPR) is

insufficient for ensuring another fairness criterion (e.g., NDCG). Is

it possible to satisfy a set of fairness criteria simultaneously?

3.2 (Im)possibility of satisfying multiple
fairness criteria

The above question has been studied in [24, 26], but their statements

are not about the representation learning on graphs. To simplified

our analysis, we consider the linearized GNN [44]:

Pr(Ŷj = 1|G;θ ) = σ

(
(W̃ )

K
H

(0)

K∏
k=0

θ (k )

)
, (12)



where H (0)
= [h

(0)

1
, . . . ,h

(0)

n ]
⊤
is the input feature matrix, W̃ =

D−1W , and D = diag(W1n×1). We prove that certain fairness crite-

ria can be translated into linear constraints over H
0
andW .

Let G0 and G1 be two groups defined by a sensitive attribute A
and the random variables in groupGi be denoted by {Yi, j }, where
i ∈ {0, 1} and j ∈ {1, . . . , |Gi |}. Define the indicator vector 1[Gi ],

with 1’s in the entries j for Yj ∈ Gi and 0 otherwise. The computa-

tion graph of the simplified GNN, when predicting the class of any

node Yj , is a spanning tree of height K rooted at Ŷj . The spanning

tree’s leaves are the input vectors h
(0)

j′ of the node Yj′ reachable

from Yj on the graph G in K hops
5
. Example computation graphs

are given in Figure 3.

Theorem 3.1. Assume the linearized GNN with fixed parameters
θ = (θ (0), . . . ,θ (K )

). If the rows of the matrix
∏K

k=0
θ (k ) are linearly

independent, then an equality fairness constraintC based on disparate
impact, EFPR, and EFNR, defined using the logits zi, j for nodes Yi, j ,
is satisfied if

1

|G0 |
1[G0]

⊤
(W̃ )

KH (0)
=

1

|G1 |
1[G1]

⊤
(W̃ )

KH (0), (13)

Proof. The averaged logits from group Gi is

1

|Gi |
1[Gi ]

⊤
(W̃ )

KH (0)

K∏
k=0

θ (k ). (14)

By equating the two averages, we have[
1

|G0 |
1[G0]

⊤
(W̃ )

KH (0) − 1

|G1 |
1[G1]

⊤
(W̃ )

KH (0)

] K∏
k=0

θ (k )
= 0.

(15)

Since the rows of

∏K
k=0

θ (k )
are linearly independent,

1

|G0 |
1[G0]

⊤
(W̃ )

KH (0) − 1

|G1 |
1[G1]

⊤
(W̃ )

KH (0)
= 0. (16)

□

Corollary 3.1.1. Under the assumptions of Theorem 3.1, the com-
patibility of S fairness equality criteria C1, . . . ,CS , with two groups
G0,s and G1,s , s = 1, . . . , S , can be certificated by the feasibility of
the following linear system

1

|G0,s |
1[G0,s ]

⊤
(W̃ )

KH (0)
=

1

|G1,s |
1[G1,s ]

⊤
(W̃ )

KH (0), s = 1, . . . , S .

where 1[G0,s ] and 1[G1,s ] are the binary indicator vectors for the
two groups defined by the criterion Cs .

Corollary 3.1.2. Under the assumptions of Theorem 3.1, if an
fairness criterion is defined across over S groups, the criterion is satis-
fied if the following linear system is feasible

1

|Gs |
1[Gs ]

⊤
(W̃ )

KH (0)
=

1

|Gt |
1[Gt ]

⊤
(W̃ )

KH (0),∀s, t ∈ {1, . . . , S}.

where 1[Gs ] and 1[Gt ] are the binary indicator vectors for the two
groups Gs and Gt .

5
In most neural network implementations, such as PyTorch, network parameters are

leaf nodes of computation graphs. We don’t consider parameters in the constraints

since the parameters are fixed as constants.
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Figure 3: A running example demonstrating the (im)possibility.

A similar equality constraint can be proved for the ranking-based

fairness criterion of equalized NDCG. Let G+

i (G−i , resp.) be the set
of positive (negative, resp.) of group i , and 1[G+

i ] and 1[G−i ] be

the corresponding indicator vectors. Let n+

i = |G+

i | and n
−
i = |G−i |

be the number of positive and negative examples in group i , for
i = 0, 1.

Theorem 3.2. Under the assumptions of Theorem 3.1, the fairness
criterion of equality in NDCG approximated using logits zi, j of Yi, j
is satisfied if

1

n−
0
× n+

0

∆
⊤
0

(W̃ )
KH (0)

=

1

n−
1
× n+

1

∆
⊤
1

(W̃ )
KH (0), (17)

with ∆i = n+

i × 1[G−i ] − n−i × 1[G+

i ], for i = 0, 1.

Proof. The proof of the theorem is similar to Theorem 3.1. To

use the logits to define equality in NDCG,we replace log(1+exp(zj′−
zj )) in the approximated NDCG loss function ℓ(XN)

(θ ;G) with zj′ −
zj . The summation in the definition of the loss function is then

replaced with the inner product ∆
⊤
0

(W̃ )
KH (0)

and ∆
⊤
1

(W̃ )
KH (0)

for

groups 0 and 1, respectively. □

The above theorems are applicable to general graphs beyond the

review graphs. In the proof, rather than working with the output

probabilities in the fairness constraints, as defined in Seciton 2.2,

we relax the fairness criteria that use the probabilities Pr(Y |X ) and

Pr(Y |X ,A) to use the logits zj for the ease of analysis. Be cautioned
that the closeness in the averaged logits is not equivalent to the

closeness in the averaged probabilities. However, when the sigmoid

function is used to compute the probabilities and the logits or their

differences are near 0, the approximation is close.

A running example. We demonstrate the theorem on the review

graph, in Figure 3 with three reviewer accounts, 5 reviews, and

3 products. The two spamming reviews are highlighted with red

circles. The letters A, R, and P above the three columns denote the

types (reviewer, review, and product) of the nodes in the respective

columns, and the numbers besides each node identify a node of

the type in those columns. For example, A1 is the first reviewer

and R3 is the third review, which is a spamming review. For the

ease of analysis, we assume that the simplified GNN has two layers

(K = 2), and there is no edge connecting a node to itself. The

adjacency matrix is row normalized by node degrees as in Eq. (12).

The computation graphs are shown in Figure 3 panel (b).

The protected group has reviews R1 and R2, and the favored

group has reviews R3, R4, and R5. Statistical parity requires

1

2

(
h

(2)

R1
+ h

(2)

R2

)
=

1

3

(
h

(2)

R3
+ h

(2)

R4
+ h

(2)

R5

)
.



The superscripts indicate the second (output) layer of the GNN.

Using the computational graphs, if the rows of θ (0)θ (1)θ (2)
are lin-

early independent, the requirement becomes the following linear

equality constraint:

1

12

(
5h

(0)

R1
+ 5h

(0)

R2
+ 2h

(0)

R3

)
=

1

18

(
h

(0)

R1
+ h

(0)

R2
+ 4h

(0)

R3
+ 6h

(0)

R4
+ 6h

(0)

R5

)
.

3.3 Learning a GNN satisfying multiple
fairness requirements

What if multiple desired fairness criteria cannot be satisfied simulta-

neously? One can then find GNNmodels that trade one criterion for

others, with the constraint that the trade-offs are efficient, meaning

that improving one fairness criterion necessarily harms at least

another criterion. Such a model is called “Pareto optimal (efficient)”,

which can be found by the following multi-objective optimization:

min

θ
ℓ(θ ) = (ℓ1(θ ), . . . , ℓm (θ ))

⊤, (18)

where ℓi is some loss function mapping from Θ to R+ and L is a

function mapping from Rd to Rm . We assume all loss functions are

differentiable so that their gradients are well-defined. In particular,

we always let the first objective function ℓ1 be the ranking loss

Eq. (4) to optimize spam detection performance. Depending on

what fairness criteria are desired, the corresponding fairness loss

functions can be appended as objective functions. For example, if

we care about fairness defined by disparate impact, we letm = 2

and ℓ2(θ ) be the loss defined in Eq. (5); if we want to ensure fairness

defined in DI, FNR, FPR, and xNDCG, we can letm = 5 and ℓ2(θ ) =

ℓDI(θ ), ℓ3(θ ) = ℓFNR(θ ), ℓ4(θ ) = ℓFPR(θ ), and ℓ5(θ ) = ℓXN(θ ).

Definition 3.3 (Dominance). A model θ is dominated by the
model θ ′, if ℓ(θ ′) ≤ ℓ(θ ) element-wisely and for at least one i ∈
{1, . . . ,m}, ℓi (θ ′) < ℓi (θ ).

Definition 3.4 (Pareto optimal and front). A model θ is
Pareto optimal (or efficient) if it is not dominated by any other model.
The Pareto front is image of the set of all Pareto optimal solutions
under the mapping ℓ : Θ→ Rm .

To characterize Pareto optimal solutions, we define them × d
Jacobian matrix

(J (θ ))i, j =

∂ℓi
∂θ j

(θ ). (19)

Unlike single objective optimization, at a local Pareto optimal

solution θ , the Jacobian matrix J (θ ) may not be all zero. That is,

there exists a Pareto optimal solution θ so that the gradient of ℓi
is not a zero vector for at least one i ∈ {1, . . . ,m}. A necessary

condition of a local Pareto optimal solution is that there is no vector

g ∈ Rd so that J (θ )g < 0, where the inequality is element-wise in

them objective values. If there is a vector g so that J (θ )g < 0, then

g is a descent direction to make ℓ(θ + αg) ⪯ ℓ(θ ) + βαg⊤(J (θ ))j
smaller than ℓ(θ ) with sufficiently small α ∈ (0, β) and β ∈ (0, 1).

To certificate that θ is Pareto optimal, or equivalently that there

is no descent direction to further reduce all objectives, one can

solve the following optimization problem [13]:

min

τ ,g
τ +

1

2
∥g∥2 (20)

s.t. (Ag)i ≤ τ , i = 1, . . . ,m. (21)

Algorithm 1 MOO for finding one Pareto optimal solution

Input:m objective functions ℓ1, . . . , ℓm (NDCG and some fair-

ness objective(s)), a small positive tolerance ϵ > 0.

Output: a Pareto optimal solution θ .
Initialize GNN model θ .
for t = 1, . . . , do
Find the gradients (J (θ ))i of individual objective functions ℓi
at the current solution θ .
Use a QP solver to find the optimal dual variables λ∗

1
, . . . , λ∗m ,

by solving the dual problem Eq. (22)-(23).

Compute the multi-gradient g =

∑m
j=1

λ∗j (J (θ ))j .

if at g, maxj (J (θ )g)j > −ϵ then
break

end if
Update θ ← θ − ηkg.

end for
Return the GNN model θ .

whereA = J (θ ) is a constant matrix given θ . If θ is a Pareto optimal

solution, then Ag ≥ 0 for any g ∈ Rd and the optimal value of the

above optimization is 0 by taking τ = 0 and g = 0 ∈ Rd . If θ is not

a Pareto optimal solution, then there is a g ̸= 0 so that Ag < 0 and

τ = maxi (Ag)i ≤ − 1

2
∥g∥2< 0. Note that τ and the descent direction

g are both functions of the current solution θ .
In practice, it is not necessary to find the global optimum of

the above strongly convex optimization problem. Instead, finding a

descent direction g so that τ +
1

2
∥g∥2 is sufficiently smaller than 0

is good enough. According to [13], it is more common to solve the

following dual problem of the above primal problem:

max

λ
− 1

2
∥∑m

j=1
λj (J (θ ))j ∥2 (22)

s.t.

∑m
j=1

λj = 1, λj ≥ 0, j = 1, . . . ,m. (23)

The dual problem is a quadratic programming (QP) problem and

λ = [λ1, . . . , λm] is the set of dual variables for them inequality

constraints in Eq. (21). Off-shelf software and library can be adopted

to find the approximately optimal λ∗. After the QP is solved, if the

current solution θ is not Pareto optimal, a descent direction is

obtained as a so-called “multi-gradient” g =

∑m
j=1

λ∗j (J (θ ))j , which

is used to update the GNN parameters θ :

θ ← θ − ηk
m∑
j=1

λ∗j (J (θ ))j . (24)

Otherwise, if τ = maxj (Ag)j is not sufficiently smaller than 0 and θ
can be claimed to be Pareto optimal. The algorithm description is

given in Algorithm 1. The learning rate ηk should be adjusted so

that ηk < (1− β)/(2Lmax) where 0 < β < 1 is a pre-specified hyper-

parameter and Lmax is the maximum of the Lipschitz constants of

the gradients of the objective functions.

Relation to regularization-based approaches. Compared with

the training a fairness-regularized GNN [9], such as

ℓ(θ ;G) = ℓ1(θ ;G) + λℓDI(θ ;G), (25)

the QP-based approach can find the relative importance of differ-

ent objective functions which are unknown a prior. Further, the



regularized GNN does not guarantee a Pareto optimal solution, as

shown in the experiments.

Finding Pareto fronts. To find multiple Pareto optimal solutions

in the Pareto fronts, Algorithm 2 is adopted from [39]. It maintains a

list of dominating solutions in each outer iteration, while in each of

the inner iterations, it randomly perturbs each previous dominating

solution into several slightly different solutions (“local search”),

which are further optimized by Algorithm 1. Dominated solutions

are removed at the end of each outer iteration.

Algorithm 2 Searching the Pareto front with Stochastic Multi-

Gradient

Input: graph G
Initialization: a list of a single GNN model L0 = {θ }.
for t = 0, 1, . . . do

Let Lt+1 = ∅.
for each model θ in Lt do
Sample r GNN parameters independently from N (θ ,σ 2I )
(adding Gaussian noise to each dimension of θ ).
Add the sampled model to Lt+1.

end for
Let L′t+1

= ∅.
for each model θ in Lt+1 do
Apply Algorithm 1 to update θ to θ ′.
Add θ ′ to L′t+1

.

end for
Remove models that are dominated from L′t+1

.

Let Lt+1 = L′t+1
.

end for

3.4 Convergence to a Pareto efficient solution
It has been proved in [13], that Algorithm 1 will converge to a

local Pareto optimal solution given that the objectives are Lipschitz

continuously differentiable and the step sizes are selected using

the Armijo method. Further, in [12], the authors proved that the

rate of convergence for non-convex, convex, and strongly convex

objective functions. There are discussions on whether to use convex

relaxation of fairness metrics [3]. On the one hand, using convex ob-

jective functions can ensure convergence and the rate. On the other

hand, neural networks are typically non-convex, even with con-

vex loss functions, and too much relaxation can cause the fairness

objectives to lose their effect [29].

We prove the convergence of Algorithm 1, with a key results

stated in [12, 13] without proof. We found the convergence proof

(Proof of Theorem 3, Section 4.6.4) in [22] also miss a key step (not

proving how the dual variables converge to a stationary point). We

close the gap by completing the proof in [12, 13].

Theorem 3.5. (Theorem 3.1 of [12]) All loss functions are lower-
bounded by zero. Let θ (0) be the initial GNN model and the maximal
loss function value be Fmax

= max{ℓ1(θ (0)
), . . . , ℓm (θ (0)

)}. Algo-
rithm 1 generates a sequence {θ (t )} such that

min

t=0, ...,T−1

∥g(t )∥≤
√

Fmax

M

1

√
T
, (26)

whereM = βηmin/2 and ηmin = min{(1 − β)/2Lmax, 1}.

The theorem shows that the descent direction sequence {g(t )}
satisfies

lim inf

t→∞
∥g(t )∥→ 0, (27)

and by passing to a subsequence, there is a subsequence of the

descent directions ∥θ (tk )∥→ 0 as k →∞. θ (tk )
converges to a limit

point θ∗ where the corresponding ∥g∗∥= 0. By Eq. (20)-(21), θ∗ is
a Pareto optimal solution. In [12], the authors stated but did not

prove why the corresponding dual variables λ also converges to

a stationary point λ∗. We close the gap by proving that λ(θ ) is a

continuous function θ .

Theorem 3.6. Let f (θ ,λ) =

∑m
j=1

λjℓj (θ ) be the objective function
Eq. (22) of the dual problem, and λ∗ be an optimal solution of the
problem. f : Rd+m → Rm . If ∇λ f (θ ,λ) is full-rank, then there is a
differentiable function λ(θ ) near λ∗.

Proof. Since the dual problem is a linearly constrained qua-

dratic programming and is convex, there is a unique solution λ∗

if the corresponding Hessian w.r.t. λ is positive definite. The con-

straints of the QP are

h(θ ,λ) =

m∑
j=1

λj − 1 = 0, (28)

fj (θ ,λ) = −λj ≤ 0, j = 1, . . . ,m. (29)

The Lagrangian of the constrained QP is

L(λ, µ,ν ,θ ) = f (θ ,λ) +

m∑
j=1

µ j fj (θ ,λ) + νh(θ ,λ)

The KKT conditions are

fj (θ ,λ) ≤ 0, j = 1, . . . ,m, (30)

h(θ ,λ) = 0, (31)

µ j ≥ 0, j = 1, . . . ,m (32)

µ j fj (θ ,λ) = 0, j = 1, . . . ,m, (33)

∇θL(λ, µ,ν ,θ ) = 0, (34)

The three equalities above constitute a linear system F (λ, µ,ν ,θ ) =

[∇λL(λ, µ,ν ,θ ); µ1 f1(θ ,λ); . . . ; µm fm (θ ,λ);h(θ ,λ)] = 0 ∈ Rm+1
.

By the Implicit Function Theorem [2], there is a neighborhood

around (λ, µ,ν ,θ ) and a function s : θ → (λ, µ,ν ) that is continu-

ously differentiable in a neighbor of θ , with Jacobian being:

∇θ s(θ ) = −∇λ,µ,ν F (λ, µ,ν ,θ )
−1∇θ F (λ, µ,ν ,θ ). (35)

The function s further satisfies F (s(θ ),θ ) = 0, the equalities in the

KKT conditions. □

The differentiable function s(θ ) maps from a model θ to the

optimal dual variable values when solving the problem Eq. (22)-

(23). It shows that λ is a continuous function of θ . As a result, λ
converges to λ(θ∗) as θ converges to θ∗.

Note: the convergence proof applies to multiple objectives de-

fined on a training set only. Convergence on the unseen test data

requires more assumptions, such as sufficiently large training sets

and identical training and test distributions.
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Figure 4: From top to bottom row, from left to right, we optimize NDCG along with every subset of the fairness objectives ∅,
{ℓDI}, {ℓEFPR}, . . . , {ℓDI, ℓEFNR, ℓEFPR, ℓXN}. Each subfigure tracks all fairness loss functions, even those not optimized by MOO,
on the test set during training on YelpChi. Fairness loss not optimized can increased while other metrics are optimized.

Table 1: Review dataset statistics

Dataset
Dataset Statistics P (Y =1|A=0)

P (Y =1|A=1)# Accounts # Products # Reviews (% spams)

YelpChi 38063 201 67395 (13.23%) 0.0437

YelpNYC 160225 923 359052 (10.27%) 0.1446

YelpZip 260277 5044 608598 (13.22%) 0.0426

4 EXPERIMENTS
Experimental settings. We evaluate the trade-offs between mul-

tiple fairness metrics, and those between accuracy and fairness

metrics, We adopt the three Yelp review datasets used previously

for graph-based spam detection [37, 47] (see Table 1). We place

in the favored group (A = 0) the reviewers who have the top

30% number of reviews, and the remaining reviewers in the pro-

tected group (A = 1). Reviews are grouped accordingly. The last

column of the table shows the ratio of spams in the two groups

(P (Y = 1|A = 0)/P (Y = 1|A = 1)). We can see that the class distribu-

tions are dependent on the attribute A: reviews from the favored

group are less likely to be spams. We split the reviewers and their

reviews into training (50%), validation (20%), and test (30%) sets, so

that the ratio of spams and the bias are similar in the three sets.

The isotropic normal distribution for sampling GNN parameters in

Algorithm 2 has variance σ 2
= 0.01.

Evaluation metrics. Since the class distributions are imbalanced,

we use NDCG to measure the detection accuracy. As we focus

on Pareto efficiency, we measure how often the baselines’ trained

models are dominated by the models found by our algorithms.

When there are only two objective functions, the dominance can

be visualized. With all 5 objective functions, it is hard to visualize

the dominance and we instead count the dominated solutions.

4.1 Experimental results
Do we need MOO? In Figure 2, we showed that optimizing one

fairness metric may not guarantee the optimization of other metrics.

Due to space limit, we only show the empirical results on the

YelpChi dataset. We use Algorithm 1 to optimize the NDCG loss (ℓ1)

along with one of the 16 subsets of the 4 fairness losses. The smallest

subset has no fairness loss and the algorithm only optimizes ℓ1. The

largest subset contains all 4 fairness losses and all fairness criteria

are desired. By comparing the first two subfigures in the first row,

one can see that disparate impact skyrocketed above the upper limit

0.14 in the first, but fell below 0.1 in the second subfigure when

ℓDI is minimized explicitly. Interestingly, the fairness loss ℓEFPR

slightly decreased but not much, while the other two fairness losses

ℓEFNR and ℓXN remain the same. The third subfigure of the same

row shows that, only when ℓEFPR is optimized by the algorithm

will ℓEFPR be controlled. Similar effect on ℓDI can be observed by

comparing the third and the last subfigures in the last row. In
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Figure 5: Convergence of ranking loss function, when optimized
along with different sets of fairness loss functions. From top to bot-
tom: YelpChi, YelpNYC, and YelpZip.

general, all fairness losses need to be minimized when all fairness

criteria need to be met (the last subfigure).

Convergence of to a single Pareto efficient solution. We em-

pirically demonstrate the convergence of Algorithm 1. Similar to

Figure 4, on 3 datasets, we solve 45 MOO problems, each of which

has the NDCG loss function ℓ1 (Eq. (4)) and one of the 15 non-empty

subsets of fairness losses. In Figure 5, we plot the convergence of

ℓ1 on the training set
6
. One can see that in 42 out of 45 MOO in-

stances, the NDCG loss converges, with the three exceptions on

the YelpNYC dataset when optimizing [ℓ1, ℓ
XN

, ℓEFNR], [ℓ1, ℓ
XN

,

ℓEFPR, ℓEFNR], and [ℓ1, ℓ
DI
, ℓXN, ℓEFPR, ℓEFNR]. Note that the rates

6
The convergence proof works on objective functions defined on the training set only,

and generalization to test distribution requires some large-sample arguments.

Table 2: Number of models found by Algorithm 2 that are
dominated by adversarial fairness learning. Sol’s = Total so-
lutions. Dom’d = Dominated.

YelpChi YelpNYC YelpZip

Epochs # Sol’s #Dom’d # Sol’s #Dom’d # Sol’s #Dom’d

2 10 1 9 0 5 0

4 28 0 31 2 21 0

6 117 0 109 1 71 0

8 256 0 289 0 212 1

10 447 0 597 0 345 1

of convergences are different in different MOO problems. For ex-

ample, the blue curve for optimizing [ℓ1, ℓ
XN, ℓEFPR] only starts

to decrease significantly at epoch 30 when it converges, while the

brown and gray curves converge at around epoch 20. Such differ-

ence can be caused by the difference in the descent directions due

to the different fairness objectives.

Converging to Pareto front. We optimize [ℓ1, ℓ
fair

], where ℓ1 is

the NDCG loss and ℓfair is some fairness loss. In Figure 6, we plot

the current dominating solutions in the list Lt+1 in Algorithm 2

every 4 of the total of 20 epochs. It is clear that the fronts converge

towards the lower-left corner of the 2 dimensional space [ℓ1, ℓ
fair

].

We observe that the competitions between the ranking loss and

each of ℓDI, ℓEFNR, and ℓEFPR are less severe, as the front closely

approaches the lower-left corner where both losses are small. How-

ever, the trade-off between ℓ1 and ℓXN is harder: pushing one loss

down means the other loss will go up. This is probably because

both losses are ranking-based and share the same battle ground.

Compare with baselines. We have two baselines:

• The fairness-regularized methods [23, 48, 49] need user-specified

relative importance to balance the objectives. The number of

balancing configurations grow exponentially in the number of

objectives. To restrict the search space, we only optimize the

scalar objective ℓ1 + λℓfair with λ ∈ {0.1, 1, 10} only.
• The method in [9] used adversarial learning to obtain fair GNN

without explicitly optimizing any fairness losses. Therefore, the

learned representations can be evaluated against various combi-

nations of fairness criteria.

Both baselines only find a single model that may not be Pareto

efficient. In Figure 6, we compare Algorithm 2 with both base-

lines when optimizing only two objectives [ℓ1, ℓ
fair

]. In most cases,

the baselines found solutions that are dominated by the Pareto

fronts found by Algorithm 2. The only two exceptions happen on

YelpNYC dataset, where both the regularization method and our

algorithm are optimizing ℓ1 along with ℓ
EFNR

or ℓXN. The results

of optimizing all 5 objectives are summarized in Table 2. Only the

adversarial method is compared since the regularization method

requires user-specified preference vectors. The Pareto fronts found

by Algorithm 2 in different training epoch dominated the baseline.

5 RELATEDWORK
Fairness on graphs. Fairness in graphs has been studied in several
contexts. In [10, 50], fair Markov random fields structure learning
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Figure 6: Convergence of Pareto frontswhen runningAlgorithm2. From top to bottom: YelpChi, YelpNYC, and YelpZip.We run
the algorithm with NDCG loss (ℓ1) and one of the four fairness losses (from left to right: ℓDI, ℓEFNR, ℓEFPR, and ℓxNDCG. The two
baselines are compared and the fairness-regularized GNN has three different regularization hyperparameters (λ = 0.1, 1, 10).

and inference algorithms are proposed, respectively. In [5, 7, 36],

they aimed to find a fair embedding of nodes on a graph. They

assume sensitive attributes are available on the nodes to define the

privileged and unprivileged groups, while we have node degree

as the sensitive attribute. In [1, 9], the authors propose to train

GNN using an adversarial opponent that tries to relate prediction

or data representation to sensitive node attributes. In [31], adver-

sarial objective function is added to a deep network so that the

representation and the classification are both insensitive to the

sensitive attribute. The advantage of these methods is that they are

agnostic to the fairness criteria. As a result, however, the methods

cannot optimize specific multiple objectives. Our MOO algorithms

converge to Pareto optimal solutions that dominate the solutions

found by adversarial fair learning. The targeted detection problem

can be viewed as a ranking problem on bipartite graphs [4, 38]. The

most relevant one promotes diversity and fairness [41], where a

two-step and regularization approach was adopted.

Game theoretical fairness.The regularized optimization for achiev-

ing accuracy-fairness trade-offs has been proposed in [23]. An al-

ternative formulation is to place the fairness regularization as a

constraint of the optimization problem for model training [43, 49].

However, these methods only work with a single fairness metric

and need to specify the strength of fairness regularization. Further-

more, these prior works did not explore the Pareto front consisting

of multiple optimal trade-offs.

Multi-objective for fairness. This work is inspired by prior MOO

works [12, 13, 39], which did not certificate and optimize multiple

fairness criteria for GNN. There are work that address multiple

fairness criteria using MOO [22, 32], however, their methods are

preference-based and require user-specified relative objective im-

portance. Our method uses stochastic search and is data-driven.

6 CONCLUSION
We studied the problem of meeting multiple fairness criteria when

training a GNN to detect spams on a review graph. The challenge

of certificating the compatibility of multiple fairness criteria is ad-

dressed by formulating linear systems in terms of graph structures

and input features. When the certificate fails, it is then desirable

to find Pareto efficient solutions, where improving one objective

necessarily harm another. We propose algorithms with proof of

convergence using the implicit function theorem to find Pareto op-

timal solutions, The proposed stochastic search is data-driven and

without user-specified preference vectors. Our solutions dominate

the baselines that use fairness-regularization and adversarial fair

representation learning.
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