CRAPH MATCHING NETWORKS
FOR LEARNING THE SIMILARITY OF CRAPH

')
- o]
= = e
- f ci %
ey 8 - ’ T - .
el]
‘ .

AN

——

STRUCTURED OBJECTS

YUJIA Li, CHERJIE GU, THOMAS DULLIEN®, ORIOL VINYALS, PUSHMEET KOHLI

/

,rﬁ“@'{"!

Presented by Xuehan Chen
04/26/2021

BACKGROUND

= Graph structure data application-> Graph similarity learning
* eg, Binaries -> Software Vulnerabilities

< 2 Expr‘ 10 ‘ : i
e =
e
is
Molecules Scene Graphs* Programs** LE
Binaries

@

BINARY FUNCTION SIMILARITY SEARCH PROBLEM

contains

APROACHES

= Exsiting approaches:
* Graph hashes:
= human-designed hash functions
= good at exact match rather than estimating similarity
= Graph Kernels
= human-designed kernels to measure similarity between graphs

= Proposed approaches:
* Graph Neural Network (GNN)
= Graph Matching Network (GMN)

(.

ANNOTATION

= Graph: G(V,E); Xi,ieV; Xijj,(i,)) €E
= Two graphs G1 = (V1,E1l) and G2 = (V2,E2)
= Similarity score: s(G1,G2)

GRAPH EMBEDDING MODELS WITH GNN

= 1. Encoder

h{® = MLPpode(x:), Vi€V

1
€;; = l\"ILPedge(Xij), V(ZJ) € F. 0
= 2. Propagation layers
Wy = fmesenge(B57, 157, 055) (2)

t+1) t)
hE = Jfoode (hg ij:(j,i)eEmj—’i>

= 3. Aggregator

O (Z o(MLP e (h'D)) © MLP(hET))) :

eV
(3)

vector space similarity

graph vectors Comerm III:III

propagations

GRAPH MATCHING NETWORKS

= Matching models compute the similarity score jointly on the pair, rather
than first independently mapping each graph to a vector.

vector space similarity vector space similarity

graph vectors [mmm e (a = us] ams ma)

propagations

Figure 2. Illustration of the graph embedding (left) and matching models (right).

(.

GRAPH MATCHING NETWORKS - :ﬁ'

* Change the node update module in each propagation layer: (embed+match)
 Aggregated messages on the edges for each graph + Cross-graph matching information

mi; = fmessage(hgt)s hﬁt) ez])v<2]) = El U E2 (4)

N By (hﬁt)-ZmHi.Zujq) (6) Ky = fmatch(hgt),hgt)),
: 4 VieVi,jeVa,orieVa,jeW; (5)
fmatcn: Cross-graph matching measures how will a G = exp(sn (h{,h{"))
node in one graph can be matched to one or more 2 >, exp(sn (h{” b))’ (10)
nodes in the other. paz % = a,j%i(hgt) - hgt))

Spis a vector space similarity metric, like Euclidean or
cosine similarity

_ (t))y _ 1,(®) (t)
a;_,;: attention weights: softmax(e;;), e;; = sp(h;(t), h;j (1)) Z“j—n' = Z aji(h;" —hy”) =h;" — Z aj:h;”.
Z]- Kj-;: (Total cross-graph message: sum of weighted 4 . 5 (11)
difference) measures the difference between h;(t) and
its closest neighbor in the other graph @

GRAPH MATCHING NETWORK

= T: the number of rounds of propagation

= {h;(T) } : the set of node representations ->input
* hg1=fc {i(T) },ie 1}

" h2=fg {hi(T) },ie V;

= fo: aggregation module

* 8 = fo(hgr, hez)

= eqg, the Euclidean, cosine or Hamming similarities.

h7(:t+1) = fnode (hz(»t)-zmj%mZNj'—n)
i I

he, = fe({h{"}ien)

e
hg, = fC({hE)}‘ieVz)
s = fs(hGrhGQ)'

vector space similarity

= _mn] (mms mm)
b/ X b/ .)
= fs: a standard vector space similarity between h;; and h, . 8 £ OO.Q
AN /3
C

(.

OTHER MODELS FOR GRAPH SIMILIARITY LEARNING

= Graph Convolutional Networks (GCNs), which is a simpler variant
without modeling edge features

R L R L
= A:adjacency matrix f(H D A)=0 (D *AD *H (I)W(l))
= D: degree matrix X X
= I: identity matrix Z = LX) = softmax(A ReLU(AXIvV(O)> W"(l))
) AN=A+] A=4 & IN

= D/ : diagonal node degree matrix of AA. Dy = Z Aij
J

= Siamese networks:
= instead of using Euclidean or Hamming distance, learn a distance score through a neural net
= d(G1, G2) = MLP(concat(embed(G1l), embed(G2)))
= learn the embedding model and the scoring MLP jointly

(.

GRAPH SIMILARITY LEARNING

Margin-based pairwise loss: Euclidean similarity d(G1,G2) = ||hGL1 —.h'GQH2
Lpair =]E(G1 Ga,t) [maX{O, ayp— t(l - d(Gl, Gg))}], (12)

t=+1= G1, G2 similar = d(G1, G2)

t=-1= G1, G2 not similar = d(G1, G2) o

This loss encourages d(G1, G2) < 1-y when the pair is similar (t = 1),
d(G1l,G2) > 1+y whent = —1.

Liriplet = E(q,,a,,65)[max{0,d(G1, G2)—d(G1, G3)+7}].
(13)

G1, G2 similar, G1, G3 not similar
= d(G1,G2) @ dG1,63) A

t e {-1,1}

v >0

(.

GRAPH SIMILARITY LEARNING

Binary graph representation-> Hamming similarity

s(G1,Gs) = L 31 tanh(he,) - tanh(he,:) he € {~1,1}2

Lpair = E¢,.co.[(t — 5(G1,G2))?]/4, and (14)
Ltriplet -]E(Gl.GQ.GS)[('S(GITGQ) a 1)2+
(s(G1,G3) +1)%]/8, (15)

(.

COMPARISON

Graph Embedding
- i
S e breeeE d(G1, G2) = E.uclldean/Hammlng
@ "E’ distance(embed(G1), embed(G2))
(@\O Siamese Network
- .
d(G1, G2) = MLP(concat(embed(G1), embed(G2)))

E — [l =» Similarity score
C@)—O —»E'
C@O I Graph Matching ¢ 15 = embed-and-match(G1, G2)
—) - ~
Similarity score d(G1, G2) = Euclidean/Hamming distance(h1, h2)
@)—O — — E’ Q

EXPERIMENTS

= Graph edit distance learning
* Data: synthetic graphs
= Similarity: small edit distance — similar

= Control-flow graph based binary function similarity search
* Data: compile ffmpeg with different compilers and optimization levels.

= Similarity: binary functions associated with the same original function — similar

= Mesh graph retrieval
* Data: mesh graphs for 100 object classes (COIL-DEL dataset)
= Similarity: mesh for the same object class — similar

(.

WL KERNEL

Given labeled graphs G and G’

Ist iteration

Result of step 3: label compression

—_— 6

3,245
4,1135
4,1235
5,234

n
12
13

Ist iteration

Result of steps 1 and 2: multiset-label determination and sorting

G238)—C2355

FTAR T

G

QA5

G238

R At v

Ist iteration
Result of step 4: relabeling

= Baseline: WL Kernel

= Weisfeiler Lehman algorithm behind
this kernel is a strong method for
checking graph isomorphism (edit
distance of 0)

Algorithm 1 One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomorphism
1: Multiset-label determination
e Fori=0,set M;(v) :=Ip(v) = £(v). ?
e Fori> 0, assign a multiset-label M;(v) to each node v in G and G’ which consists of the
multiset {/;_ (u)|u € A[(v)}.
2: Sorting each multiset
e Sort elements in M;(v) in ascending order and concatenate them into a string s;(v).
e Add /;_(v) as a prefix to s;(v) and call the resulting string s;(v).
3: Label compression
e Sort all of the strings s;(v) for all v from G and G’ in ascending order.
e Map each string s;(v) to a new compressed label, using a function f: 2* — X such that
S(s:(v)) = f(si(w)) if and only if 5;(v) = s;(w).
4: Relabeling
o Set /;(v) := f(s;(v)) for all nodes in G and G'.

SYNTHETIC TASK: GRAPH EDIT DISTANCE LERRNING

= Training and evaluating on graphs of size n, and edge density (probability) p

= Measuring pair classification AUC / triplet prediction accuracy.

Graph Distribution | WL kernel GNN GMN
n =20,p=0.2 80.8/83.2 | 88.8/94.0 95.0/95.6
n=20,p=0.5 74.5/78.0 | 92.1/93.4 96.6/98.0
n = 50,p = 0.2 939/97.8 | 959/97.2 97.4/97.6
n=2950,p=0.5 82.3/89.0 | 88.5/91.0 93.8/92.6

Comparing the graph embedding (GNN) and matching(GMN) models trained on graphs from different
distributions with the baseline, measuring pair AUC / triplet accuracy (100).

* Learned models do better than WL kernel.
¢ Matching model better than embedding model.

BINARY FUNCTION SIMILARITY SERRCH

100 100
— - - A - == ==
Z — 2
f—_.___.___‘__ - >\95 ’:'0——0——.——&__'
95 ,,g = - g s »
%) e e | s e Sl E e 5 - = === ==
D 4 v} »
< 4 £ 90
% 90 ,l i I, = = baseline: struct only
Q. ? %_ / = baseline: struct + node features
4 E a5 / =eo=embedding: struct only
Y { =e== embedding: struct + node features
85 f f =0=matching: struct only
=e= matching: struct + node features
80
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
#propagation steps #propagation steps

Figure 4. Performance (x 100) of different models on the binary function similarity search task.

Model | Pair AUC Triplet Acc - -
: P Model | Pair AUC Triplet Acc
Baseline 96.09 96.35
GCN 94.80 94.95
GCN 96.67 96.57 i
. Siamese-GCN 95.90 96.10
Siamese-GCN 97.54 97.51
GNN 98.58 98.70
GNN 97.71 97.83)
2 Siamese-GNN 98.76 98.55
Siamese-GNN 97.76 97.58 GMN 98.97 98.80
GMN 99.28 99.18
Function Similarity Search COIL-DEL

Table 2. More results on the function similarity search task and the extra COIL-DEL dataset.

(.

REFERANCES

= Y. Li al. Graph Matching Networks for Learning the Similarity of Graph Structured
Objects. ICML, 2019

= Ii,Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

= Vishwanathan, S. V.N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M. Graph
kernels. Journal of Machine Learning Research, 11(Apr):1201-1242, 2010.

= Xu, K., Hu, W, Leskovec, J., and Jegelka, S. Howpowerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

(.

