
Presented by Xuehan Chen

04/26/2021

§ Graph structure data application-> Graph similarity learning
§ eg, Binaries -> Software Vulnerabilities

§ Exsiting approaches:
§ Graph hashes :

§ human-designed hash functions
§ good at exact match rather than estimating similarity

§ Graph Kernels
§ human-designed kernels to measure similarity between graphs

§ Proposed approaches:
§ Graph Neural Network (GNN)
§ Graph Matching Network (GMN)

§ Graph: G(V,E); Xi, i ∊V; Xij, (i,j) ∊ E

§ Two graphs G1 = (V1,E1) and G2 = (V2,E2)

§ Similarity score: s(G1,G2)

§ 1. Encoder

§ 2. Propagation layers

§ 3. Aggregator

§ Matching models compute the similarity score jointly on the pair, rather
than first independently mapping each graph to a vector.

• Change the node update module in each propagation layer: (embed+match)
• Aggregated messages on the edges for each graph + Cross-graph matching information

• 𝑓!"#$%: Cross-graph matching measures how will a
node in one graph can be matched to one or more
nodes in the other.

• 𝑆%is a vector space similarity metric, like Euclidean or
cosine similarity

• 𝑎&→(: attention weights: softmax(𝑒(&), 𝑒(& = 𝑠%(ℎ((t), ℎ&(t))
• ∑& 𝜇&→(: (Total cross-graph message: sum of weighted

difference) measures the difference between ℎ((t) and
its closest neighbor in the other graph

§ T: the number of rounds of propagation

§ {ℎ!(T) } : the set of node representations ->input

§ ℎ"#=𝑓" {ℎ!(T) } , i∊ 𝑉#
§ ℎ"$=𝑓" {ℎ!(T) } , i∊ 𝑉$
§ 𝑓": aggregation module

§ s = 𝑓%(ℎ"#, ℎ"$)

§ 𝑓%: a standard vector space similarity between ℎ"# and ℎ"$.

§ eg, the Euclidean, cosine or Hamming similarities.

§ Graph Convolutional Networks (GCNs), which is a simpler variant
without modeling edge features

§ A: adjacency matrix

§ D: degree matrix

§ I: identity matrix

§
A^=A+I

§ D^ : diagonal node degree matrix of A^.

§ Siamese networks:
§ instead of using Euclidean or Hamming distance, learn a distance score through a neural net
§ d(G1, G2) = MLP(concat(embed(G1), embed(G2)))
§ learn the embedding model and the scoring MLP jointly

t = +1 ⇒ G1, G2 similar ⇒ d(G1, G2) ↙
t = -1 ⇒ G1, G2 not similar ⇒ d(G1, G2) ↗

G1, G2 similar, G1, G3 not similar
⇒ d(G1, G2) ↙ d(G1, G3) ↗

This loss encourages d(G1, G2) < 1−γ when the pair is similar (t = 1),
d(G1, G2) > 1+γ when t = −1.

Margin-based pairwise loss: Euclidean similarity

Binary graph representation-> Hamming similarity

d(G1, G2) = MLP(concat(embed(G1), embed(G2)))

d(G1, G2) = Euclidean/Hamming
distance(embed(G1), embed(G2))

h1, h2 = embed-and-match(G1, G2)

d(G1, G2) = Euclidean/Hamming distance(h1, h2)

§ Graph edit distance learning
§ Data: synthetic graphs
§ Similarity: small edit distance → similar

§ Control-flow graph based binary function similarity search
§ Data: compile ffmpeg with different compilers and optimization levels.

§ Similarity: binary functions associated with the same original function → similar

§ Mesh graph retrieval
§ Data: mesh graphs for 100 object classes (COIL-DEL dataset)
§ Similarity: mesh for the same object class → similar

§ Baseline:WL Kernel

§ Weisfeiler Lehman algorithm behind
this kernel is a strong method for
checking graph isomorphism (edit
distance of 0)

§ Training and evaluating on graphs of size n, and edge density (probability) p

§ Measuring pair classification AUC / triplet prediction accuracy.

Comparing the graph embedding (GNN) and matching(GMN) models trained on graphs from different
distributions with the baseline, measuring pair AUC / triplet accuracy (100).

• Learned models do better than WL kernel.
• Matching model better than embedding model.

§ Y. Li al. Graph Matching Networks for Learning the Similarity of Graph Structured
Objects. ICML, 2019

§ Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

§ Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M. Graph
kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.

§ Xu, K., Hu, W., Leskovec, J., and Jegelka, S. Howpowerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

