CRAPH MATCHING NETWORKS FOR LEARNING THE SIMILARITY OF CRAPH STRUCTURED OBJECTS

YUJIĬ Li, CHENIE GU, THOMAS DULMEN*, ORIOL VINYALS, PUSHMEET ROHLI

Presented by Xuehan Chen
04/26/2021

BACKGROUND

- Graph structure data application-> Graph similarity learning
- eg, Binaries -> Software Vulnerabilities

BINARY FUNCTION SIMILARITY SEARCH PROBLEM

contains
vulnerability?

APROACHES

- Exsiting approaches:
- Graph hashes :
- human-designed hash functions
- good at exact match rather than estimating similarity
- Graph Kernels
- human-designed kernels to measure similarity between graphs
- Proposed approaches:
- Graph Neural Network (GNN)
- Graph Matching Network (GMN)

ANNOTATION

- Graph: G(V,E); Xi, i $\in \mathrm{V}$; Xij, $(\mathrm{i}, \mathrm{j}) \in \mathrm{E}$
- Two graphs Gl = (V1,El) and G2 = (V2,E2)
- Similarity score: s(Gl,G2)

GRAPH EMBEDDING MODELS WITH GNN

- 1. Encoder

$$
\begin{align*}
\mathbf{h}_{i}^{(0)} & =\operatorname{MLP}_{\text {node }}\left(\mathbf{x}_{i}\right), \quad \forall i \in V \tag{1}\\
\mathbf{e}_{i j} & =\operatorname{MLP}_{\text {edge }}\left(\mathbf{x}_{i j}\right), \quad \forall(i, j) \in E .
\end{align*}
$$

- 2. Propagation layers

$$
\begin{align*}
\mathbf{m}_{j \rightarrow i} & =f_{\text {message }}\left(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}, \mathbf{e}_{i j}\right) \\
\mathbf{h}_{i}^{(t+1)} & =f_{\text {node }}\left(\mathbf{h}_{i}^{(t)}, \sum_{j:(j, i) \in E} \mathbf{m}_{j \rightarrow i}\right) \tag{2}
\end{align*}
$$

- 3. Aggregator

$$
\begin{equation*}
\mathbf{h}_{G}=\operatorname{MLP}_{G}\left(\sum_{i \in V} \sigma\left(\operatorname{MLP}_{\text {gate }}\left(\mathbf{h}_{i}^{(T)}\right)\right) \odot \operatorname{MLP}\left(\mathbf{h}_{i}^{(T)}\right)\right), \tag{3}
\end{equation*}
$$

vector space similarity
graph vectors
propagations

GRAPH MATCHING NETWORIS

- Matching models compute the similarity score jointly on the pair, rather than first independently mapping each graph to a vector.

Figure 2. Illustration of the graph embedding (left) and matching models (right).

GRAPH MATCHING NETWORKS

- Change the node update module in each propagation layer: (embed+match)
- Aggregated messages on the edges for each graph + Cross-graph matching information

$$
\mathbf{h}_{i}^{(t+1)}=f_{\text {node }}\left(\mathbf{h}_{i}^{(t)}, \sum_{j} \mathbf{m}_{j \rightarrow i}, \sum_{j^{\prime}} \boldsymbol{\mu}_{j^{\prime} \rightarrow i}\right)
$$

$$
\begin{align*}
\mathbf{m}_{j \rightarrow i}= & f_{\text {message }}\left(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}, \mathbf{e}_{i j}\right), \forall(i, j) \in E_{1} \cup E_{2} \tag{4}\\
\boldsymbol{\mu}_{j \rightarrow i}= & f_{\text {match }}\left(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}\right), \\
& \forall i \in V_{1}, j \in V_{2}, \text { or } i \in V_{2}, j \in V_{1} \tag{5}
\end{align*}
$$

- $f_{\text {match }}$: Cross-graph matching measures how will a node in one graph can be matched to one or more nodes in the other.
- S_{h} is a vector space similarity metric, like Euclidean or cosine similarity
- $\quad a_{j \rightarrow i}$: attention weights: $\operatorname{softmax}\left(e_{i j}\right), e_{i j}=s_{h}\left(h_{i}(\mathrm{t}), h_{j}(\mathrm{t})\right) \sum_{j} \mu_{j \rightarrow i}=\sum_{j} a_{j \rightarrow i}\left(\mathbf{h}_{i}^{(t)}-\mathbf{h}_{j}^{(t)}\right)=\mathbf{h}_{i}^{(t)}-\sum_{j} a_{j \rightarrow i} \mathbf{h}_{j}^{(t)}$.
- $\sum_{j} \mu_{j \rightarrow i}$: (Total cross-graph message: sum of weighted

$$
\begin{align*}
a_{j \rightarrow i} & =\frac{\exp \left(s_{h}\left(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}\right)\right)}{\sum_{j^{\prime}} \exp \left(s_{h}\left(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j^{\prime}}^{(t)}\right)\right)}, \tag{10}\\
\boldsymbol{\mu}_{j \rightarrow i} & =a_{j \rightarrow i}\left(\mathbf{h}_{i}^{(t)}-\mathbf{h}_{j}^{(t)}\right)
\end{align*}
$$ difference) measures the difference between $h_{i}(\mathrm{t})$ and its closest neighbor in the other graph

GRAPH MATCHING NETWORK

- T: the number of rounds of propagation
- $\left\{h_{i}(\mathrm{~T})\right\}$: the set of node representations ->input
- $h_{G 1}=f_{G}\left\{h_{i}(\mathrm{~T})\right\}, \mathrm{i} \in V_{1}$

$$
\begin{aligned}
\mathbf{h}_{i}^{(t+1)} & =f_{\text {node }}\left(\mathbf{h}_{i}^{(t)}, \sum_{j} \mathbf{m}_{j \rightarrow i}, \sum_{j^{\prime}} \boldsymbol{\mu}_{j^{\prime} \rightarrow i}\right) \\
\mathbf{h}_{G_{1}} & =f_{G}\left(\left\{\mathbf{h}_{i}^{(T)}\right\}_{i \in V_{1}}\right) \\
\mathbf{h}_{G_{2}} & =f_{G}\left(\left\{\mathbf{h}_{i}^{(T)}\right\}_{i \in V_{2}}\right) \\
s & =f_{s}\left(\mathbf{h}_{G_{1}}, \mathbf{h}_{G_{2}}\right) .
\end{aligned}
$$

- $h_{G 2}=f_{G}\left\{h_{i}(\mathrm{~T})\right\}, \mathrm{i} \in V_{2}$
vector space similarity
- f_{G} : aggregation module
- $\mathrm{s}=f_{s}\left(h_{G 1}, h_{G 2}\right)$
- f_{S} : a standard vector space similarity between $h_{G 1}$ and $h_{G 2}$.
- eg, the Euclidean, cosine or Hamming similarities.

OTHER MODELS FOR GRAPH SIMILIARITY LEARNING

- Graph Convolutional Networks (GCNs), which is a simpler variant without modeling edge features
- A: adjacency matrix

$$
\begin{gathered}
f\left(H^{(l)}, A\right)=\sigma\left(\hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} H^{(l)} W^{(l)}\right) \\
Z=f(X, A)=\operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A} X W^{(0)}\right) W^{(1)}\right)
\end{gathered}
$$

- D: degree matrix
- I: identity matrix
${ }^{{ }^{\text {A }}{ }^{\wedge}=\mathrm{A}+\mathrm{I}} \quad \tilde{A}=A+I_{N}$
- D^{\wedge} : diagonal node degree matrix of $\mathrm{A}^{\wedge} . \quad \tilde{D}_{i i}=\sum_{j} \tilde{A}_{i j}$
- Siamese networks:
- instead of using Euclidean or Hamming distance, learn a distance score through a neural net
- $\mathrm{d}(\mathrm{G} 1, \mathrm{G} 2)=\mathrm{MLP}($ concat $(\operatorname{embed}(\mathrm{G} 1)$, embed(G2)) $)$
- learn the embedding model and the scoring MLP jointly

GRAPH SIMILARITY LEARNING

Margin-based pairwise loss: Euclidean similarity $\quad d\left(G_{1}, G_{2}\right)=\left\|\mathbf{h}_{G_{1}}-\mathbf{h}_{G_{2}}\right\|^{2}$

$$
\begin{aligned}
& L_{\text {pair }}=\mathbb{E}_{\left(G_{1}, G_{2}, t\right)}\left[\max \left\{0, \gamma-t\left(1-d\left(G_{1}, G_{2}\right)\right)\right\}\right], \\
& \mathrm{t}=+1 \Rightarrow \mathrm{G} 1, \mathrm{G} 2 \text { similar } \Rightarrow \mathrm{d}(\mathrm{G} 1, \mathrm{G} 2) \\
& \mathrm{t}=-1 \Rightarrow \mathrm{G} 1, \mathrm{G} 2 \text { not similar } \Rightarrow \mathrm{d}(\mathrm{G} 1, \mathrm{G} 2)
\end{aligned}
$$

$$
t \in\{-1,1\}
$$

This loss encourages $d(G 1, G 2)<1-\gamma$ when the pair is similar $(t=1)$, $\mathrm{d}(\mathrm{G} 1, \mathbf{G} 2)>1+\gamma$ when $\mathrm{t}=-1$.
$L_{\text {triplet }}=\mathbb{E}_{\left(G_{1}, G_{2}, G_{3}\right)}\left[\max \left\{0, d\left(G_{1}, G_{2}\right)-d\left(G_{1}, G_{3}\right)+\gamma\right\}\right]$.

G1, G2 similar, G1, G3 not similar
$\Rightarrow \mathrm{d}(\mathrm{G} 1, \mathrm{G} 2) \mathrm{d}(\mathrm{G} 1, \mathrm{G} 3)$

GRAPH SIMILARITY LEARNING

Binary graph representation-> Hamming similarity

$$
\begin{align*}
& s\left(G_{1}, G_{2}\right)=\frac{1}{H} \sum_{i=1}^{H} \tanh \left(h_{G_{1} i}\right) \cdot \tanh \left(h_{G_{2} i}\right) \quad \mathbf{h}_{G} \in\{-1,1\}^{H} \\
& L_{\text {pair }}=\mathbb{E}_{\left(G_{1}, G_{2}, t\right)}\left[\left(t-s\left(G_{1}, G_{2}\right)\right)^{2}\right] / 4, \quad \text { and } \quad \text { (14) } \\
& L_{\text {triplet }}=\mathbb{E}_{\left(G_{1}, G_{2}, G_{3}\right)}\left[\left(s\left(G_{1}, G_{2}\right)-1\right)^{2}+\right. \\
& \left.\qquad\left(s\left(G_{1}, G_{3}\right)+1\right)^{2}\right] / 8, \quad \text { (15) }
\end{align*}
$$

COMPARISON

$\mathrm{d}(\mathrm{G} 1, \mathrm{G} 2)=$ Euclidean/Hamming
distance(embed(G1), embed(G2))
$d(G 1, G 2)=\operatorname{MLP}(\operatorname{concat}(\operatorname{embed}(G 1), \operatorname{embed}(G 2)))$
$h 1, h 2=\operatorname{embed}-$ and-match(G1, G2)
$\mathrm{d}(\mathrm{G} 1, \mathrm{G} 2)=$ Euclidean/Hamming distance(h1, h2)

EXPERIMENTS

- Graph edit distance learning
- Data: synthetic graphs
- Similarity: small edit distance \rightarrow similar
- Control-flow graph based binary function similarity search
- Data: compile ffmpeg with different compilers and optimization levels.
- Similarity: binary functions associated with the same original function \rightarrow similar
- Mesh graph retrieval
- Data: mesh graphs for 100 object classes (COIL-DEL dataset)
- Similarity: mesh for the same object class \rightarrow similar

WL KERNEL

Given labeled graphs G and G^{\prime}

1st iteration
Result of step 3: label compression

1,4	6	3,245	10
2,3	7	4,1135	11
2,35	8	4,1235	12
2,45	9	5,234	13

1st iteration Result of steps 1 and 2: multiset-label determination and sorting

- Baseline:WL Kernel
- Weisfeiler Lehman algorithm behind this kernel is a strong method for checking graph isomorphism (edit distance of 0)

Algorithm 1 One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomorphism
1: Multiset-label determination

- For $i=0$, set $M_{i}(v):=l_{0}(v)=\ell(v) .{ }^{2}$
- For $i>0$, assign a multiset-label $M_{i}(v)$ to each node v in G and G^{\prime} which consists of the multiset $\left\{l_{i-1}(u) \mid u \in \mathcal{N}(v)\right\}$.
2: Sorting each multiset
- Sort elements in $M_{i}(v)$ in ascending order and concatenate them into a string $s_{i}(v)$
- Add $l_{i-1}(v)$ as a prefix to $s_{i}(v)$ and call the resulting string $s_{i}(v)$.

3: Label compression

- Sort all of the strings $s_{i}(v)$ for all v from G and G^{\prime} in ascending order
- Map each string $s_{i}(v)$ to a new compressed label, using a function $f: \Sigma^{*} \rightarrow \Sigma$ such that $f\left(s_{i}(v)\right)=f\left(s_{i}(w)\right)$ if and only if $s_{i}(v)=s_{i}(w)$.
4: Relabeling
- Set $l_{i}(v):=f\left(s_{i}(v)\right)$ for all nodes in G and G^{\prime}.

SYNTHETIC TASK: GRAPH EDIT DISTANCE LEARNING

- Training and evaluating on graphs of size n, and edge density (probability) p
- Measuring pair classification AUC / triplet prediction accuracy.

Graph Distribution	WL kernel	GNN	GMN
$n=20, p=0.2$	$80.8 / 83.2$	$88.8 / 94.0$	$\mathbf{9 5 . 0} / \mathbf{9 5 . 6}$
$n=20, p=0.5$	$74.5 / 78.0$	$92.1 / 93.4$	$\mathbf{9 6 . 6} / \mathbf{9 8 . 0}$
$n=50, p=0.2$	$93.9 / \mathbf{9 7 . 8}$	$95.9 / 97.2$	$\mathbf{9 7 . 4} / 97.6$
$n=50, p=0.5$	$82.3 / 89.0$	$88.5 / 91.0$	$\mathbf{9 3 . 8} / \mathbf{9 2 . 6}$

Comparing the graph embedding (GNN) and matching(GMN) models trained on graphs from different distributions with the baseline, measuring pair AUC / triplet accuracy (100).

- Learned models do better than WL kernel.
- Matching model better than embedding model.

BINARY FUNCTION SIMILARITY SEARCH

Figure 4. Performance $(\times 100)$ of different models on the binary function similarity search task.

Model	Pair AUC	Triplet Acc
Baseline	96.09	96.35
GCN	96.67	96.57
Siamese-GCN	97.54	97.51
GNN	97.71	97.83
Siamese-GNN	97.76	97.58
GMN	$\mathbf{9 9 . 2 8}$	$\mathbf{9 9 . 1 8}$

Function Similarity Search

Model	Pair AUC	Triplet Acc
GCN	94.80	94.95
Siamese-GCN	95.90	96.10
GNN	98.58	98.70
Siamese-GNN	98.76	98.55
GMN	$\mathbf{9 8 . 9 7}$	$\mathbf{9 8 . 8 0}$

COIL-DEL

Table 2. More results on the function similarity search task and the extra COIL-DEL dataset.

REFERANCES

- Y. Li al. Graph Matching Networks for Learning the Similarity of Graph Structured Objects. ICML, 2019
- Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.
- Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201-1242, 2010.
- Xu, K., Hu, W., Leskovec, J., and Jegelka, S. Howpowerful are graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

